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Chapter 1

Introduction

When studying a natural phenomenon it is a well established and fruitful practice to disre-
gard some of its properties in order to get a simpler and neater mathematical description.
In a first stage we can use physical and mathematical intuition to decide what to incor-
porate and what to eliminate from the description. But once a theory has been laid out it
becomes important to go back to the assumptions previously made and to test in a rigorous
way their validity in the phenomenon under study.

In computational evolutionary genomics one example of this simplification process can
be found in the assumptions that are made in the various models of sequence evolution,
the nucleotide substitution process which leads to the divergence of the DNA sequences of
different species originating from a common ancestor.

It is the aim of this thesis to investigate two such assumptions, namely the assumption
that nucleotide sequence is in equilibrium with respect to the substitution process and the
assumption that the process is time reversible.

1.1 DNA, the molecule of life

Ever since its iconic double helix structure was determined by Francis Crick and James
Watson [58], the deoxyribonucleic acid (DNA) has been the most popular and most
studied molecule in biology (Fig. 1.1).

The DNA molecule is a polymeric chain composed of a sugar backbone on which four
monomers, called nucleotides or bases, are attached. These are Adenine (A), Thymine
(T), Cytosine (C) and Guanine (G) (Fig. 1.2).

The nucleotides have the fundamental property of being able to couple with each other,
A can bond with T and C with G, forming the so called Watson Crick pairs (Fig. 1.3).
It is because of these bonds that two linear chains of nucleotides running in opposite
directions pair with each other if they are complement symmetric, i.e. they can be
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Chapter 1 Introduction

Figure 1.1: A DNA molecule. The double helix structure is due to the formation of bonds
among complementary nucleotides.
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Figure 1.2: The four nucleotides, from left to right and top to bottom:Adenine, Thymine,
Cytosine and Guanine.

obtained from each other by taking the Watson-Crick complementary nucleotide to each
of their bases. The double polymeric chain so obtained further coils in the notorious
double helix structure.

Each continuous DNA molecule present in a living cell is called a chromosome. One refers
to the total number of chromosomes in a cell as the genome. Prokariotyc organisms, like
bacteria, have only one chromosome, a circular molecule of DNA. Eukaryotic organism
instead have a much more complex cellular structure. They have several chromosomes,
each of which is not just arranged linearly like in prokaryotes, but it’s folded in a highly
packed structure called chromatin.

Chromatin is the product of the repeated folding of DNA on a backbone of special proteins
know as histones. It has several benefits, first of all it allows much longer amount of DNA
to occupy a small space. The human genome arranged linearly is a couple of meters long,
quite an impressive length if we compare it with the size of a cell which is about 10−5

meters. The second important role of chromatin is in regulating the chemical activity
of DNA by packing and unpacking portions of it, thus rendering them accessible to
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1.2 The central dogma

the action of proteins or not. Studying how this is explicated is one of the subjects of
epigenetics [2], and has been one of the most active field of molecular biology research in
recent years.

Eukaryotic cells are furthermore divided in two categories. Haploid cells have only one
set of chromosomes, in a similar fashion to prokaryotic cells. On the other hand diploid
cells, which are present in multicellular organisms with sexual reproduction, have two set
of chromosomes, one set inherited from the father and one set inherited from the mother,
so that chromosomes are in this case present in homologous pairs. Each set is very similar
to the other, but the variation in the base composition between the two elements of each
pair adds a further level of complexity and robustness. Even more important it allows
through the mechanism of meiotic recombination the possibility that beneficial mutations
present on homologous chromosomes come together on the same one.

Even Eukaryotic cells may have non homologous chromosomes though, the sexual chro-
mosomes which determine the sex of individual. As an example in mammals there are
two sexual chromosomes, the X and the Y. Males of the species have a non homologous
XY couple in their cells, while females have an homologous XX couple.

1.2 The central dogma

Apart from DNA there are two others fundamental polymers in cells: the ribonucleic
acid (RNA) and proteins. RNA is structurally very similar to DNA, the only difference
being in the sugar backbone, which is in this case ribonucleic sugar, and in the use of
the nucleotide uracil (U) in place of thymine. Furthermore RNA is only present in single
stranded form. A linear RNA chain can fold on itself forming Watson Crick pairs that
define its three-dimensional shape, which can be determined computationally with a good
precision [66, 65]. RNAs are classified according to their function and there are many
different varieties, the most relevant being messenger RNA, transfer RNA and ribosomal
RNA.
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Figure 1.3: The Watson-Crick pairings. We can see the pairing of thymine and adenine on the
left and that of cytosine and guanine on the right.
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Chapter 1 Introduction

Proteins are also, like DNA and RNA, polymers. However their component monomers,
amino-acids, are twenty and they can interact with each other in more ways than the
simple pairing mechanism that shapes RNA structure. So a protein has not a simple
structure, but instead it coils on itself forming a complex globular structure. The prob-
lem of predicting from first principles how a protein will coil, given a linear sequence of
amino-acids, has not yet found a solution despite being 50 years old. With our present
technology we can determine protein structure only with experimental methods like crys-
tallography [59, 23] or nuclear magnetic resonance [45]. Experimentally known protein
structures are stored in databases which can be used to infer new structures, using the
assumption that proteins with similar sequences will coil in similar ways [37].

The second fundamental discovery of Francis Crick [12] was how DNA, RNA and proteins
are related and functional to each other. His proposed mechanism, which is known as
the central dogma of molecular biology [13], has two steps. First, the portion of DNA
molecule which encodes for a protein is first transcribed into an RNA molecule. The
RNA transcript is then processed in a specific cellular machine, the ribosome, where the
linear chain of nucleotides is converted in a linear chain of amino-acids, converting three
nucleotides (a codon) into one amino-acid. This process is called translation, and the
conversion code used by the cell is universal across all organisms and is called genetic
code (Tab. 1.1).

T C A G

T TTT Phe (F) TCT Ser (S) TAT Tyr (Y) TGT Cys (C)
TTC ” TCC ” TAC ” TGC ”
TTA Leu (L) TCA ” TAA Stop TGA Stop
TTG ” TCG ” TAG Stop TGG Trp (W)

C CTT Leu (L) CCT Pro (P) CAT His (H) CGT Arg (R)
CTC ” CCC ” CAC ” CGC ”
CTA ” CCA ” CAA Gln (Q) CGA ”
CTG ” CCG ” CAG ” CGG ”

A ATT Ile (I) ACT Thr (T) AAT Asn (N) AGT Ser (S)
ATC ” ACC ” AAC ” AGC ”
ATA ” ACA ” AAA Lys (K) AGA Arg (R)
ATG Met (M) ACG ” AAG ” AGG ”

G GTT Val (V) GCT Ala (A) GAT Asp (D) GGT Gly (G)
GTC ” GCC ” GAC ” GGC ”
GTA ” GCA ” GAA Glu (E) GGA ”
GTG ” GCG ” GAG ” GGG ”

Table 1.1: The genetic code is a dictionary which translates triplets of nucleotides (codons) to
amino-acids.
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1.3 The genomic landscape

As the sequence of amino-acids comes out of the processing ribosome, it starts coiling and
forming the spatial structure which confers to each different protein its specific function
in the cell.

An interesting fact is that the central dogma, in its orthodox formulation, states that
the flow of information in the cell has a precise direction: out of DNA and into proteins.
The key point here is that this is in perfect agreement with the Darwinian theory of
evolution.

Darwin observed that individuals with beneficial traits will survive at the expense of
less fit individuals, and pass their genomic set to future generations. He ruled out the
possibility that beneficial traits acquired during the lifetime of and individual organism
would be passed to the offspring and would thus contribute to evolution. According to
his theory, and in contrast with the views of the french biologist Lamarck, beneficial
traits acquired during the lifetime of and individual organism would not be passed to the
offspring and would thus not contribute to the evolution of the species. Instead as an
example, if Lamarck had been right and Darwin wrong, a giraffe who stretches its neck to
be able to eat higher leaves of a tree would have had offspring with a longer neck too.

Darwin’s view is in perfectly confirmed by the central dogma, according to which geno-
type, DNA, determines phenotype, proteins, and never the converse. However some
recent studies (see [27] for a review) have found evidence that the central dogma (this
being maybe the fate of any dogma) is in fact violated. That is, there are molecular
mechanisms by which information can flow from the environment back into DNA, thus
effectively suggesting a come back of Lamarckian kind of evolution on which Darwin
seemed to have put a gravestone 150 years ago.

1.3 The genomic landscape

Not all portions of the genome of an organisms are coding for a protein or an RNA.
The fraction of DNA with such a purpose varies greatly across different organisms. In
higher eukaryotes only a very small portion has such functions, for example in the human
genome only about 3% has such coding role. The rest is composed of different non coding
sequences, like repetitive sequences, transposable elements, pseudo-genes and genomic
desert with no known function [26].

Another peculiarity of eukaryotes is that proteins are not encoded in continuous stretches
of DNA, but instead their coding sequence is split into chunks called exons, which are
interspersed into much longer sequence stretches called introns. Intronic regions are
spliced from the RNA transcript before translation begins. The usefulness of all this non
coding elements is still debated, and they are usually referred to as “junk”.
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Chapter 1 Introduction

1.4 Molecular replication and evolution

One prominent feature of living organism is the capability to generate offspring, so that
like begets like. The process is of course very complex and involves a vast number of
different chemical pathways in the cell. However there is a very simple concept at its
heart, nature’s stroke of genius one may say, a trait which must have been present in cells
already at the dawn of life 3.5 billions of years ago.

This feature is the fact that the DNA double helix contains twice the genetic information,
because as we said previously each of its two strands is a complementary copy of the other.
Thus the key step the cell has to perform to replicate the information is unzipping the
double stranded DNA in two single stranded chains. Each of these chains will then be
complemented again with nucleotides, so that at the end there will be two new double
helices in place of one.

Even though the idea is simple, it still involves lots of molecular machinery working on it in
order to be accomplished successfully, the most important being a protein complex known
as DNA polymerase. The replication process is quite accurate, as this is the fundamental
requirement to preserve the information content and have “working” cellular offspring.

Nonetheless, however precise the replication process is, errors happen and there is no
guarantee that the copied DNAs will be completely identical to their parent. Such errors
are called mutations, and are the basis of biological evolution.

In order to have an evolutionary impact mutations have to be inheritable, in other words
the individual in which they appear should have the possibility of passing the mutated
DNA to its offspring. While this is always the case for unicellular organisms which
replicate by mitosis, it is not a given for multicellular organisms where only mutations
happening in the germ line will have a chance of being inherited. On the contrary
mutations appearing in somatic cells will only have phenotypical effects, cancer being
most well known and devastating result of such category of DNA alterations.

1.5 Mutation classes

The kind of possible mutations affecting DNA can be partitioned into two different classes,
those which affect single nucleotides, and those which insert or delete whole portions of
the genome.

Point mutations The first, and more important for the rest of this work, kind of
mutations are the ones which exchange a nucleotide with another one, commonly called
single nucleotide mutations or just point mutations.
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1.5 Mutation classes

There are many chemical process that can lead to point mutations. They can be parti-
tioned in two kinds: exogenous ones, due two mutagenic agents (exposure to radioactive
sources or mutagenic chemicals) and endogenous ones, where mutations are either in-
duced by the thermal fluctuations of the environment, mainly tautomerism [56], or are
the result of errors in the replication process.
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Figure 1.4: The twelve possible point mutational processes. Transitions are indicated by the
continuous line and transversions by the dashed one.

There are twelve possible point mutations, from each of the four nucleotides to any of the
other three. Mutations exchanging a purine with a purine or a pyrimidine with a pyrimi-
dine are called transitions, while mutations from purine to pyrimidines and viceversa are
known as transversions (Fig. 1.4). On the basis of chemical similarity a transition is more
likely to happen than a transversion.

Neighbor dependencies Another fundamental point mutational process taking place
mainly in vertebrates genomes, but first discovered in bacteria [11], originates from the
interaction of nucleotides with the aqueous cellular environment. In fact, as can be seen
in Fig. 1.5, a cytosine may interact with a molecule of water by an hydrolysis reaction,
and mutate into an uracil according to the following stoichiometric equation:

C + H2O→ U + NH3 (1.1)

But in this case repair enzymes recognize the uracil as an extraneous nucleotide, and
correct the error excising it and replacing it with the correct complementary nucleotide.

However it is well known [11], and in fact one of the cornerstones of the already cited
epigenetics, that in vertebrates cytosines adjacent to guanines, the so called CG pairs or
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Figure 1.5: The hydrolysis reaction leading to the mutation of a Cytosine into a Uracil.

CpG’s (the “p” referring to the phosphate backbone), are often present in a methylated
state known as 5-methiylcytosine and indicated as C∗. The hydrolysis reaction in this
case is (Fig. 1.6):

C∗ + H2O→ T + NH3 (1.2)

In this case the cytosine mutates into a thymine and so it is not any longer possible for the
repair enzymes to determine whether they should excise the newly created thymine or the
original complementary base, a guanine. The repair mechanism has to make an arbitrary
choice in this case, so this is a very effective mechanism to introduce new mutations in a
genome. The net effect is then the mutation of a CpG pair into a TpG and it is called CpG

deamination or CpG decay process.
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Figure 1.6: The CpG decay process is an hydrolysis reaction leading to the mutation of a
methiylcytosine into a guanine.

The importance of this process can be easily understood by looking at (Tab. 1.2) from [3].
The table shows the ratios of dinucleotide frequencies in the human genome, where the
numerator is obtained multiplying the single nucleotide frequencies, while the denomina-
tor is just the actual count of dinucleotides. If there were no neighbor dependencies the
ratios should be all very close to 1, however what one can see that the value of the ratio
for CGs is 0.2, meaning that this doublet is underrepresented in the human genome.

Insertion and deletions The second big group of mutational events are those which
add or remove portions of DNA (indels). Unlike for point mutations, the spectra of events
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1.6 Motivations and aims of the thesis

A C G T

A 1.10 0.87 1.11 0.91
C 1.20 1.21 0.20 1.11
G 0.99 1.05 1.22 0.87
T 0.80 0.99 1.21 1.10

Table 1.2: This table shows the ratio dinucleotide frequencies computed using the product of
single nucleotide frequencies, and computed by counting the actual number of occurrences
in the human genome.

is in this case much wider, and the characteristic much less understood.

According to recent studies [8] the vast majority of indels are actually the result of dupli-
cations of portion of genomes. There is a well established research line, pioneered by the
Japanese geneticist Susumu Ohno [44], which investigates the importance of duplications
in genome evolution.

The basic idea is that duplicating a portion of the genome, a gene for example, will
leave one copy free to evolve new useful functions [36, 7]. Although initially the study of
duplications had focused on gene duplications, recent studies have used triple alignments
of closely related genomes to show that duplications happen not only at the level of single
genes but at all length scales, from single nucleotides to long genomic stretches [40].

1.6 Motivations and aims of the thesis

In chapter 2 we will introduce the Markov model of molecular evolution, an ubiquitous
framework which is one of the cornerstone of bioinformatics. The focus of this thesis will
be the analysis of some particular properties of this model.

In fact, as we will see in later chapters, out of historical reasons and computational
convenience, several simplifications are usually made inside this framework. The first
Markov model, the Jukes-Cantor model or simply JC69, had only one free parameter [28].
The substitution rate from one nucleotide to any other different nucleotide was assumed
to be the same regardless of the particular nucleotides.

A successive model was Kimura’s two parameter model, also known as K80 [31]. This
model breaks the complete symmetry present in the JC69, stating that nucleotide evolu-
tion has two different classes of events. One class is that of transitions in which a purine
is exchanged with another purine (i.e. A ↔ G), or a pyrimidine with another pyrimidine
(i.e. T ↔ C). The other class is the one of transversions in which a purine is exchanged
with a pyrimidine or viceversa (eight possible events: A↔ T, A↔ C, G↔ T and G↔ C).
This reflects biochemical knowledge because as we have seen the two purines, as well as
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Chapter 1 Introduction

the two pyrimidines, have similar chemical structure so that transitions are more likely
to happen than transversions.

Other models followed which broke more symmetries in the rate matrix: the F81 [18], the
HKY85 [21], the T92 [53] and the TN93 [54]. Eventually, it was realized [33, 55] that all
these models shared a particular symmetry, time reversibility. Time reversible Markov
processes have two basic features. First, by looking at their realizations, it is not possible
to decide whether the phenomenon we are observing is running forward or backward in
time. Second and maybe even more important, the assumption of time reversibility also
implies that the statistical properties of the system, DNA, do not change in time. In
other words the process is stationary in time.

Later on, several other extension of these models were introduced, including those which
also describe rate heterogeneities along the DNA sequence [63, 57], but they still as-
sume the validity of the time reversibility assumption for the evolution of each single
nucleotide.

In fact one of the fundamental problems of evolutionary genomics is how to estimate the
parameters of the above mentioned models. In chapter 3 I will show how this can be
reliably done using a procedure known as maximum likelihood estimation. However, it
should be noted that models of nucleotide evolution were developed long before whole
genome sequences were available. Researchers had at their disposal the sequences of only
small portions of genomes, thus the scarcity of data forced them to use models with as
few parameters as possible, in order to obtain reliable estimates.

In this context, assuming time reversibility and equilibrium in Markov models of nu-
cleotide substitution was an elegant way of restricting the dimensionality of the parame-
ter space. Furthermore, in maximum likelihood calculations, the possibility of rerooting
the phylogenetic tree anywhere without affecting the resulting likelihood (the so called
Felsenstein’s “pulley principle”[18]), leads to an efficient algorithm for calculating the
branch lengths of the tree. This speed up is extremely useful when searching the tree
space for the maximum likelihood tree.

But is the evolutionary process of nucleotide substitutions really time reversible and
in its stationary state? Making such assumptions could cause some important features
of genome evolution to be overlooked. As an example, if the genome were always in
its equilibrium state during evolution, quantities like the average GC content would not
evolve in time. However, it was shown by [4] that, for example, the GC content in the
human genome is not in equilibrium, and is still evolving. Similar results have also been
found for the mouse genome [15].

Following [16, 50], I will show how it is possible, using at least three present day genomic
sequences, to extend the maximum likelihood estimation procedure to the case where
time reversibility and equilibrium are not assumed.

10



1.6 Motivations and aims of the thesis

Using this methodology, in chapter 4 I will show how it is possible to measure deviations
from time reversibility and equilibrium in the evolution of genomes. To this aim I will
introduce two sets of indices, the stationarity indices and the irreversibility indices, STIs
and IRIs for short, which can be calculated from the substitution frequencies along one
branch in a phylogenetic tree and the nucleotide composition at the node at its end. When
non-zero, the indices indicate violations of the basic assumptions mentioned above.

I will first derive the indices for Markov models describing the evolution of independent
sites. However, in order to apply the indices to the analysis of the human genome we
will have to face a complication, due to the CpG decay process. In this case it is not
any longer possible to assume that nucleotide sites are evolving independently, since the
process couples adjacent nucleotides. We will see how it is possible to extend the IRI
to include neighbor dependencies and asses the deviations from time reversibility in the
human case.

It is important to note that although other tests for stationarity and time reversibility
have been proposed so far [49, 48, 17, 1] all of them operate on pairs of sequences, which
limits their power. For example, situations where a sequence evolved under non-reversible
conditions might go undetected as pointed out by [1].

The analysis based on STI and IRI, has the advantage that it tests for stationarity and
time reversibility on just any single phylogenetic branch connecting an ancestral node with
a more recent one (like for example the branch from the human-chimp common ancestor to
present day human). To compute the indices the rate matrix has been estimated using the
mentioned maximum likelihood procedure which does not assume either time reversibility
or the stationarity of the process. In order to test the equilibrium and time reversibility
properties in test cases, I will calculate the STIs and the IRIs for the evolutionary process
of two different species, Drosophila simulans species and Homo sapiens.

11
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Chapter 2

Models of Sequence Evolution

The need to understand the features of the mutational process, in order to reconstruct
phylogenetic trees and to apply general bioinformatics models, requires the development
of ad hoc mathematical models.

In this chapter we will discuss the principles of sequence evolution, starting from the
main mathematical tools, Markov chains and Markov processes. We will then discuss the
evolutionary dynamics of new mutations appearing in a population, introducing Kimura’s
results on neutral evolution. Finally we will apply these models to the analysis of inter-
species variations in the DNA sequence studying the features and the assumptions of
different proposed mathematical models.

2.1 Introduction to Markov processes

An appropriate probabilistic framework to model biological sequence evolution is that of
Markov processes, in this and the following sections we will briefly introduce the basic
mathematical concepts.

In what follows let X(t) be a family of random variables (a stochastic process) with values
x in a discrete state space S and time t belonging to a set, T , which can in general be the
set of integers (in which case we will speak of a Markov chain), or the set of real numbers
(a continuous time or proper Markov process).

What we are interested in, is calculating the probabilities P (X(t0) = x0, . . . , X(tn) = xn)
of trajectories. This can be accomplished using the product rule:

P (X(t0) = x0 . . . X(tn) = xn) = P (X(tn) = xn|X(tn−1) = xn−1 . . . X(t0) = x0)

× P (X(tn−1) = xn−1|X(tn−2) = xn−2 . . . X(t0) = x0) . . .

. . . P (X(t1) = x1|X(t0) = x0)P (X(t0) = x0)

(2.1)

13



Chapter 2 Models of Sequence Evolution

Often when modeling phenomena we can make the assumption that the probability to be
in a given state at time t is only influenced by the previous state at time t− 1. In other
words the process only has a one step memory and in this case we speak of a Markov
process:

Definition 1. A Markov process is a stochastic process for which the following holds:
P (X(tn) = xn|X(tn−1) = xn−1 . . . X(t0) = x0) = P (X(tn) = xn|X(tn−1) = xn−1) for
t0 < t1 < . . . < tn.

A further assumption that is commonly made is that the dynamical properties of the
process do not vary in time. For example, in the case of neutral sequence evolution this
would reflect the assumption that the mechanisms affecting the mutation rate do not
change in time. In turn this would assume that the efficiency of the repair enzymes has
not varied during the evolutionary time. This property of a Markov process is called time
homogeneity:

Definition 2. A Markov process is said to be time homogeneous if P (X(t + τ) =
x1|X(t) = x0) does not depend on t. In this case it is possible to use the following
compact notation p(x1, x0, τ) ≡ P (X(t + τ) = x1|X(t) = x0). We call p(x, y, τ) the
stochastic transition function.

Alternatively time homogeneity can be defined in the following way, easily shown to be
equivalent to the previous:

Definition 3. A Markov process is said to be time homogeneous if the distribution of
X(t1), X(t2), . . . , X(tn) is equal to the distribution of X(t1 + τ), X(t2 + τ), . . . , X(tn + τ)
for all τ and t1, t2, . . . ∈ T .

It follows immediately that for a homogeneous Markov chain, we can use the following
short notation:

Pi,j ≡ P (X(tn) = i|X(tn−1) = j) (2.2)

Equivalently for homogeneous Markov processes we can define:

Pi,j(t) ≡ P (X(t0 + t) = i|X(t0) = j) (2.3)

One can also use an abstract matrix form. The P operator is called the transition
semigroup, and it can be shown to obey the Chapman-Kolmogorov equation (semi-group
compositional property):

P (t1)P (t2) = P (t1 + t2) (2.4)
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2.2 The master equation

In the case of continuous time Markov processes we can also define the concept of tran-
sition rate, as a time derivative of the transition probabilities:

Definition 4. The transition rate from state i to state j is defined by the limit:

q(i, j) ≡ lim
τ→0+

P (X(t+ τ) = i|X(t) = j)

τ
(2.5)

As for the transition probability we can even in this case introduce an associated transition
rate matrix:

Qi,j ≡ q(i, j) (2.6)

We can now define the equilibrium distribution, as the probability distribution that the
process reaches asymptotically:

lim
t→∞

P (X(t) = k|X(0) = j) = π(k) (2.7)

The equilibrium distribution has the property of being a fixed point of the dynamics. It
can thus obtained solving the following eigenvalue problem:

π(j) =
∑
k∈S

Pj,kπ(k) (2.8)

In the case of Markov processes it is often more convenient to solve an equivalent problem,
but for the transition matrix:

0 =
∑
k∈S

Qj,kπ(k) (2.9)

Therefore one can either find an eigenvector with eigenvalue one of the transition proba-
bility, or an eigenvector with eigenvalue zero of the transition rate matrix.

2.2 The master equation

The transition matrix Q is a first order approximation for the Markov process. From it
we can derive the basic equation that describes the dynamic of a Markov process. We
use definition (2.6):

Q = lim
t→0

P (t)− I
t

(2.10)
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Chapter 2 Models of Sequence Evolution

Where I is the identity matrix. Applying Chapman-Kolmogorov we get:

dP (t)

dt
= lim

dt→0

P (t+ dt)− P (t)

t

= lim
dt→0

(P (dt)− I)
t

P (t)

= lim
dt→0

(P (dt)− I)
t

P (t)

= QP (t)

(2.11)

This is known as Kolmogorov forward equation, or master equation, and determines the
evolution in time of the probability density, ρ(t) = P (X(t)). In term of the probability
density it can be written as:

dρ(t)

dt
= Qρ(t) (2.12)

The solution of a master equation can be obtained calculating the exponential of the rate
matrix:

P (t) = eQt =
∞∑
k=0

(Qt)k

k!
(2.13)

Although here we define the exponential of the matrix in terms of its Taylor expansion,
summing a finite number of terms of this series it’s not the most efficient way of computing
it. Efficient algorithms, are reviewed in [42].

2.3 Time reversibility

A relevant class of Markov processes, are those with the following property: inverting
the arrow of time we obtain a new process that cannot be distinguished from the original
one. Intuitively this means that a watching a movie of a time reversible phenomenon we
should not be able to determine whether the tape is running forwards or backwards. Such
a class of processes is called time reversible. Historically the origin of the concept of time
reversibility comes from classical mechanics where, in absence of dissipative forces, the
equations of motion are assumed to be invariant under a time reversal transformation.
However, as we will see, the concept has been widely used sequence evolution too.

Formal aspects of time reversibility in Markov processes are introduced in the book of
Kelly [29]. Here and in the following (when cited) we reproduce some proofs relevant for
our work:
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2.3 Time reversibility

Definition 5. A Markov process is time reversible if X(t1), X(t2), . . . , X(tn) has the same
distribution as X(τ − t1), X(τ − t2), . . . , X(τ − tn) for all τ and t1, t2, . . . ∈ T

The following is a fundamental property of reversible processes:

Proposition 1. A time reversible Markov process is stationary.

Proof. The proof follows immediately from the definition. Since X(t1 + τ), X(t2 +
τ), . . . , X(tn+τ) has the same distribution asX(t1), X(t2), . . . , X(tn) andX(t1), X(t2), . . . ,
X(tn) has the same distribution as X(τ − t1), X(τ − t2), . . . , X(τ − tn). So the process is
stationary.

A well known criterion, the detailed balance condition, can be used to test the reversibility
of a Markov process [29]:

Proposition 2. A stationary Markov chain is reversible iff there exist a probability dis-
tribution πj, with j ∈ S such that

Pj,kπk = Pk,jπj (2.14)

Proof. Let’s assume the process is reversible. Since the process is stationary P (X(t) = j)
is independent of t. Let’s define π(j) ≡ P (X(t) = j). Since the process is reversible:

P (X(t+ 1) = k,X(t) = j) = P (X(t+ 1) = j,X(t) = k) (2.15)

from which :

Pk,jπj = Pj,kπk (2.16)

Let’s now suppose that the distribution πj exists then summing over both sides of
Eq. (2.14):∑

j

Pk,jπj =
∑
j

Pj,kπk = πk (2.17)

From which we get the πj is the stationary distribution of the chain. Then let’s calculate
the probability of a trajectory:

P (X(t+m) = jm, X(t+m− 1) = jm−1, . . . X(t+ 1) = j1, X(t) = j0) =

Pjm,jm−1 . . . Pj1,j0πj0
(2.18)
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And:

P (X(t′ +m) = j0, X(t′ +m− 1) = j1, . . . X(t′ + 1) = jm−1, X(t′) = jm) =

Pj0,j1 . . . Pjm−1,jmπjm
(2.19)

Finally applying detailed balance (Eq. 2.14) we can check that the right hand sides are
equal, this proves the theorem.

Proposition 3. A stationary Markov process is reversible iff there exist a probability
distribution πj, with j ∈ S such that

Qk,jπj = Qj,kπk (2.20)

Proof. Let’s assume reversibility, in this case:

P (X(t+ τ) = j,X(t) = k) = P (X(t+ τ) = k,X(t) = j)

Multiplying both sides by the stationary distribution, we get:

P (X(t+ τ) = j|X(t) = k)π(k) = P (X(t+ τ) = k|X(t) = j)π(j)

Dividing by τ and taking the limit to zero:

lim
τ→0

P (X(t+ τ) = j|X(t) = k)

τ
π(k) = lim

τ→0

P (X(t+ τ) = k|X(t) = j)

τ
π(j)

Which gives the detailed balance condition, as desired.

Let’s assume the converse, as in the previous proof summing over both sides of the detailed
balance conditions (Eq. 2.20). We get∑

j

Qk,jπj =
∑
j

Qj,kπk = 0 (2.21)

Which means that π is a stationary distribution of the process.

Now, in order to complete the proof, I will use the associated Markov chain jump process.
Let’s assume the process visits states i1, . . . , in and sojourns in each of them a time
t1, . . . , tn. The times have probability density:

q(i1)e
−q(i1)t1

At each jump the process will go form state i1 to state in with probability q(i1)
q(in)

. So that
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2.4 Principles of species evolution

Pj,i π i

Pi,j π j

ji

Pj,i π i

Pi,j π j

ji

Figure 2.1: The detailed balance theorem asserts that in order to have time reversibility the
total probability flux among any two states must be zero. We see in this figure two fluxes, in
the upward one detailed detailed balance is not satisfied, in the lower one it is.

the probability density for the process is:

π(i1)e
−q(i1)t1 q(i1, i2)

q(i2)
q(i2)e

−q(i2)t1 . . .
q(in−1, in)

q(in)
q(in)e−q(in)tn

= π(i1)e
−q(i1)t1q(i1, i2)e

−q(i2)t1 . . . q(in−1, in)e−q(in)tn

= π(in)e−q(in)tnq(in−1, in)e−q(in−1)tn−1 . . . q(i2, i2)e
−q(i1)t1

(2.22)

Where in the last line we have applied the hypothesis of detailed balance. We have thus
found that, under the given assumptions, the density of the original process is equivalent
to the probability density of the time reversed one, which proves the theorem.

2.4 Principles of species evolution

We have seen in the introduction how the information content of a DNA molecule varies
over generations due to the appearance of mutations. However by itself the appearance
of a new mutation in a genome is not sufficient to have an evolutionary effect, as this
mutation has also to spread from the single individual where it appears in, to the whole
species. How this happens, is the subject of a branch of evolutionary science known as
population genetics, whose origin can be dated back to the work of Gregor Mendel on
plant hybrids [39].

The fundamental concept is that of species, a population of individuals having a common
descent and, in case of sexual species, capable of mating with each other. All the indi-
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t+1

t

Figure 2.2: The wright fisher model of neutral evolution. Black a white circles represent two
different kind of competing alleles.

vidual genomes in a species are derived from a common ancestral sequence, and share a
high genomic similarity.

Each time a new mutation appears it propagates from the individual bearing it to its
offspring. Eventually there can be two possibilities, either it spreads so much that it will
be present in the whole population, or it decreases in frequency until it is not present
anymore, according to a dynamic which is known as fixational process. In this thesis
I will only be concerned with the molecular evolution of nonfunctional regions, which
represent a special case of the general process of Darwinian evolution. The dynamic of
neutral regions was studied by two of the leading geneticists of the last century, Sewall
Wright and sir Ronald Fisher. Not surprisingly the model they developed is known as
Wright-Fisher (WF) model [19, 61].

The WF model is quite simple to describe. If we restrict our study to a given locus
on the genome, there will be in general a number n variants of this locus in different
individuals, this variants are named alleles. With no loss of generality, but just to avoid
a more cumbersome notation, we restrict the analysis to a locus with two alleles (A and
a), an ancestral one and a new variant which has arisen due to some mutational event.
What we are interested in, is the probability that the frequency of the allele a in the

population has a given value as a function of time, p(t) ≡ P
(
na(t)
2N

)
. We take discrete

time, assuming non overlapping generations. For diploid organism, if the population has
size N , when the mutation first appears we will have p(0) = 1

2N
, since of course it will

appear on one of two homologous chromosomes.

Having no phenotypical effect the fixational process can be modeled as random sampling
with replacement. This is because the amount of resources the environment can provide
is limited, so that only a finite number N of individuals will be able to coexist at the
same time. The generation at time t+ 1 is created by sampling N individuals from those
composing the population at time t. An individual can have more than one offspring,
hence we need to sample with replacement (Fig. 2.2). In other words in this scenario the
Darwinian mechanism of the survival of the fittest, is substituted by a neutral mechanism,
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2.4 Principles of species evolution

Figure 2.3: This figure (from [22]) shows two example trajectories of allele frequencies for two
neutral loci. As a result a random sampling, due to the finite size of the population, one
allele fixates while the other is purged from the population.

a survival of the luckiest.

p(j, t+ 1|i, t) =

(
2N

j

)(
i

2N

)j (
1− i

2N

)(2N−j)

(2.23)

The fundamental result, due to Kimura [30] is that in this case the probability of fixation
depends only on the population size:

Theorem 1. (Kimura). The probability of fixation of a neutral allele, is equal to its
initial frequency p0.

Kimura’s result is the connection between population genetics and species evolution. In
a species with N individuals and mutation rate µ there will be Nµ mutations appearing
per generation. Multiplying by the probability of fixation we get the substitution rate

u = 2Nµ

(
1

2N

)
= µ (2.24)

So, the result is that for neutral evolution mutation rate is equal to substitution rate.
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Chapter 2 Models of Sequence Evolution

2.5 Mathematical models of evolution

Computational molecular biology uses a very schematic representation of DNA, namely
an ordered sequence of letters. As we have seen even for a single species there is nothing
like a unique DNA, since individuals have similar, but not identical genomes. However,
given that the differences among genomes of different individuals comprise a small fraction
of the total genome, for analysis which aim to compare different species it is customary to
use a given individual genome (a reference genome arbitrarily chosen) as a representative
of all the different individual genomes.

We will use the following mathematical definition of a genome:

Definition 6. Genomic Sequence A genomic sequence S is an ordered list of nu-
cleotides S = (x1, . . . , xn) ∈ {A, C, G, T}. One refers to nucleotide at position k with the
notation S[k] ≡ xk.

One other key concept for evolutionary studies is that of an alignment of sequences. An
alignment is a way to recapitulate the evolutionary history of a genomic sequence with
respect to the indel events which we have defined in the introduction. In fact as we have
discussed, genomes have a common origin and because of this for any two genomes of
different species there is an ancestral genome from which both have evolved. However as
a consequence of insertions or deletions contemporary genomes may be longer or shorter
than their ancestor, and so given two nucleotides we cannot, without further analysis, tell
whether they both evolved from the same ancestral nucleotide or not. Aligning a group
of sequences means extending them adding gaps (a special character) in such a way that
they all have the same length, and that nucleotide having a common ancestor are in the
same position in the new gap-extended representation.

Although we usually align present day sequence with one another, ideally we would
align ancestral sequences with the present day descendants. The idea of alignment is
exemplified graphically in Fig. 2.4. We won’t elaborate further on the methodologies
to generate alignments, but we will note that the production of reliable alignments is a
crucial problem in computational biology, as a wrong set of alignments can drastically
alter the result of a biological study [60].

As already seen, the nature of mutations is such that, given a succession of n nucleotides
at a given locus and time X(t0), . . . , X(tn) where X(t) ∈ {A, C, G, T} and time is measured
in appropriate units, there should be a dependence only on the state at time t − 1. In
general it is always possible to rescale time to 1 and we will often use this rescaling in
the following.
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AA GT TGCACCATG

Ancestral
sequence

Present day
sequence

ATGTAGTGCACTATG

A
C

tim
e

Figure 2.4: This figure illustrates the evolutionary process with indels. It shows two mutational
events and a deletion event which removes simultaneously two adjacent nucleotides from the
sequence. If we had wanted to represent an insertion event, we would have inserted gaps in
the ancestral sequence corresponding to the loci were new nucleotides have been inserted.

2.6 Jukes Cantor and Kimura 2 parameter models

The use of probabilistic models in the study of sequence evolution started with the land-
mark papers [64, 28], where for the first time a Markovian model of evolution was intro-
duced and used. The model is known as Jukes-Cantor, or JC69. The original focus of
the papers was protein evolution, however what I present in this section is an equivalent
model for nucleotide evolution.

Two key assumptions in the JC69 model, are shared by almost all successive probabilistic
models of sequence evolution. The first is that each nucleotide position in the sequence
evolves independently from all others. Probabilistically speaking this means that the
probability distribution for the whole sets of sites is the product of identically distributed
probability distributions at each site.

The second assumption is that the evolution of each single site is a Markov process, each
nucleotide position evolution is completely determined by assigning a 4 × 4 rate matrix
with 12 different transition probabilities.

Furthermore the JC69 model also assumes that the transition probabilities are all equal
to the same value. Each nucleotide is equally likely to turn into each other nucleotide.
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Thus for a single site the resulting rate matrix must have the following form:

QJC69 =



A G T C

A −3α α α α

G α −3α α α

T α α −3α α

C α α α −3α

 (2.25)

The transition probabilities for the Jukes Cantor model can be explicitly calculated,
computing the exponential of the matrix:

PJC69(t) =



A G T C

A 1− 3a(t) a(t) a(t) a(t)

G a(t) 1− 3a(t) a(t) a(t)

T a(t) a(t) 1− 3a(t) a(t)

C a(t) a(t) a(t) 1− 3a(t)

 (2.26)

Where the function a(t) is the following:

a(t) =
1− 3e−4αt

4
(2.27)

It is very simple to check that this evolutionary model has a uniform equilibrium distri-
bution:

πJC69 =

(
1

4
,
1

4
,
1

4
,
1

4

)
(2.28)

So the Jukes-Cantor model, although very appealing in its simplicity, immediately shows
its shortcomings, as a simple count of nucleotide frequencies in available genomes shows
distributions different from the uniform one. Ideally a probabilistic model of evolution
should incorporate as much biochemical information as possible. This was the reason
for the successor model of JC69, Kimura’s K80 model [31]. Based on the analysis of the
similarity among the chemical structure of the four different nucleotides, Kimura came
to the conclusion that a purine should be more likely to turn into another purine than
into a pyrimidine , and equivalently pyrimidines should be more likely to mutate into one
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another than into purines. He thus proposed a model with two free parameters:

QK80 =



A G T C

A −α− 2β α β β

G α −α− 2β β β

T β β −α− 2β α

C β β α −α− 2β

 (2.29)

As for the Jukes Cantor model we can find an explicit formula for the transition proba-
bilities:

PK80(t) =



A G T C

A 1− a(t)− 2b(t) a(t) b(t) b(t)

G a(t) 1− a(t)− 2b(t) b(t) b(t)

T b(t) b(t) 1− a(t)− 2b(t) a(t)

C b(t) b(t) a(t) 1− a(t)− 2b(t)


(2.30)

Were the function a(t) and b(t) are the following ones:

a(t) =
2c(t)− d(t)

4
c(t) = 1− e−2tα+β

b(t) =
c(t)

4
d(t) = 1− e−4tβ

(2.31)

As in the case of JK69, it is simple to check that the equilibrium distribution of the
Kimura model is the uniform one:

πK80 =

(
1

4
,
1

4
,
1

4
,
1

4

)
(2.32)

2.7 The general time reversible model

Following the models of Jukes, Cantor and Kimura there was a plethora of other models.
In fact the most general independent site evolution rate matrix, has twelve different

25



Chapter 2 Models of Sequence Evolution

parameters [46]:

Q12 =


A G T C

A − qGA qTA qCA
G qAG − qTG qCG
T qAT qGT − qCT
C qAC qGC qTC −

 (2.33)

However due to historical reasons, trying to reduce the number of free parameters people
used less general models. In fact the vast majority of the models used are all nested into
the General Time Reversible model (GTR) [33, 55]. In order to derive it one can use a
particular representation of a rate matrix:

Q = D(π)Π =


πA 0 0 0
0 πG 0 0
0 0 πT 0
0 0 0 πC



− a b c
g − d e
h i − f
j k l −

 (2.34)

It can be checked that a matrix with such representation has (πA, πG, πT, πC)
t as equilib-

rium distribution. So it is possible to derive a time reversible model just by choosing a
symmetric matrix as the second factor in 2.34:

QGTR =


πA 0 0 0

0 πG 0 0

0 0 πT 0

0 0 0 πC



− a b c

a − d e

b d − f

c e f −

 =



A G T C

A − aπA bπA cπA

G aπG − dπG eπG

T bπT dπT − fπT

C cπC eπC fπC −


(2.35)

It is particularly simple to check the detailed balance using this representation:

(ΠQGTR)t = (ΠD(π)Π)t = ΠtD(π)tΠt = ΠQGTR (2.36)

This is the most general time reversible model. By putting constraint on the parameters
we can recover all the model proposed and used over the years.

With a = b = c = d = e = f = 1 we get the model proposed by Felsenstein [18] to
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improve over the Kimura two parameter and get a non uniform base distribution:

QF81 =


A G T C

A − πA πA πA
G πG − πG πG
T πT πT − πT
C πC πC πC −

 (2.37)

With a = f := α and c = d = e = g := β the HKY model [21]

QHKY85 =


A G T C

A − απA βπA βπA
G απG − βπG βπG
T βπT βπT − απT
C βπC βπC απC −

 (2.38)

With a = f := α, c = d = e = g := β and πA = πT := πAT
2

, πC = πG = πGC
2

= 1 − πAT
2

the
Tamura model [53]

QT92 =


A G T C

A − απAT βπAT βπAT
G απGC − βπGC βπGC
T βπAT βπAT − απAT
C βπGC βπGC απGC −

 (2.39)

Finally with a := α, e := β and c = d = e = g := γ the Tamura-Nei model [54]

QTN93 =


A G T C

A − απA γπA γπA
G απG − γπG γπG
T γπT γπT − βπT
C γπC γπC βπC −

 (2.40)

2.8 The reverse complement symmetric model

A different and lesser known form of an evolutionary matrix has his origin in some studies
conducted during the years 50 and 60s by biochemist Erwin Chargaff. In his works [10, 47]
he showed some remarkable symmetry properties in the nucleotide composition of the
DNA molecule. Based on his observations he could formulate two rules, later called by
Sueoka [52] Chargaff’s parity rules. The first rule expresses a property of the whole DNA
double strand:
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Law 1. First Parity Rule. In a DNA sequence, indicating with Nx the number of
occurences of nucleotide x, the following holds NA = NT and NG = NC.

The reason for the first parity rule was found shortly thereafter [58], it is the direct
consequence of the double helix structure of DNA and of the Watson-Crick base pairing.
The second rule, refining the first one, specifies a property of single strands:

Law 2. Second Parity Rule. The first rule also holds, but only in an approximate
sense, for single stranded DNA. In other words the following approximate equalities hold
for a single strand: NA ' NT and NG ' NC.

The reason for this second rule turned out to be quite elusive, and the underlying mech-
anism was only found much later, and was proposed in the papers [62, 52, 34].

The essential point is that when describing the evolution of a DNA sequence we should try
to incorporate as much information about the underlying biological processes as possible,
as Kimura first showed when he reasoned about similarities in the chemical structure of
nucleotides.

One fundamental fact that we should take into account is the double stranded nature of
DNA, which has an immediate consequence: the two strands reciprocally influence their
evolution. When we translate it in a probabilistic framework, the result of this interaction
is summarized in the following (already suggested in [9]):

Theorem 2. If the repair mechanism acts with equal efficiency on the leading and lagging
strand, and if the mutation rate is equal on both strands, and if the probability of base X
turning into base Y does not depend on the strand, then the most general single nucleotide
mutation rate matrix has the following reverse complement symmetric form (RCS), with
six parameters:

QRCS =


A C G T

A · rAC rAG rAT
C rGT · rCG rCT
G rCT rCG · rGT
T rAT rAG rAC ·

. (2.41)

Proof. In this proof I use the complementary operator, ∗, which exchanges a nucleotide
with its Watson-Crick complement, e.g. A∗ = T. It follows that “∗” is a conjugation, so
that α∗∗ = α where α ∈ {A, C, G, T}.

I will also use the following abbreviations:
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α→ β = “We observe nucleotide α going into nucleotide β”
(α→ β)F = “There was a mutation on the forward strand”
(α→ β)R = “There was a mutation on the reverse strand”
R is repaired = “The repair mechanism repairs the base on the reverse strand”
F is repaired = “The repair mechanism repairs the base on the forward strand”

In order to get the rate matrix we need to calculate the following probability:

p(α→ β) = p(((α→ β)F,Ris repaired) ∨ ((α∗ → β∗)R,Fis repaired))

= p((α→ β)F,R is repaired) + p((α∗ → β∗)R,F is repaired))

= p(R is repaired|(α→ β)F)p((α→ β)F)

+ p(F is repaired|(α∗ → β∗)R)p((α∗ → β∗)R)

On the other hand the probability of the transition between the complementary nu-
cleotides to the first two is given by:

p(α∗ → β∗) = p(R is repaired|(α∗ → β∗)F)p((α∗ → β∗)F)

+ p((F is repaired|(α∗∗ → β∗∗)R)p((α∗∗ → β∗∗)R)

= p(R is repaired|(α∗ → β∗)F)p((α∗ → β∗)F)

+ p((F is repaired|(α→ β)R)p((α→ β)R)

Equating we get:

p(α→ β) = p(R is repaired|(α→ β)F)p((α→ β)F)

+ p(F is repaired|(α∗ → β∗)R)p((α∗ → β∗)R)

= p((F is repaired|(α→ β)R)p((α→ β)R)

+ p(R is repaired|(α∗ → β∗)F)p((α∗ → β∗)F)

= p(α∗ → β∗)

Now we can use our hypotheses. First if there is no mutational bias, then the probability
of a mutation happening on the forward strand is equal to the same probability on
the reverse strand p((α → β)R) = p((α → β)F). Second if there is no bias in the
repair mechanism, with an analogous reasoning we get: p(R is repaired|(α → β)F) =
p((F is repaired|(α→ β)R).

And we get the hypothesis p(α→ β) = p(α∗ → β∗).

We now prove the extension of the theorem to substitution matrices:

Proposition 4. For neutrally evolving region, if the assumptions of theorem (2) hold,
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Chapter 2 Models of Sequence Evolution

then the most general substitution matrix is:

QRCS =


A C G T

A · rAC rAG rAT
C rGT · rCG rCT
G rCT rCG · rGT
T rAT rAG rAC ·

 (2.42)

Proof. A substitution is then the result of a mutation and a fixation. As before we will
use an abbreviation:

α → β =“we observe a nucleotide substitution from α to β”

In this case we use a boldface to distinguish the substitution process, α → β, which
takes place at a species level from the mutational process, α→ β, which takes place at
individual level.

We can then write for the probabilities:

p(α → β) = p(α→ β, fix)

= p(fix|α→ β)p(α→ β)

While for the complementary substitution:

p(α∗ → β∗) = p(α∗ → β∗, fix)

= p(fix|α∗ → β∗)p(α∗ → β∗)

= p(fix|α∗ → β∗)p(α→ β)

When the sequence is neutrally evolving the probability of fixation becomes independent
of the particular nucleotide at the site:

p(fix|α→ β) = p(fix|α∗ → β∗)

It can be checked by substitution that the generator (Eq. 2.42) has the following equilib-
rium probabilities:

πRCS =


πAT
πGC
πGC
πAT

 (2.43)

With πGC = rCT+rGT
rAC+rAG+rGT+rCT

, and πAT + πGC = 1. This proves the following proposition:
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2.9 The time reversible RCS model

Proposition 5. Under the hypothesis of proposition (4) at equilibrium the following
equalities hold on a single strand: P (A) = P (T) and P (G) = P (C).

This explains why the approximate equalities of Chargaff’s second law hold, however the
equalities do not hold if selection is present. Deviation from the second parity rule can
be detected using AT and GC skews:

ATskew =
A− T

A + T

GCskew =
G− C

G + C

(2.44)

2.9 The time reversible RCS model

One important feature of the RCS model, is that while incorporating more information
on the structure of the DNA molecule, it does not assume time reversibility, which means
it is not nested in the GTR model as can be seen in Fig. 2.5. There is however a subset
of it’s parameter space it has the property of time reversibility. This feature will be
important when we will need to check whether the evolution of real genomes is time
reversible or not.

The subclass of the time reversible RCS matrices can be obtained by imposing the detailed
balance conditions on its parameters, and we

Proposition 6. Under the assumptions of the RCS and of time reversibility, the most
general rate matrix is the following:


A C G T

A − cπAT aπAT bπAT
C cπGC − dπGC aπGC
G aπGC dπGC − cπGC
T bπAT aπAT cπAT −

 (2.45)

Where a, b, c, d are independent parameters and πGC + πAT = 1.

Proof. One just need to inpose the equality of complementary rates in the detailed balance
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K80

GTR

Q12

RCS
JC69

Figure 2.5: Here it’s shown the hierarchical nesting of different evolutionary models. The GTR
and the RCS overlap but none of them is nested into the other. They both include some of
the simpler models and both are included in the most general 12 parameters model.

conditions:

qCA = qGT ⇒ cπA = dπT
qGA = qCT ⇒ aπA = fπT
qTA = qAT ⇒ bπA = bπT
qAC = qTG ⇒ cπC = dπG
qGC = qCG ⇒ eπC = eπG
qTC = qAG ⇒ fπC = aπG

From which follows the following conditions on the parameters, c = d := γ, a = f := α,
b := β, e := δ, πA = πT := πAT, πG = πC := πGC = 1− πAT:

So we find out that the time reversible RCS model is a 5 parameter subclass of the general
RCS model.

2.10 Evolution with neighbor dependencies

So far we have always used the assumption first introduced in the JC69 model, that the
evolution of each nucleotide can be treated independently from all the others. This is
apparently a good approximation, especially for non-coding sequences, where we don’t
expect the presence of phenotypical effects which could introduce correlations in the
evolution of different nucleotides. However even if not functionally relevant there may
still be biochemical mechanisms which couple nucleotides.
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2.10 Evolution with neighbor dependencies

In particular, as we have seen previously, in the evolution of vertebrates one cannot
disregard the so called deamination process. This is a process that causes the depletion
of CpG nucleotide doublets.

As a result neighbor dependencies play a significant role in the evolution of vertebrate
genomes [6, 25]. In this case it is favorable to take into account the CpG decay process
as shown in [4]. This is because in presence of methylation a CpG dinucleotide has an
increased mutation rate to a CpA dinucleotide due to the reaction described in [11]. The
formalism used for describing sequence evolution must then be appropriately general-
ized.

First, in general the configuration space of a nucleotide sequence of length N , is the
Cartesian product of single nucleotide states having 4N possible configurations:

C = s1 × . . .× sN si = {A, C, G, T}. (2.46)

The nucleotide substitution process in this space will then be described by a 4N × 4N

rate matrix. If we assume site independence the generator can be written in the following
form:

Q =
N∑
k=1

Qk (2.47)

Where each of the generators in the right hand side is a 4N × 4N matrix acting on one
nucleotide:

Qk = I⊗ . . .⊗ I︸ ︷︷ ︸
k−1

⊗Q⊗ I⊗ . . .⊗ I︸ ︷︷ ︸
N−k

. (2.48)

Here I is the 4× 4 identity matrix and Q is given in Eq. (2.33). In the rest of this section
we will use the RCS parameterization for Q (Eq. (2.41)).

The tensor, or Kronecker, product of matrices, is defined in the following way:

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 (2.49)

That this abstract formulation is equivalent to the usual one, can be easily proved using
the following identity:

eA⊗I+I⊗B = eA ⊗ eB. (2.50)

We have thus a formulation equivalent to the one used in the previous sections. However
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Chapter 2 Models of Sequence Evolution

in this new formalism it is simple to add generators that couple neighboring nucleotides:

QCpG =
N∑
k=1

Qk +
N−1∑
k=1

QCpG
k,k+1. (2.51)

The second sum in Eq. (2.51) represents nearest neighbor dependencies and has the
following form:

QCpG
k,k+1 = I⊗ . . .⊗ I︸ ︷︷ ︸

k−1

⊗QCpG ⊗ I⊗ . . .⊗ I︸ ︷︷ ︸
N−k−1

. (2.52)

QCpG is a 16 × 16 matrix which models transitions on dinucleotides. In order to include
the CpG decay in the model we parameterize it as follows:

QCpG
α′β′ αβ =


rCpG if (α′β′ αβ) = (CA CG) or (α′β′ αβ) = (TG CG)
−2rCpG if (α′β′ αβ) = (CG CG)
rrevCpG if (α′β′ αβ) = (CG CA) or (α′β′ αβ) = (CG TG)
−rrevCpG if (α′β′ αβ) = (CA CA) or (α′β′ αβ) = (TG TG)

0 otherwise,

(2.53)

where rCpG is the rate of CpG decay substitutions CG → CA and CG → TG, and rrevCpG is the

rate of the corresponding back substitutions. This way we constructed a 4N × 4N rate
matrix Q, while the corresponding transition probability matrix P = expQ is computed
by matrix exponentiation.

However the size of the resulting matrix is too big, and this renders the computation of
the exponential unfeasible. We thus applied the cluster approximation described in [4]:

P (S1 → S2|Q) '
∏
k

P (S1[k − 1]S1[k]S1[k + 1]→ ∗S2[k] ∗ |Q) (2.54)

Where we have used the following notation:

P (S1[k−1]S1[k]S1[k+ 1]→ ∗S2[k]∗) =
∑

i,j∈{A,G,C,T}

[expQ]S1[k−1]S1[k]S1[k+1],i S2[k] j
(2.55)

After the cluster approximation we have to calculate the exponential of matrices of size
43 = 64, and the problem is tractable again.
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Chapter 3

Parameters Estimation Methods

We have seen in detail how the theory of Markov processes provides us a powerful formal-
ism to describe the evolution in time of genomic sequences. Using this formalism, given a
sequence and set of evolutionary rates we can predict in a probabilistic sense the evolution
of different quantities, like for example the average GC content of a sequence [6].

However in most cases we face the opposite problem. This is because we have no direct
observations of how genomes evolve, for this would only be possible having historic series
of fossil genomes at our disposal. Unfortunately the genome degrades rapidly once an
organism dies, and so the acquisition of a sequence of even just one extinct genome proves
to be an extraordinary task. Only recently it has been possible to obtain the sequence of
two extinct animal species [20, 43, 41]. However interesting such an achievement is, this
is not a viable way of approaching general evolutionary problems.

The kind of data we have at our disposal are instead sets of genomic sequences of different
present day species. One of the problem we face, the one we will focus in this thesis, is
how to reliably infer the evolutionary rates. In this chapter we will show how one may use
a method know as maximum likelihood estimation (MLE) to accomplish this task. We will
first introduce it as a general procedure, and then we will show a formulation specialized
to the evolutionary case.

We will also show the differences of the maximum likelihood methodology between the time
reversible and the non time reversible case.

3.1 Markov processes on trees

First of all, it is important to note that so far we have been discussing a mathematical
model apt to describe the evolution of the genomic sequence of single species lineage, as
for example could be if we were studying evolution of the genome of the Homo Sapiens
species from its last common ancestor with the Chimpanzee to the present day.

35



Chapter 3 Parameters Estimation Methods

Figure 3.1: The famous phylogenetic tree sketched by Darwin in his notebook.

However it is a known fact, since Darwin first published the origin of species [14], that
animal species, and thus genomes, do have evolutionary histories independent from one
another. Rather the concept of common descent assumes that the evolution of species
proceeds with a tree like structure, marked by specific events, known as speciations, which
give rise to new species. The number of species increases exponentially by successive
bifurcations of the existing lineages. A speciation event takes place when, a population of
individuals is in a state in which it is composed of different subpopulations which because
of environmental or geographical or social reasons stop sharing genetic material with each
other. We have to note that broadly speaking this not a completely rigorous definition,
as no species is ever completely reproductively isolated from other species. However if
used with the necessary care this is a good definition for most practical cases.

So in order to translate mathematically the concepts of common descent we need to
extend our framework, to include speciation events. We will then introduce the concept
of phylogenetic tree and define an evolutionary Markov process on its branches.

Following [32] we give a the following recursive definition of tree:

Definition 7. A Tree T on a set A is a set of elements that can be one of the following:

• A leaf, containing an element a ∈ A;

• A branch, containing an element a ∈ A, called internal node and two trees, on the
same set A, called left and right subtrees.

In the evolutionary case one uses the following specialized definition:

Definition 8. A phylogenetic tree T is a set of elements that can be one of the following:

• A leaf, containing a present day genomic sequence.

• A branch, containing an ancestral sequence, two trees, and two values corresponding
to the evolutionary distance from the ancestral sequence to the subtrees.
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3.1 Markov processes on trees
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Figure 3.2: An example of phylogenetic Markov process. The tree represents 5 present day
species, and 4 extinct ones, the common ancestors. Along its branches there are 8 different
Markov processes acting, each representing the sequence evolutionary dynamics.

The recursive nature of trees makes very convenient to use a nested parenthesis format
(also known as Newick format) to describe their structure. For example if we wanted
to write down the tree describing the evolutionary relationships between Human (H),
chimpanzee (C) and macaque (M), we could use the following notation:

(”HCM”(”HC”(”H”)(”C”))(”M”)) (3.1)

In this case “HCM” is the root node of the three, the one at the top of the recursive
hierarchy. In evolutionary terms it is named the last common ancestor of the three
species.

The tree structure describes the history of successive speciations leading from extinct
species to existing ones. Assuming an evolutionary tree is known, we can superimpose
on each of its branches a Markov process, like the one we introduced in the first chapter.
In this case we talk of a Phylogenetic Markov Process (Fig. 3.2):

Definition 9. A phylogenetic Markov process is a tuple (T , Q1, . . . , Qn) of a phylogenetic
Tree T , and n Markov processes Q1, . . . , Qn.

We construct a phylogenetic Markov Process associating to each of the branches of a
phylogenetic tree a rate matrix which recapitulates the evolutionary dynamic along that
branch, according to the observations made in the previous chapter. In the majority of
studies the same Q matrix is used for all branches. However this is not in general a safe
assumption, because it is equivalent to stating that the same kind of mutational processes
and repair mechanism have been acting along the evolutionary history of different species.
In general there will be a trade off, if one chooses to have only one rate matrix for all
branches there will be less free parameters in the model, at the expense of a more realistic
representation of the evolutionary processes.
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3.2 The maximum likelihood approach

Maximum likelihood is a powerful paradigm, which can be used to infer parameters in
probabilistic models. It has a straightforward derivation from Bayes theorem, which in
turn is just a simple application of the law of product probabilities.

Let’s suppose we have an hypothesis H and some experimental data D, Bayes theorem
is the following equality for probability of the hypothesis given the data:

P (H|D) =
P (D|H)P (H)

P (D)
(3.2)

Each of the factors on the right hand side has a standard name. P (D|H), the probability
of getting the data given that the hypothesis is true, is known as the likelihood of the
data. P (H) is called the prior, and encodes our belief about the validity of the hypothesis
before having the possibility of looking at the data. Lastly, P (D) is named evidence
plays a fundamental role in Bayesian model comparison. In what follows we will only be
concerned only in the first of these three factors, but should be noticed, that the other
two are fundamental in Bayesian statistical theory.

The maximum likelihood approach follows from the observation that when the prior
probabilities for different hypothesis have the same value, having no reason to favor one
hypothesis over another, the hypothesis with the highest probability is the one which
maximizes the likelihood of the data. That is, maximizing the likelihood we can find
which hypothesis we should favor among the possible ones.

To make the concept clearer, I will show how Bayes theorem can be used to estimate
the parameters of a simple toy example. Let’s assume we toss a coin n times, therefore
having two possible outcomes, head and tails which we indicate with H and T . The toss
of a fair coin would have probability 0.5 for any of these two outcomes. If however, we
had no information regarding the fairness of the coin, how could we quantify it, given a
series of coin tosses?

In the most general case we may indicate with 0 ≤ p ≤ 1 the probability of getting a tail
on a coin toss, having a continuum of possible hypotheses. This example has as boundary
cases p = 0, a coin that will always give a head, p = 1, one which will always give a tail,
while p = 0.5 is the fair one.

We could try to apply maximum likelihood to see what is the probability p of having H
as result. Let N be the number of tosses, and NH the number of heads we have observed.
Then the likelihood of the data is the binomial distribution:

P (NH |p) ∝ pN(1− p)N−NH (3.3)

38



3.3 Maximum likelihood on a tree

Calculations are usualy done using the logarithm of the likelihood, the so called log-
likelihood, which in this case is:

logP (NH |p) ∝ NH log p+ (N −NH) log(1− p) (3.4)

The maximum of the log likelihood is:

NH

p
− N −NH

1− p
= 0⇒ p =

NH

N
(3.5)

This is what we expect intuitively, that the best estimate should be the fraction of heads
observed, but we derived it using a general formalism applicable to any probabilistic
problem.

However in general, if there is more than one variable, it is not possible to find the maxi-
mum of likelihood function analytically, and one has to resort to numerical maximization
algorithms.

3.3 Maximum likelihood on a tree

Now that we have introduced this procedure, we can go back to solving the general prob-
lem stated in the introduction. Given a phylogenetic Markov process and an alignment of
n sequences S1 . . . Sn how can we infer the parameters of the rate matrices Q1 . . . Qm?

The solution [18] can be found in two steps, first we need to calculate the likelihood of
the tree given the sequences with given rate matrices, then we will have to find which
parameters of the rate matrices maximize it.

As first step, let’s write down the probability assuming that we know the ancestral se-
quences. We assume that the tree has n leaves, m internal nodes and a root node that
we label with 0. We also indicate with Qi,j the rate matrix which describes evolution on
the tree branch connecting i with j, while {Qi,j} is the set of all such matrices for every
pair of nodes (i, j) in the tree. Then we have

P (S1, . . . , Sn, Sn+1, . . . , Sn+m|{Qi,j}, T ) = ρ(S0)
∏
(i,j)

P (Si → Sj|Qi,j) (3.6)

To get the likelihood we now have to sum over all the internal states representing the
unknown ancestral sequences.

L(S1, . . . , Sn|{Qi,j}, T ) =
∑

S0,Sn+1,...,Sn+m

ρ(S0)
∏
(i,j)

P (Si → Sj|Qi,j) (3.7)
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Figure 3.3: The three species phylogenetic three used in the text to illustrate Felsenstein’s
pruning algorithm.

In order to be clearer we also show the form of the likelihood, for a simple three species
alignment:

L(S1, S2, S3|{Qi,j}, T ) =
∑
S0,S4

ρ(S0)P (S0 → S4|Q0,4)P (S0 → S3|Q0,3)

P (S4 → S1|Q4,1)P (S4 → S2|Q4,2)

(3.8)

3.4 The independent sites case: pruning algorithm

Now, if we make the further assumption that the sites in the sequence are evolving
independently, it follows that the likelihood for an alignment, of length l, of n sequences
is the product of the likelihood at each single site:

L =
l∏

k=1

L(S1[k], . . . , Sn[k]|{Qi,j}, T ) =
l∏

k=1

Lk (3.9)

We are then left with the problem of calculating the likelihood of a tree at a single site.
This can be accomplished starting from the root node and summing over all possible
internal unknown states.

To avoid cumbersome notation, I will show the calculation in the case of a three species
alignment, with the corresponding phylogenetic tree shown in Fig. 3.3.
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3.4 The independent sites case: pruning algorithm

Lk = L(S1[k],S2[k],S3[k]|{Qi,j}, T ) =
∑

j0,j4∈{A,G,C,T}

ρ(j0)P (j0 → j4|Q0,4)P (j0 → S3[k]|Q0,3)

P (j4 → S1[k]|Q4,1)P (j4 → S2[k]|Q4,2)

(3.10)

It is not difficult to realize that written as it is this summation is redundant, as several
terms contains factors which are equal and should then be only computed once, and mem-
orized for later reoccurences. Even in our simple case the term P (j4 → S1[k]|Q4,1)P (j4 →
S2[k]|Q4,2) as we sum over the index j0 four different times. It is evident that as the num-
ber of species, and thus internal nodes, increases as a power of two, the number of such
recomputations grows exponentially thus rendering a naive approach to the calculation
of the likelihood impracticable.

In order to eliminate redundant summation steps, Felsenstein [18] devised a dynamic
programming algorithm, the so called pruning algorithm. The idea is simple and consists
just in shifting the summations over nucleotides at the internal nodes as far to the right
as possible. This way after the pruning Eq. (3.10) has the form:

Lk =
∑

j0∈{A,G,C,T}

ρ(j0)P (j0 → j4|Q0,4)P (j0 → S3[k]|Q0,3)∑
j4∈{A,G,C,T}

P (j4 → S1[k]|Q4,1)P (j4 → S2[k]|Q4,2)
(3.11)

The procedure can be also formulated more formally, introducing the notion of postorder
traversal of a tree, a procedure which visits all the nodes in the tree and execute some
specific action on them:

postorder (root)
for all k child of root do

postorder(k)
action(k)

end for

The characteristic of a postorder traversal is that it executes the required action starting
from the leaves. Using this particular traversal, we can reformulate Felsenstein pruning
algorithm introducing the notion of conditional likelihood for a given sub-tree, which
is simply the likelihood of the sub-tree when we fix the nucleotide at its root node.
Indicating with i ∈ {A, G, C, T} the nucleotide present at the root node of the sub-tree we
are considering, we define:

Lk(i) =
l∏

k=1

L(S1[k], . . . , Sn[k]|{Qi,j}, i, T ) (3.12)

41



Chapter 3 Parameters Estimation Methods

Then Felsenstein pruning algorithm can be formulated as follows:

1. The conditional likelihood of a leaf j is:

Lk(i) = δ(i,Sj [k]) (3.13)

2. The conditional likelihood of an internal node is:

Lk(i) =
∑

j∈{A,G,C,T}

∏
j∈childreni

P (i→ j|Qi,j)Lk(j) (3.14)

3. The total likelihood of the tree is:

Lk =
∑

j0∈{A,G,C,T}

∏
j∈children j0

ρ(j0)P (j0 → j|Qj0,j)Lk(j0) (3.15)

The algorithm can then be implemented with a post-order traversal of the tree which at
each step of the traversal computes the conditional likelihood according to the rules given
above.

3.5 Equilibrium and time reversibility in the maximum
likelihood procedure

As already anticipated traditionally maximum likelihood methods used in molecular evo-
lution studies rely on the assumptions of time reversibility and equilibrium. We will
clarify these two concepts one after the other.

First of all let’s assume that the process has the same Q matrix on all the branches, and
also let’s assume that the nucleotide distribution is at equilibrium, with respect to Q in
every point of the phylogeny. This allows us to rewrite Eq. (3.7) using as probability of
the root sequence, a product of equilibrium frequencies, ρ(S0) =

∏
k πS0[k], where each

frequency computed by calculating how often the given nucleotide appears in the present
day sequences S1, . . . , Sn. We have then:

L(S1, . . . , Sn|Q, T ) =
∑

S0,Sn+1,...,Sn+m

(
∏
k

πS0[k])
∏
(i,j)

P (Si → Sj|Q) (3.16)

42



3.6 Maximum Likelihood with Neighbor Dependencies

Similarly Eq. (3.15) becomes:

Lk =
∏

j∈children j0

∑
j0∈{A,G,C,T}

πS0[j]P (j0 → j|Q)Lk(j0) (3.17)

The second fundamental simplification is that, as intuitively obvious, in order to calculate
the likelihood of a tree under a time reversible model it is no longer necessary to start
from the root proceeding forward in time to calculate the likelihood of the branches
representing new species.

It is as well possible to start the computation from any leaf proceeding backward and
forward in time until the likelihood of the whole tree has been computed . In other words
supposing as an example that we wanted to calculate the likelihood of an homologous
sequences of human and chimp. Instead of having the sequence evolving forward in time
from the common ancestor to human on one branch and to chimp on the other, we would
obtain the same result having the sequence evolving backward in time

This can be formulated more precisely mathematically:

Lk = L(S1[k],S2[k],S3[k]|Q, T ) =
∑

j0,j4∈{A,G,C,T}

ρ(j0)P (j0 → j4|Q)P (j0 → S3[k]|Q)

P (j4 → S1[k]|Q)P (j4 → S2[k]|Q)

=
∑

j0,j4∈{A,G,C,T}

ρ(j4)P (j4 → j0|Q)P (j0 → S3[k]|Q)

P (j4 → S1[k]|Q)P (j4 → S2[k]|Q)

=
∑

j4∈{A,G,C,T}

ρ(j4)P (j4 → S3[k]|Q)

P (j4 → S1[k]|Q)P (j4 → S2[k]|Q)

(3.18)

Where we have used detailed balance condition and the Kolmogorov property of a Markov
process. Analogously one can shift the root of the tree on other nodes.

3.6 Maximum Likelihood with Neighbor Dependencies

As we have see in section 2.10 the CpG decay process in vertebrates requires the introduc-
tion of neighbor dependent Markov models of sequence evolution. Unfortunately in this
case we cannot rely anymore on the factorization in Eq. (3.9). We could still in principle
use the pruning algorithm, but the number of intermediate states at internal nodes over
which we should sum over would be 4l, making the computation infeasible.
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In the following we will assume that the time dynamics is given by neighbor indepen-
dent nucleotide substitutions and nearest neighbor dependent substitutions only. The
corresponding generator is given in Eq. (2.51). The transition probability matrix is then
Pji = exp(tQji). Without loss of generality we again set t = 1.

To maximize the likelihood in Eq. (3.7) we introduce a mixed Monte-Carlo Maximum-
Likelihood (MCML) approach, which combines elements of the two methods in a very
efficient way: In an iterative fashion we will first (M-step) estimate substitution fre-
quencies for a given ancestral sequence at internal nodes (using a maximum likelihood
approach) and then (E-step) get a new estimate for the sequence at internal nodes for
given substitution frequencies (using a Monte Carlo approach). This algorithm actually
falls into the class of stochastic Expectation Maximization (EM) algorithms [38].

The iteration is initialized setting the sequences at the internal nodes to be the consensus
of all its descendant sequences. If nucleotides at one position are not equal in all descen-
dant sequences one of them is chosen at random. Initializing with a random sequence
prolongs but not prevents the convergence of the algorithm to the maximum.

In the M-step, for each branch of the phylogeny the substitution frequencies (including
those for neighbor dependent processes)are estimated from comparisons of ancestral and
daughter sequences as described in [4]. In practice the method relies on the cluster
decomposition to compute, exponentiating the rate matrix, the probability of going from
the ancestral to the daughter sequence:

P (Si → Sj|Si, Sj,Qi,j) =
∏
k

P (S1[k − 1]S1[k]S1[k + 1]→ ∗S2[k] ∗ |Q)

P (S1[k − 1]S1[k]S1[k + 1]→ ∗S2[k]∗) =
∑

i,j∈{A,G,C,T}

[expQ](S1[k−1]S1[k]S1[k+1],i S2[k] j)

(3.19)

The rate matrix is then varied until the maximum of the likelihood is found.

In the E-step then, we update the ancestral sequences at the internal nodes. To do
this we make use of a Monte Carlo procedure. We first consider the internal sequence
S4. For each position k = 1, . . . , l we propose to update the nucleotide S4[k] by another
nucleotide S4[k]′. The newly proposed nucleotide is accepted with some probability, which
is computed using a four nodes likelihood which gives the probability of finding a given
nucleotide at a given position of the ancestral sequence given the sequences at the parent
node and at the two children nodes.

L4
k(S4[k − 1]S4[k], S4[k]) = P (S0[k − 1]S0[k]S0[k]→ S4[k − 1]S4[k]S4[k]|S0, S4,Q0,4)×

P (S1[k − 1]S1[k]S1[k]→ S4[k − 1]S4[k]S4[k]|S1, S4,Q1,4)×
P (S2[k − 1]S2[k]S2[k]→ S4[k − 1]S4[k]S4[k]|S2, S4,Q2,4)

(3.20)
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where the probabilities P (α1α2α3 → β1β2β3 |α, β,Qα,β) of substitutions of three consec-
utive nucleotides α1α2α3 on node i to β1β2β3 on node j are given as matrix element of
the 43 × 43 dimensional transition probability matrix Pji = expQji describing the time
evolution on N = 3 sites with Qji given by Eq. (2.51). The substitution frequencies along
each branch, which fix the corresponding matricesQji, are taken from the estimates in the
previous M-step. An update S4[k]→ S4[k]′ is always accepted if the likelihood increases,
i.e. if the likelihood ratio

λ = L4
k(S4[k − 1]S4[k], S4[k])/L4

k(S4[k − 1]S4[k]′, S4[k]) (3.21)

is larger than one. If this ratio is smaller than one the substitution is accepted with
probability λ. In this case the (local) likelihood is decreased in order to increase the
(global) likelihood in the following M-step.

After the entire internal sequence S4 is updated, the sequence on the root node S0 is
updated in a similar fashion. Only the definition of the local likelihood differs and now
involves the trinucleotide distribution ρ(S0[k − 1]S0[k], S0[k]) of the ancestral sequence
S0:

L0
k(S0[k − 1]S0[k], S0[k]) = ρ(S0[k − 1]S0[k], S0[k])

× P (S0[k − 1]S0[k]S0[k]→ S4[k − 1]S4[k]S4[k]|S0, S4,Q0,4)

× P (S0[k − 1]S0[k]S0[k]→ S3[k − 1]S3[k]S3[k]|S0, S3,Q0,3)

(3.22)

The trinucleotide distribution is assumed to be homogeneous along the sequence and is
estimated from S0 right before starting with the E-step. The transition probabilities are
defined as above; substitution frequencies are given from the estimates in M-step.

This two E- & M-step iteration is performed several times until convergence of all the
substitution frequencies and of the trinucleotide distribution ρ(S0[k − 1]S0[k], S0[k]) is
established. In our applications this happens after about 40 iterations.

By the virtue of the Monte Carlo step, we allow that ancestral sites might not be in
their most likely ancestral state. This is done by intention since such situations can
actually be observed for sufficiently long sequences. The Monte Carlo step introduces
such configurations into the ancestral sequence in as much as they are expected to occur
with regard to the substitution model. This is crucial for the accurate estimation of
substitution frequencies and ancestral single and di-nucleotide frequencies. Note that
while the number of those sites that are not in their most likely state is given by the
substitution models, their positions are not uniquely defined. Therefore, the ancestral
sequence is one representative out of the set of sequences that maximize the likelihood.
While for a general EM algorithm one would require to take the expectation over all

45



Chapter 3 Parameters Estimation Methods

possible ancestral sequences (or a sample of those for a Monte Carlo EM algorithm), we
rely here on only one representative ancestral sequence. This is possible since the average
over all positions along the sequence offer an implicit equivalent of the expectation. If
only little amounts of sequence data is available a sampling over different realization of
ancestral sequences can easily be incorporated into the MCML approach.

As mentioned above for the neighbor independent case, the substitution frequencies of
edges connected to the root and the trinucleotide distribution of the ancestral sequence
S0 cannot be reconstructed. However, substitution frequencies in the two branches for
the two sister species as well as the nucleotide distribution in the last common ancestor of
the two sister species are not affected by this ambiguity. For more details and numerical
verification of this approach see [16].

After maximizing the likelihood of a model for given data, the value of the likelihood can
also be used to judge whether the use of particular parameterizations is indicated. We
performed such a study for the fly data set. A comparison of the Reverse Complement
Symmetric (RCS) model and the General Time Reversible (GTR) model, both of which
have 6 free parameters along each branch, came out in favor of the RCS model. Models
with more parameters (like the one in Eq. (2.33) with 12 independent parameters) or less
parameters (like the HKY85 or JC69 model) compared less favorable to the RCS model
when taking into account the total numbers of parameters using the Akaike information
criterion (see Tab. 3.1).

model logL AIC
RCS -88579.26(2) 177212.52(1)

12-parameter -88570.44(1) 177242.88(2)
HKY85 -88612.49(4) 177246.97(3)

GTR -88602.97(3) 177259.93(4)
K80 -88647.21(5) 177316.43(5)

JC69 -88776.99(6) 177567.97(6)

Table 3.1: Comparison of different models of nucleotide substitutions for D. simulans. For
each model we report the mean log likelihood,logL, as well as the mean value of the Akaike
information criterion AIC = 2p−2 logL, where p is the number of parameters of the respective
models on the phylogenetic tree. Means are taken over the 539 windows used in the main text.
Numbers in brackets report the rank of the corresponding model when sorted by decreasing
logL or increasing AIC.
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Chapter 4

Testing Reversibility and Equilibrium

In the previous chapters we have presented Markov models of evolution that assume sta-
tionarity and time reversibility, and shown that it is possible to remove this assumption
and still be capable of estimating the evolutionary rates. The question is how far the evo-
lutionary properties of organisms are from the stationarity-reversibility assumption? In
this chapter we will derive a set of statistical indices, in order to see how it is possible to
answer such a question and we will apply them to the analysis of some animal genomes.

4.1 Equilibrium conditions: the stationarity indices

The stationary, or equilibrium, state of the process is the probability distribution which
does not evolve in time under the evolution defined in Eq. (2.11). It is usually denoted
as π = (πA, πC, πG, πT)

t, and it can be calculated solving the following system of linear
equations:

Qπ = 0. (4.1)

The easiest way to check whether the process is stationary or not is to define the following
indices, which quantify deviations of the present day nucleotide composition, ρ, from the
equilibrium one, π:

∆α = ρα − πα. (4.2)

Due to the normalization constraint only three of these 4 equations are independent. If
all of them are equal to zero, i.e. ∆α = 0∀α, then the process is in its stationary state.

It is important to note that checking for the equality of the nucleotide distribution at
different leaf nodes is not a sufficient condition for equilibrium. As an example, all the
sequences in the tree could be evolving from a GC rich state to a GC poor one with the
same rate, in which case they would show the same nucleotide composition even if they
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are not in equilibrium. Our method does not have such inconveniences and quantifies
equilibrium in the most precise way.

We can recast the conditions in a more insightful form if we take independent linear
combinations of the ∆α in Eq. (4.2) and define:

STI1 = ∆C + ∆G = ρGC − πGC
STI2 = ∆A −∆T

STI3 = ∆C −∆G, (4.3)

which we call Stationarity Indices (STIs). The first index is just the difference between
the actual GC content , ρGC (i.e. the frequencies of Gs and Cs present on one strand), and
the equilibrium GC content, πGC. The second and third equations, are reminiscent of the
AT skew and GC skew indices. A system is in its stationary state if all STIs vanish.

We further want to quantify whether deviations from zero of the three indices are sta-
tistically significant when only a finite amount of sequence data is available to measure
the present day nucleotide distribution. To achieve this we compare the distribution of
nucleotides, ρα, of a sequence of length N to the stationary distribution, πα, using a
χ2-test with

χ2 = N
∑
α

(ρα − πα)2

πα
. (4.4)

This quantity follows a χ2 distribution with 3 degrees of freedom. Deviations from sta-
tionarity are significant (with 95% confidence) if χ2 > 7.8147.

4.2 Kolmogorov cycle conditions

We have seen in the first chapter a criterion to test whether a Markov process is reversible
or not, we will now show an alternative formulation which we will use to develop a test
for reversibility.

We will first show a proof for Markov chains (taken from the book of Kelly [29]). We
define irreducible, a Markov chain or process where each state can be reached from any
other state.

Proposition 7. An irreducible and stationary Markov chain is reversible if and only if
the transition probabilities satisfy the following conditions.

Pj1,j2Pj2,j3 . . . Pjn−1,jnPjn,j1 = Pj1,jnPjn,jn−1Pjn−2,jn−3 . . . Pj3,j3Pj2,j1 (4.5)
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4.2 Kolmogorov cycle conditions

For any possible choice of the indices j1 . . . jn

Proof. Let’s assume that the process is time reversible, then it must satisfy the detailed
balance conditions:

Pj2,j1πj1 = Pj1,j2πj2
Pj3,j2πj2 = Pj2,j3πj3

...

Pjn,jn−1πjn−1 = Pjn−1,jnπjn
Pj1,jnπjn = Pjn,j1πj1

And if we multiply all of the first sides and all of the second sides we get the Kolmogorov
conditions.

Let’s now assume the converse, that the process satisfies the Kolmogorov conditions.
Then since the process is irreducible there is a sequence of states (j0, j1, j2, . . . , j) con-
necting any two states j0 and j. Then let B be a positive constant, and πj be defined
by:

πj = B
Pj0,j1Pj1,j2 . . . Pjn,j
Pj,jnPjn,jn−1 . . . Pj1,j0

πj is independent of the sequence chosen for the right hand side, as we can see choosing
another sequence (j0, j

′
1, j
′
2, . . . , j) and applying Kolmogorov criteria:

Pj0,j1Pj1,j2 . . . Pjn,j
Pj,jnPjn,jn−1 . . . Pj1,j0

=
Pj0,j′1Pj′1,j′2 . . . Pj′n,j

Pj,j′nPj′n,j′n−1
. . . Pj′1,j0

(4.6)

Furthermore defining:

πk = B
Pj0,j1Pj1,j2 . . . Pjn,k
Pk,jnPjn,jn−1 . . . Pj1,j0

We get:

Pk,jπk = Pj,kπj (4.7)

So that we prove that π is in fact the equilibrium distribution of the chain and that the
detailed balance conditions hold, which proves the proposition.

An equivalent proposition can be proven equivalently for Markov processes.
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Figure 4.1: An example of a Kolmogorov cycle.

Proposition 8. An irreducible and stationary Markov process is reversible if and only if
the transition rates satisfy the following conditions.

Qj1,j2Qj2,j3 . . . Qjn−1,jnQjn,j1 = Qj1,jnQjn,jn−1 . . . Qj3,j2Qj2,j1 (4.8)

For any possible choice of the indices j1 . . . jn

Intuitively the Kolmogorov criterion states that for a reversible system if we pick an
arbitrary state i of the chain and follow a path which eventually closes on i, then the
probability of the path is the same regardless of the direction which we follow. One can
say probability flux shows forms no vorticity in state space.

The usefulness of Kolmogorov criterion comes from thee fact that often, it is not necessary
to test the reversibility of every possible cycle, but it is possible to show analytically that
testing a subset of the cycles will test all of them.

4.3 Kolmogorov conditions for a four state process

Proposition 9. If the off–diagonal coefficients of the rate matrix are strictly positive and
if Kolmogorov conditions hold for 3–cycles then they hold for cycles of arbitrary length.

Proof. From the positivity of the off–diagonal rate matrix coefficients, we can deduce the
ergodicity of the process.
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4.3 Kolmogorov conditions for a four state process

The rest of the proposition follows by induction. It holds trivially for two cycles and
it holds by hypothesis for 3–cycles. Then let’s show that if it holds for n-cycles then it
is also valid for (n + 1)-cycles. Let’s assume we want to test whether the equality still
holds for a chain which has element in+1 inserted between element in and element i1. We
multiply both sides by the following factor (Qini1Qi1in+1Qin+1in), obtaining:

(Qini1Qi1in+1Qin+1in)Qi1inQinin−1 . . . Qi2i1 =

Qi1i2 . . . Qin−1inQini1(Qini1Qi1in+1Qin+1in), (4.9)

which after applying Kolmogorov condition for 3–cycles and simplifying leads to:

Qi1in+1Qin+1inQinin−1 . . . Qi2i1 = Qi1i2 . . . Qin−1inQi1in+1Qin+1in . (4.10)

So that the equality holds for (n+ 1)-cycles and the proposition is proven.

We now restrict ourselves to a Markov process with only four states A, C, G, T and prove
the following:

Proposition 10. Given a four states Markov process with strictly positive rate matrix
coefficients, if the conditions:

QαδQδγQγβQβα = QαβQβγQγδQδα, (4.11)

hold for (α, β, γ, δ) equal to (A, G, C, T), (A, G, T, C) and (A, C, G, T), (Fig. 4.2b), then Kol-
mogorov conditions hold for 3–cycles.

Proof. It suffices to multiply the generators for the 4-cycles:

(QATQTCQCGQGA)(QATQTGQGCQCA)(QACQCTQTGQGA) =

(QAGQGCQCTQTA)(QACQCGQGTQTA)(QAGQGTQTCQCA). (4.12)

Simplifying both sides and squaring we get the equivalence for one of the 3–cycles:

QGAQATQTG = QGTQTAQAG. (4.13)

It can be easily seen that exchanging factors between left and right hand side the remain-
ing 3–cycles can be obtained.
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Figure 4.2: All the possible 3–cycles (a) and 4–cycles (b) for a Markov model with four states.

4.4 Kolmogorov conditions for the nucleotide evolution
process

As we have seen, the importance of the Kolmogorov’s conditions comes from the fact that
if it holds and if the process has strictly positive rates, as is the case in the evolutionary
process, then the process is time reversible. Also notable is the fact that, unlike detailed
balance, the Kolmogorov’s condition does not make use of the equilibrium distribution
of the process.

We will now apply the theory to the case of nucleotide evolution, first for a model with
independently evolving sites and then for a model with CpG neighbor dependencies.

The Independent sites case

In order to check in what case the Markov model defined by Eq. (2.33) is also time
reversible we have to consider equalities for the four 3–cycles conditions shown in Fig. 4.2a.
However, substituting the rate matrix into Kolmogorov conditions one can immediately
check that if any three of the four conditions are fulfilled then the fourth holds. That is,
there are only three independent 3–cycles, so in order to derive an IRI we could single out
three of the four possible 3–cycles. Instead we decided to check the equalities on 4–cycles,
as there are only three non-trivial 4–cycles (Fig. 4.2b) and they are all independent. This
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approach is equivalent to the previous one as proven in proposition 9. The process is
time reversible if the following conditions

QαδQδγQγβQβα = QαβQβγQγδQδα, (4.14)

hold for (α, β, γ, δ) equal to (A, G, C, T), (A, G, T, C) and (A, C, G, T).

It is then straightforward to construct indices out of such equations just by taking the
difference of both sides and normalizing it by the sum. We end up with three IRIs:

IRI1 :=
QAGQGTQTCQCA −QACQCTQTGQGA

QAGQGTQTCQCA +QACQCTQTGQGA

IRI2 :=
QATQTGQGCQCA −QACQCGQGTQTA

QATQTGQGCQCA +QACQCGQGTQTA

IRI3 :=
QATQTCQCGQGA −QAGQGCQCTQTA

QATQTCQCGQGA +QAGQGCQCTQTA

. (4.15)

The three IRIs will thus be comprised in the interval [−1, 1] and will be simultaneously
zero if and only if the system under study evolves time reversibly.

We conclude this section noting that, as we already pointed out in the first chapter, evo-
lutionary models traditionally used in the literature, belong to a family of nested models
which originate from the GTR model [33, 55], which assumes the following parameteri-
zation of the rate matrix:

QGTR =


A C G T

A · aπA bπA cπA
C aπC · dπC eπC
G bπG dπG · fπG
T cπT eπT fπT ·

. (4.16)

The four π’s appearing in this matrix define the equilibrium distribution of nucleotides;
only three of them are independent because they are assumed to be normalized. It can
easily be checked by substitution of the parameterization of Eq. (4.16) in Eq. (4.15) that
all three IRIs vanish for the GTR model, which therefore is indeed time reversible. The
same is true for all its nested sub-models, which are mentioned in the introduction. As
expected the GTR model has 9 free parameters. The 12-dimensional parameter space of
the most general model Eq. (2.33) is reduced by 3 dimensions since equating the three
IRI indices to zero yields 3 conditions on the 12 parameters.
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The reverse complement symmetric case

We now specialize the theory to the reverse complement symmetric model, defined by
Eq. (2.42). In general, this model is not time reversible and in this case the Stationarity
Indices have the following simple form:

STI1 = ρGC − πGC
STI2 = ρA − ρT
STI3 = ρC − ρG. (4.17)

It is worth noting that in this case STI2 and STI3 are the unnormalized AT and GC

skews. They depend only on the nucleotide composition of the sequence, and not on the
evolutionary rates. For reverse complement symmetric processes, it can be proven that
once these indices or skews vanish they will stay stationary even if the rate matrix QRCS

changes in time [35]. Therefore the skews can equilibrate even in the presence of reverse
complement symmetric rate variations.

To derive an IRI for the RCS model we substitute the reverse complement symmetric
parameterization in Eq. (4.15). We find that in this case we can check time reversibility
with just one index:

IRI1 :=
r2AGr

2
GT − r2ACr2CT

r2AGr
2
GT + r2ACr

2
CT

, (4.18)

because IRI2 and IRI3 are equal to zero.

The case with neighbor dependencies

To check for the time-reversibility of this model of evolution we should in principle check
the Kolmogorov conditions for cycles with vertices in C, the big configuration space
introduced in Eq. (2.46). However, the generator of the dynamics (Eq. 2.53) permits only
single nucleotide changes at a time and any cycle factorizes and can be decomposed into
cycles changing only one site. Therefore, it is sufficient to check Kolmogorov conditions
on single nucleotide 3–cycles like we did before, leading to the IRI1 for the RCS model. In
addition to that one has to consider the particular configuration in which a C is followed
by a G in the sequence. One example is the 3–cycle CG→ CA→ CT→ CG. In this case the
factorization is still possible but it is necessary to add to the total rate the contribution
which comes from the CpG deamination process. In summary, there are then two IRIs for
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a process with neighbor dependencies:

IRI1 :=
r2AGr

2
GT − r2ACr2CT

r2AGr
2
GT + r2ACr

2
CT

(4.19)

IRICpG :=
r2GT(rAG + rCpG)

2 − (rCT + rrevCpG)
2r2AC

r2GT(rAG + rCpG)2 + (rCT + rrevCpG)
2r2AC

(4.20)

Note that, as expected, in the absence of neighbor dependent processes we have IRI1 =
IRICpG.

4.5 Measurements of STI and IRI in Drosophila

We first measure the STIs and IRI1 for the Drosophila simulans lineage from the time of
the split with Drosophila sechellia until the current time, using Drosophila melanogaster
as the outgroup. Whole genome alignments of the species are freely available on the
Internet [51]. The genomic sequences have been split into 539 tiles corresponding to 50
Kbp long non-overlapping windows along the Drosophila chromosomes. We disregarded
all gaps and masked the regions that were annotated as coding sequence in the Ensembl
database [24]. The remaining nucleotides can be regarded to evolve independently from
each other and without any significant contribution from the CpG decay process [4].

We estimate in each of the 50 Kbp windows all 6 free parameters of the RCS model
in the D. simulans branch. From the inferred substitution rates in each fragment we
have calculated the values of the STIs, thus obtaining the statistical distribution of the
indices along the D. simulans genome (Fig. 4.3). The finite variance in the distribution
of the indices arises as a statistical effect, since we are analyzing finite length sequences
in each window and each of them is a realization of a Markov process. To count how
many window can be assumed to be out of equilibrium we use the χ2-test mentioned in
the Methods section. Since multiple independent tests are performed we have applied an
appropriate Bonferroni correction, dividing the statistical significance level by the total
number of windows. The test does not reject the hypothesis of stationarity in only 82
windows while it rejects it in 457.

Since the majority of tiles is not in the stationary state we also analyzed the distribution
of the IRI1 index. The results are summarized in Fig. 4.4.

We do not present a closed form for the distribution of the IRI1 for the null hypothe-
sis, that of time reversibility, but the simplicity of the index allowed us to simulate the
distribution with little effort. From each window’s inferred rate matrix we constructed
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an approximated version of the original one with the added property of time reversibil-
ity. The construction method uses the fact that any rate matrix Q, with equilibrium
distribution π, can be written in the following way:

Q = D(π)F =


πA 0 0 0

0 πC 0 0

0 0 πG 0

0 0 0 πT



· F12 F13 F14

F21 · F23 F24

F31 F32 · F34

F41 F42 F43 ·

, (4.21)

For a suitably chosen matrix F . The dotted elements are again constrained by the
fact that the sum of the elements in a column of the rate matrix must be zero, Fαα =
−
∑

β 6=α πβFβα.

We now substitute F with its symmetrized version, and obtain a time reversible genera-
tor Q̂ with the following off diagonal elements:

Q̂αβ = πα

[
F + F t

2

]
αβ

, (4.22)

while the diagonal elements are defined as Q̂αα = −
∑

α 6=β Q̂αβ. This generator still has
π as equilibrium distribution.

We have used the symmetrized rate matrix to evolve the present day D. simulans se-
quences contained in each window. We made this in order to simulate evolution under
a time reversible model. We could have used the inferred ancestral sechellia-simulans
sequence as starting point of the evolution, but since ancestral and present day sequences
have about 13 mismatches per 1000 bases this approximation does not affect the following
results in any way.

We have then used the RCS model to estimate again the rates, comparing present day
sequences and their evolved counterparts. As a result we got a second IRI1 distribution
which we have used as null distribution, calling it IRINull. The plot is shown in Fig. 4.4
and as expected it is centered in zero.

We performed a two sample t-test to test the null hypothesis that the distributions of
IRI1 and IRINull have the same mean. The extremely low p-value of 10−15 shows that
there is strong evidence against the null hypothesis. In other words, the process is not
reversible even when the equilibrium distribution is reached.
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4.6 Measurements of IRI in human genome

As a further example we have measured the STI and IRI for the Homo sapiens lineage
using a triple alignment of Homo sapiens, Pan troglodytes and Macaca mulatta as an
outgroup. Whole genome DNA alignments of these species are available from the Ensembl
website [24].

Like in the previous case we have removed all coding regions and all gaps using Ensembl
as a source of annotations. We have split the genome in 2413 windows of 1 Mbp size.
For the analysis of nucleotide substitutions in vertebrates we have to include neighbor
dependencies due to the CpG deamination process and have to use the extended model
introduced before.

Distributions of the STIs are shown in Fig. 4.5. A χ2-test like the one used above for
the human case does not reject the stationarity hypothesis in only 17 tiles and rejects
it in 2396 tiles. Note that we should in principle also check whether the dinucleotide
distribution is stationary. However, since the results show that in the vast majority
of tiles already single nucleotides are out of equilibrium, we disregard such an analysis
here.

For analyzing time reversibility it is necessary to use the two indices IRI1 and IRICpG
introduced in the last part of the Methods section. The resulting plots and statistics are
shown in Fig. 4.6. The same t-test discussed in the previous section for the equality of the
means of IRI1 and IRINull also gives a p-value smaller than 10−15. The IRINull distribution
in this case has a smaller variance then the IRI1 distribution. This is because in addition
to the variance introduced by finite sequence length, as discussed for Drosophila, in the
Human genome one finds an intrinsic variation in rates due to its structured nature [5].
Time symmetrizing the matrix reduces the dimension of the parameter space and as a
consequence reduces heterogeneity in the rates, thus reducing total variance of the IRI1
in the null model.

57



Chapter 4 Testing Reversibility and Equilibrium

STI

F
re

q

STI1

STI2

STI3

−0.1 0.0 0.1

0
.0

0
.1

0
.2

0
.3

0
.4

Figure 4.3: The distribution of the STI1,STI2, and STI3 in the D. Simulans genome. Means
and standard deviations are: STI1 = 0.007 ± 0.034, STI2 = 0.000 ± 0.011, STI3 = 0.000 ±
0.004.
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Figure 4.4: The distribution of the IRI in the D. simulans genome alongside with the distribu-
tion of the IRI for the null model. Means and standard deviations are: IRI1 = −0.204±0.208
for D. simulans and IRI1 = 0.002± 0.197 for the null model.
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Figure 4.5: The distribution of the STI1,STI2, and STI3 in the Human genome. Means and
standard deviations are: STI1 = 0.052± 0.048, STI2 = 0.000± 0.018, STI3 = 0.000± 0.007.
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Figure 4.6: The distribution of the IRI1 and IRICpG in the Human genome and IRI1 for the null
case. Means and standard deviations are: IRI1 = −0.060 ± 0.161, IRICpG = 0.620 ± 0.117
and IRI1 = −0.002± 0.094 for the null model
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Chapter 5

Summary

The aim of this thesis was to present the concepts of stationarity and reversibility in
the modeling of the evolution of DNA nucleotide sequences, and to check whether they
are valid for evolution of real genomes. To this end we have introduced the Stationarity
Indices, STIs, which compare the current nucleotide distribution to the stationary one,
and the Irreversibility Indices, IRIs, which are based on the Kolmogorov cycle conditions
for the time reversibility of a Markov process. The indices can be easily computed once
we have at disposal, using for example a maximum likelihood estimation, the rates of the
process.

We derived explicit expressions of the indices for the general 12 parameters model of
nucleotide evolution with independent sites. It is interesting to note that assuming time-
reversibility, which amounts to setting the IRI indices to zero, defines a 9-dimensional
sub-manifold of the 12-dimensional space of all possible models. This manifold is the one
spanned by the GTR model and its nested sub-models.

We analyzed the analytical formulation of the indices for the reverse complement sym-
metric models. This particular parameterization arises in a natural way when describing
evolution of neutrally evolving sequences. In this case it turns out that both STI and
IRI have a simpler form. In particular one needs only one index, IRI1, in order to test
time reversibility. So imposing the constraint of time reversibility restricts the space of
models to a 5-dimensional manifold in the 6-dimensional space of all the possible reverse
complement symmetric models. We have successively extended the scope of our study to
an evolutionary model which takes into account the CpG decay process, the predominant
substitution process in vertebrates.

This approach based on a set of indices is complementary to the one using a likeli-
hood ratio test, and it has the advantage that it simultaneously assesses stationarity and
time-reversibilty for all branches of a given phylogeny once the rate matrices have been
estimated. On the contrary, a likelihood ratio test requires a comparison of different hy-
potheses on different branches and a new estimation of the parameters for each of them.
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When testing for all combinations the number of likelihood ratio tests required grows
exponentially with the number of branches in the phylogeny.

As an application of the theory we have measured the STI and IRI in two different
species lineages, D. simulans and H. sapiens. Using a sliding window analysis and the
maximum likelihood estimation method we have derived the distributions of STI and
IRI1 for Drosophila, and of STI, IRI1 and IRICpG for human. In both cases we find sta-
tistically significant deviations from equilibrium and time reversibility. In D. simulans,
the values of STI and IRI1 are close to zero, suggesting that it is legitimate to use a time
reversible Markov model in bioinformatics algorithms, for instance in those used for phy-
logenetic reconstruction. However, in the human lineage, we find substantial deviations
from equilibrium and time-reversibility due to the CpG methylation deamination process,
in particular IRICpG ≈ 1. In this case, the lack of equilibrium and time-reversibility is
an important feature of the probabilistic model and consequently should not be disre-
garded.
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Chapter 6

Zusammenfassung

Ziel dieser Arbeit war es, die Bedingungen für Stationarität und Zeitreversibilität in Bezug
auf die Modellierung der Evolution von DNS Sequenzen vorzustellen und zu überprüfen,
ob diese Gegebenheiten bei der Evolution von genomischen DNS Sequenzen zutreffen. Zu
diesem Zweck wurden Statinaritätsindices (STIs) die die derzeitige Nukleotidverteilung
mit stationärer Nukleotidverteilung vergleichen, und Irrevesibilitätsindizes (IRIs), die
auf Kolmogorovs Bedingungen für Zyklen zurückgehen, eingeführt. Diese Indizes können
einfach errechnet werden, sobald die Raten des evolutionären Prozesses bekannt sind,
z.B. durch eine Schätzung mittels Maximum Likelihood Verfahren.

Es wurden explizite Ausdrücke für diese Indizes für das generelle 12 Parameter Modell der
Evolution von DNS Sequenzen ohne Nachbarabhängigkeiten hergeleitet. Es ist interessant
zu beobachten, dass unter der Annahme von Zeitreversibilität die drei IRIs verschwinden
müssen und diese Bedingungen eine 9-dimensionale Untermannigfaltigkeit in dem 12-
dimensionalen Raum aller Modelle aufspannen. Diese Untermannigfaltigkeit ist die des
GTR Modells und aller seiner Untermodelle.

Des Weiteren wurden diese Indizes für Modelle mit einer zusätzlichen Symmetrie, der
reversen Komplementarität, die bei der Beschreibung von neutraler Evolution der dop-
pelsträngigen DNS gegeben ist, hergeleitet. Unter dieser Symmetrie nehmen die Indizes
eine einfachere Form an. Insbesondere gibt es nur noch einen Irreversibilitätsindex. Im
zeitreversiblen Fall wird dadurch eine 5-dimensionale Untermannigfaltigkeit in dem 6-
dimensionalen Raum der reversen komplementen Modelle beschrieben. Darüber hinaus
wurden diese Konzepte auch für die Evolution von DNS Sequenzen mit
Nachbarabhängigkeiten verallgemeinert, wie sie zum Beispiel durch den CpG Methylierungs-
und Deaminationsprozess, der vor allem in Wirbeltieren ein sehr verbreiteter Mutation-
sprozess ist, entstehen.

Dieser Zugang, die Stationarität und Zeitreversibilität anhand von Indizes zu prüfen, ist
insbesondere bei großen phylogenetischen Bäumen einem Likelihood Ratio Test
vorzuziehen, da er eine unabhängige überprüfung dieser Annahmen auf jedem Ast der

65



Chapter 6 Zusammenfassung

Phylogenie zulässt. Ein Likelihood Ratio Test müsste demgegenüber alle möglichen Kom-
binationen berücksichtigen und deshalb exponentiell viel häufiger ausgeführt werden.

Im Rahmen einer Anwendung unserer theoretischen überlegungen, wurden die IRIs und
STIs für die Nukleotidevolution in der menschlichen Linie (Homo Sapiens) und in der
Fruchtfliege (Drosophila Simulans) berechnet. Die Indizes wurden in verschiedenen Re-
gionen aus den Mutationsraten berechnet, welche mittels Maximum Likelihood Methode
gemessenen worden waren. In beiden Spezies fanden wir statistisch signifikante Abwe-
ichungen der Stationarität und Zeitreversibilität. In der Fruchtfliege sind die Abwe-
ichungen klein und die Verwendung von bioinformatischen Methoden, die diese Annah-
men machen, erscheint legitim. In der menschlichen Linie allerdings sind die Abwe-
ichungen substanziell größer, was zuallererst auf die CpG Methylierung und Deamination
zurückzuführen ist. In diesem Falle ist das Nichtvorhandensein von Stationarität und
Zeitreversibilität eine Tatsache, die bei der statistischen Beschreibung und Modellierung
nicht vernachlässigt werden sollte.
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