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In order to have a more reliable description of the final stage of evolution of a binary system 
we have "reduced" the two-body problem in general relativity to an auxiliary one-body one. 
The effective description defines a particular re-summation of the original post-Newtonian 
expanded dynamics and should be able to specify some non-perturbative characteristics of the 
binary system as the existence of the innermost stable circular orbit. 

1 Introduction 

Coalescing compact binaries are among the most promising sources for the detection of gravita 
tional-waves by laser-interferometric observatories such as GE0600, LIGO and VIRGO. Because 
the gravitational signal depends sensitively on the transition from the adia:batic inspiral phase 
to the plunge one, it is very desirable to have a good understanding of the late-time dynamical 
evolution of the system. 

Up till now there are not reliable and convincing results which can either assert'the existence 
of the innermost stable circular orbit (ISCO),  for a binary system, or point out its location. Clark 
and Eardley 1 and Blackburn and Detweiler 2 have found that the ISCO should be significantly 
more tightly bound than in the Scqwarzschild case. On the contrary, �idder, Will and Wiseman 
3 (KWW) have predicted an ISCO that is less tightly bound then the one for a test particle in 
the s·chwarzschild metric. This means that the inspiral evolution might enter a plunge phase 
before tidal disruption takes place. Using the Damour-Deruelle equations of motion 4 , Kidder 
et al. have applied an hybrid approach in which the terms that are not linked to the symmetric 
mass ratio 11 = m 1 m2/ (m1 + m2 )2 (m1 and m2 are the masses of the two compact bodies) 
are treated exactly while the 11-dependent terms are considered as additional corrections. This 
method have been questioned later on by Schafer and Wex 5 .  They pointed out that the hybrid 

"This talk is based on A. Buonanno and T. Damour, Phys. Rev. D 59 {1999} 084006. 
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approach gives different predictions if applied to the Hamiltonian rather than to the equations 
of motion and that it is also not robust .under change of coordinates. Furthermore, it has been 
stressed by Damour, Iyer and Sathyaprakash 6 (DIS) that the hybrid approach suffers for an 
inconsistency because the v-dependent contributions cannot be considered as formal corrections 
to the v-independent ones, in some cases they are large modifications of them. Differently 
from Kidder et al . ,  Damour et al. have predicted that the radial position of the ISCO for a 
binary system is smaller than the corresponding quantity in the Schwarzschild metric. All this 
controversy is mainly related with the fact that the Post-Newtonian (PN) expansion of the 
two-body dynamics is a badly convergent one, therefore it is very difficult to extract from it 
non-perturbative information. 

In order to tackle these issues we have recently introduced a novel approach for studying the 
two-body problem in general relativity 7 . The key idea is to map the dynamics of the relative 
motion of a two-body system, made of neutron stars and/or black holes of comparable masses, 
onto the dynamics of one particle that is moving in some external effective metric. Turning off 
radiation damping, the effective metric will be a static spherically symmetric deformation of the 
Schwarzschild metric, with deformation parameter v. In this metric we can solve exactly the 
dynamical problem of a test particle and we can define uniquely the ISCO. Our construction 
should be viewed as a non-perturbative way of re-summing the post-Newtonian expansion in 
the relativistic regime where GM/c2r � 1 ,  here M is the total mass of the system and r is the 
relittive distance between the two bodies. 
2 Two-body problem versus one-body problem 

Let us concentrate for the moment on the time-symmetric dynamics of a binary system made 
of two compact bodies of mass m1 and m2 (M = m1 + m2 and µ =  m1·m2/M) . 

The Hamiltonian in the center of mass frame and in ADM coordinates is known up to 
2PN level 8. The relative-motion being invariant under time-translations and space rotations, it 
is possible to associate .to the binary system two conserved quantities: the center of mass non­
relativistic energy £�� = £�!:;. and the angular momentum .1real = .Jc.m. · In the Hamilton-Jacobi 
framework the dynamics of the two-body problem has been summarized in a coordinate-invariant 
way, up to 2PN level, by considering the relativistic "energy-levels" of the bound states 8 :  
£/!at (Nreal , .1reatl = £��+ M c2 . They are function of the adiabatic invariants Nreal = I real + .1real 
(here lreal denotes the radial action variable) and .1real · 

Let us introduce an effective one-body dyna�ics in a spacetime described by the action 
Setr[zo] = - f mo c dSeff, where dsetr = J-gi� dzb dz0 and g�� is some spher-ically symmetric 
static metric that, in the Schwarzschild gauge and at 2PN order, can be written as 

ds2 = -A(R) c2 dt2 + D(R) dR2 + R2 (d02 + sin2 0 dA.2) etr A(R) 'I' ' 

a1 a2 aa di d2 A(R) = 1 + c2R + c4R2 + c6R3 '  D(R) = 1 + c2R + c4R2 . ( 1 )  

The coefficients a; and d ;  are unknowns and will be determined by the matching with the 
real two-body problem. Note that there are two mass parameters in the effective problem: 
the mass mo of the effective particle and some mass Mo used to scale the coefficients a; and 
d; . Using the Hamilton-Jacobi equation we have derived up to 2PN !eve! the "energy-levels" , 
Ef(No ,  .Jo) = ErR + mo c2 , of the bound states of the particle mo in the metric g�� 7 . 

We come now to define the rules to map the real two-body description to the effective one­
body one. For the adiabatic invariants we have found quite natural, especially if we think in 
quantum terms, to use the following identification 

.Jo = .Jreal , No =  Nreal , (2) 
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Method £��/Mc2 z Wreal fo (kHz) 
"Schwarzschild" -0.01430 6 0.06804 2 . 199 
Eff. action lPN -0.01440 5.942 0.06904 2 .231 
Eff. action 2PN -0.01501 5.704 0.07340 2 .372 
KWW [3] -0.00943 6.49 0.0605 1 .96 
DIS [6] -0.01633 5.036 0. 08850 2.860 

Table 1 :  ISCO values shown i n  Fig. 1 Here w,..1 = (w,..1 GM/c3) and f,..1 = w,..1/ (2rr) = fo (Mo/M) 

while the matching prescription for the "energy-levels" is less trivial. Indeed, if we impose 
that they coincide modulo an overall shift then we are obliged to introduce either an energy 
dependence in the coefficients of the effective metric 10 or an effective mass m0 which differs 
from the reduced mass µ even in the non-relativistic limit c --+ oo .  On the contrary, we have 
found quite satisfactory to allow a transformation of the energy axis . At the level of 2PN this 
means: 

£/;IR = £��� [l + 01 £�� + 02 (£J;;� ) 2] . (3) mo c2 µ c2 µ c2 µ c2 

The coefficients a; , as a; and d; , are then uniquely selected at 2PN level demanding that: i )  
the mass of the effective test particle be equal to the reduced mass (mo = µ) ;  ii) the linearized 
effective metric, which describes the one-graviton exchanges between the two bodies, coincide 
with the linearized Schwarzschild metric with mass equal to the total mass of the binary system 
(Mo = M).  The result of the matching is: 

v 
01 = 2 ,  a1 = -2GM , a3 = 2v (GM)3 , d2 = -6v (GM)2 , a2 = 0 = a2 = 0 = d1 , (4) 

here v = µ/M. The simplicity of the final result is quite striking. Moreover, using the values 
of a1 and 02 given by Eq. (4) ,  we get that the relation between the real relativistic energy and 
the effective one, Eq. (3) ,  coincides with the one that Brezin, ltzykson and Zinn-Justin 9 have 
derived for the analogous problem in electrodynamics. In that context they were interested in 
evaluating the relativistic Balmer formula for a two-body system including req>il effects. Note 
also that the same map (3) has already been used by Damour et al. 6 .  
3 Dynamics in the effective metric 

In this section we propose to trust the physical consequences of the v-deformed Schwarzschild­
type metric, given by Eq. ( 1 ) ,  even in the region where R is a  few times GM/c2 . We think that 
this is meaningful because even in the extreme case of two bodies of equal mass, that is when 
v = 1 /4 , the v-dependent terms that appear in the effective metric are relatively small. 

Because gravitational radiation damping is kno-..yn to circularize the orbits of a binary system, 
we are interested in analysing the stable circular orbits. From the effective Hamiltonian we can 
easily derive the effective radial potential and the angular frequency along circular orbits. We 
get 7 

:lo v0ilR)" 
we = µ R2 /1 + :J(f / (µ c R)2 . (5) 

The innermost stable circular orbit corresponds to tl.e critical value of the angular momentum :JJSCO where the maximum and the minimum of th� effective potential fuse together to form 
an horizontal inflection point, that is (oW.70/oR)Isco = 0 = (o2W.70/oR2) Isco - In Tab. 1 and 
Fig. 1 we summarize our predictions for the ISCO values in the case v = 1/4 and compare them 
with the results present in the literature. Note that we show the physical quantities defined in 
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Figure 1 :  ISCO values at v = 1/4 of the real non-relativistic energy E = £,�lj/µ, divided by tbe corresponding 
Schwarzschild value Es = £1;R/µ, versus z/zs (Es = -0.05719, zs = 6). The robustness of our approach is 
analysed in the right panel. We have introduced possible 3PN and 4PN contributions that are parametrized by 

the coefficients (a4 , a5 )  (see the notations used in the text). 

the real two-body problem. Indeed, using the map given by Eq. (3) it is straightforward to get 
from the effective energy and frequency, Eq. (5) , the corresponding real quantities. In Fig. 1 
the non-re.lativistic real energy is represented as a function of z = (GMwreai/c3 ) -213, which is 
an invariant measure of the radial position of the orbit. 

We have found an ISCO which is more tightly bound than the one for a usual test-mass 
in the Schwarzschild metric. This result is consistent with what derived by Damour, Iyer and 
Sathyaprakash 6, but it goes in the opposite direction with respect to what Kidder, Will and 
Wiseman :! obtained. Indeed, they have predicted that when v increases the ISCO becomes less 
tightly bound. 

In the right panel of Fig. 1 we analyse the robustness of our effective-action approach by 
exhibiting the points obtained introducing reasonable 3PN and 4PN contributions. More pre­
cisely, we include in the metric coefficient A(R) the terms va4 (GM/ c2 R)4 and va5 (GM/ c2 R)5 

and varied a4 , as in the range -4 and +4. We obtain that the location of the ISCO is sensitive 
to the coefficient a4 only at the 3% level and to the 4PN-coefficient a5 at the 0.6% level. 
4 Coming back to the real problem and taking into account radiatio1'1 damping 

effect 
To complete the analysis done in the previous sections we have to construct explicitly the 
transformation which maps the variables entering the effective problem onto those of the real 
one. This means that we have to relate the ADM coordinates (q, p) of the relative motion to 
the coordinates (q' , p') of the effective description: �/i = Qi (qi , pj )  and p'i = pi (qi ,  Pj) ·  Indeed, 
denoting by G the generating function of the canonical transformation we have 

1i i a 
G( 'l , a 

G( ') q = q + -8 , q, p , P; = Pi + -8 ,i q, p , P; q (6) 

where at our order of approximation G = GiPN/c2 + G2PN/c4 . To determine G we impose that 
under the canonical transformation the effective reduced b Hamiltonian Hetr(q' ,p' )  is mapped 

bln this section we deai with reduced quantities defined as H,ff = H,t1/µ and H,.aJ = H,..1 /M. 
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to the real reduced Hamiltonian Hrea1 (q, p) by the rule defined by Eq. (3) . A quite involved 
calculation gives 7 

8 HNewt. 8 Gn _ o HNewt. o Gn _ 
K ( ) --. - . - n q ,p  n =  1PN, 2PN , (7) o q• op; op; o q' 

where HNewt.  is the reduced Newtonian Hamiltonian while Kn is a source term which is known 
at every step of the iteration because it depends on quantities evaluated at the previous order. 
We have written down explicitly the solution of Eq. (7) and we have found that it is unique 
modulo the addition of terms generating a constant shift or a spatial rotation 7. 

Up till now we have restricted ourselves only to the conservative dynamical evolution. To 
study the transition between the inspiral and the plunge phases we must take into account the 
radiation reaction effects. In the ADM canonical formalism they have been studied by Schafer 
1 1 The total reduced Hamiltonian can be written as 

where 

Htot (q, p; t) = H!';Jr. (q, p) + ftreac (q, p; t ) , (8} 

hT_Treac (t) = - �  G d3 Q;; (t) 
IJ 5 C5 dt3 l (9) 

here Q;j is the quadrupole moment of the two-body system and hr;rreac has to be considered as 
an external given function of time. As improved-Hamiltonian we propose to use 7 

( 10) 

Here B;:fr. should be considered as a particular re-summation of the initial 2PN-expanded 
dynamics. In Helf we must apply the canonical transformation between the real and the effective 
description and use as metric coefficients our best estimate given by Eq. (4) . 

The transition from the adiabatic inspiral phase, driven by radiation damping, to the plunge 
phase, induced by strong curvature effects, can be studied integrating the Hamilton equations: 
i/ = a.Htot / op; and Pi = -8Htot,/ oqi . The results with respect to the coordinates q1 ' p' and for 
the values v = 1/4 and 0 . 1  are illustrated in Fig. 2 .  
5 Conclusions 

We have mapped the complicated an<;! badly convergent PN-expansion of the two-body dyp.amics 
·onto a simpler auxiliary one-body problem. We have seen that the one-body dynamics defines 
a re-summation of the original 2PN-expanded one and captures some crucial non-perturbative 
aspects, such as the existence and the location of the innermost stable circular orbit. We predict 
an ISCO that is more tightly bound than the one for a test particle in the Schwarzschild metric. 
For v = 1/4 we get 

E;;3o ::= -0.015 M c2 , f ISCO ::= 2372 Hz ( �) , RISCO '.:::'. 4.79 G� . 
c 

( 1 1 )  

This means that 1 .5% of  the mass-energy initially available in the binary system should be 
radiated in gravitational-waves before the plunge phase. This value should be compared to the 
ones obtained since now in the literature: 2 .53 by Clark and Eardley 1 ,  17.5% by Blackburn 
and S. Detweiler 2, 1 . 6% and 0 .9% predicted by Damour, Iyer and Sathyaprakash 6 and Kidder, 
Will and Wiseman 3, respectively. 
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Figure 2: Transition from the inspiral phase to the plunge one in (q' , p' )  coordinates includiI1g radiation damping 
effects for v = 1/4 and v = 0 . 1 .  The position of the ISCO and of the horizon are also shown in the figures 

Even if we believe that our approach points out the ISCO in a reliable way, moreover we think 
that the knowledge of the 3PN dynamics would be important to reduce the present uncertainty in 
the coefficients of the effective metric. Our results suggest that the inspiral phase of coalescence 
of binary neutron stars might terminate into tidal disruption without going through a well­
define\f plunge phase. If we were true the end of the inspiral phase might be very sensitive 
to the nuclear equations of state and the interferometric gravitational-waves detectors might 
provide for us useful and unique information about the dense nuclear matter of neutron stars. 
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