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1. INTRODUCTION

Synthetic Biology aims at creating new life forms with ben-
eficial properties for chemical, pharmaceutical, or medical
applications (Keasling, 2008; Trosset and Carbonell, 2015)
but also plays a major role in the fundamental research.
The top-down approach of Synthetic Biology, which equips
existing organisms with additional capabilities, has re-
cently proven to be feasible for solving technical problems
in fuel production and drug production (Keasling, 2012).
The complementary bottom-up approach, which tries to
build life-like entities from molecular building blocks, is
still in its infancy, but in the future may have the poten-
tial to provide simple, safe, and well predictable artificial
organisms tailored to certain applications (Schwille, 2011).

Currently, the bottom-up approach is mainly driven by
biophysical groups, who concentrate on mimicking certain
cellular functions like membrane growth, cell division, or
cell motility in experiments. Assembling these functions to
an aggregate unit is the logical next step, but experimen-
tally very challenging. The question is if one can construct
artificial cell-like entities from certain functional devices
in a similar way, as one can construct a chemical plant
from process units. At this point, there is an obvious link
to chemical engineering, systems engineering, and control
engineering (Rollié et al., 2012). Engineering sciences are
used to combine parts to complex systems with certain
well-defined desired properties of the resulting aggregate
system, and, in this sense, are mainly target-oriented. This
could be a nice complement to the insight-driven approach
of natural sciences that strives for understanding a certain
part aspect in full detail.

This work uses a simple example of an artificial biolog-
ical system to discuss possible engineering contributions

to bottom-up Synthetic Biology. The idea is to define a
certain desired functionality of the artificial system, to
select building blocks that may fulfill the desired tasks
and to assemble the models of the building blocks to a
simple in-silico protocell. There are experimental results
and mathematical models for the separate building blocks
in literature, but the aggregate system has not been im-
plemented in experiments yet. The aim of the theoretical
study is to see if the selected building blocks are able to
work in an ensemble, or if additional functionalities like
control mechanisms are needed.

It should be noted that detailed whole-cell models built up
from submodels exist in literature for real-life biological
organisms, e.g. Karr et al. (2012). However, due to the
complexity of biological organisms, these models tend to
be very large and offer only a limited accessibility to
theoretical analysis. The hope is that artificial biological
systems are much simpler in their behavior, and that hence
their system dynamics can be described and predicted
more easily by smaller sets of mathematical equations.

2. STRUCTURED MODEL OF AN ARTIFICIAL
CELL-LIKE ENTITY

The exemplary design task considered in the following
is the construction of an entity that has the ability to
grow, to determine the time point when its size has
doubled compared to the original value, and finally to
divide into two daughter cells. For this purpose, at least
three different functional modules are needed. The first
one is a container that forms the system boundary and
grows, while its building blocks are generated inside the
system. The second functional module is a length sensor
that determines the position where the cell should divide.
The third module is a divisome that performs the cell

6th IFAC Conference on
Foundations of Systems Biology in Engineering
October 9-12, 2016. Magdeburg, Germany

Copyright © 2016 IFAC 1

Bringing the parts together: Steps towards
an in-silico protocell

Eugenia Schneider ∗ Jakob Schweizer ∗∗ Michael Mangold ∗∗∗

∗Max-Planck-Institute for Dynamics of Complex Technical Systems,
39106 Magdeburg, Germany (e-mail:
eschneider@mpi-magdeburg.mpg.de).

∗∗Max-Planck-Institute for Dynamics of Complex Technical Systems,
39106 Magdeburg, Germany

∗∗∗Max-Planck-Institute for Dynamics of Complex Technical Systems,
39106 Magdeburg, Germany (e-mail:
mangold@mpi-magdeburg.mpg.de)

Abstract: This article focuses on a system theoretic approach to synthetic biology, and in
particular on the construction of a protocell model. The questions addressed here are: Which
parts of functional modules are required to describe a protocell and which design methods are
needed for self-replicating systems. We describe a model for an in-silico protocell that combines
experimentally validated biological subsystems with theoretical studies.

Keywords: systems engineering, system analysis, synchronization, synthetic biology, bottom-up
approach, artificial cell

1. INTRODUCTION

Synthetic Biology aims at creating new life forms with ben-
eficial properties for chemical, pharmaceutical, or medical
applications (Keasling, 2008; Trosset and Carbonell, 2015)
but also plays a major role in the fundamental research.
The top-down approach of Synthetic Biology, which equips
existing organisms with additional capabilities, has re-
cently proven to be feasible for solving technical problems
in fuel production and drug production (Keasling, 2012).
The complementary bottom-up approach, which tries to
build life-like entities from molecular building blocks, is
still in its infancy, but in the future may have the poten-
tial to provide simple, safe, and well predictable artificial
organisms tailored to certain applications (Schwille, 2011).

Currently, the bottom-up approach is mainly driven by
biophysical groups, who concentrate on mimicking certain
cellular functions like membrane growth, cell division, or
cell motility in experiments. Assembling these functions to
an aggregate unit is the logical next step, but experimen-
tally very challenging. The question is if one can construct
artificial cell-like entities from certain functional devices
in a similar way, as one can construct a chemical plant
from process units. At this point, there is an obvious link
to chemical engineering, systems engineering, and control
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division by placing a contractile ring in the middle of the
cell. In reality, at least one additional functional module
would be needed for ATP regeneration as an energy supply.
This is neglected here. For simplicity, it is assumed that
the ATP level is always high enough to drive the required
reactions. The models of the single modules presented in
the following are largely taken from literature and adapted
to our needs. The combination of the three parts to an
artificial cell model is, to our knowledge, something new.

2.1 Expanding container

Mavelli et al. (2014) suggest a simple model for the growth
of a vesicle or expanding container shown in Fig. 1.

Fig. 1. Functional module-tube shaped membrane. P is
a precursor, I is an enzyme, S is the surfactant and
W is the waste (Mavelli et al., 2014). x denotes the
length of the cylindric compartment.

A precursor P is metabolized by an enzyme I into a
surfactant S and a waste W . The surfactant S is included
along the entire membrane and increases its surface by
a certain amount. While Mavelli et al. (2014) formulate
a well-mixed model, we extend the approach to an one-
dimensional spatially distributed system, assuming that
our artificial cell is tube shaped with a variable length
x, but a constant radius R. This assumption is mainly
made to simplify the numerical computations, but is not
unrealistic for some rod-shaped bacteria. A mass balances
of the species P , S, and I lead to the balance equations
(1)-(3):

∂(R2P )
∂t

+ ∂(R2Pẋ)
∂x

= −∂(R
2jP )
∂x

−R2rS +

2R℘(Pex − P ) (1)

∂(R2S)
∂t

+ ∂(R2Sẋ)
∂x

= −∂(R
2jS)

∂x
+R2rS −R2rup (2)

∂(R2I)
∂t

+ ∂(R2Iẋ)
∂x

= −∂(R
2jI)

∂x
(3)

The concentration change of the precursor P depends
on the precursor mass diffusion flow jP , the surfactant
formation rate rS , and the membrane permeability of the
precursor ℘. R is the radius of the cylinder and Pext is
the extracellular precursor concentration. The surfactant
formation rate rS is calculated as follows:

rS = kIP, (4)

where k is the rate constant for the surfactant formation.
The term ẋ in the equations (1)-(3) denotes the local
length change due to growth of the cell; it has a dilut-
ing effect on the concentrations. Similarly, the surfactant

concentration S in the bulk of the cell depends on diffu-
sive transport jS , the formation rate rS , and an uptake
rate rup, which describes the transfer of surfactants to
the membrane; rup depends on an equilibrium surfactant
concentration Seq and is given as:

rup = kup(S − Seq); (5)

kup is the rate constant for the surfactant uptake into the
membrane. The concentration of the enzyme I changes
locally due to diffusion, but in a growing cell also glob-
ally due to dilution caused by increasing cell volume.
For unlimited growth, the dilution effect would have to
be compensated by synthesizing I inside the cell or by
providing additional I from outside. This is not done here.
Instead, the initial value of I in the simulations is chosen
sufficiently high to guarantee surfactant formation until
the cell size has at least doubled.

It is assumed that the surfactant S built into the mem-
brane contributes to area of the membrane with a specific
surface αs. Calculating the surface of the cylinder leads to
the relation:

2
∂R

∂t
+ 2∂(Rẋ)

∂x
= αS

2
R2rup (6)

which is used to determine the local growth rate ẋ for a
given radius R.

2.2 Length sensor/positioner

The Min protein system that is an important mechanism
in the cell division of E.coli is known to exhibit spatial
concentration patterns on membrane surfaces. The pattern
formation capability in combination with the property of
MinC to prevent proteins from attaching to the membrane
is supposed to control the cell division of E.Coli : A
contractile protein ring is placed in the middle of the cell
membrane, where the time averaged concentration of Min
proteins on the membrane has been shown to be lowest
(Huang et al., 2003; Loose et al., 2008; Schweizer et al.,
2012). Fig.2 shows a qualitative model of the interaction
between the Min proteins and the membrane surface.
MinD proteins labeled by the energy rich ATP molecule
are able to attach to the membrane. This attachment
occurs primarily on membrane regions where already other
MinD proteins are attached. The membrane associated
MinD protein recruits the MinE protein and a complex
formation results. The MinE protein in the complex
causes the hydrolysis of the bound ATP molecule, the
detachment of the MinD ∶ MinE complex from the
membrane and the detachment of the MinE protein from
the MinD protein. Finally, the MinD protein is situated
in the cytosol binding the less energy rich molecule ADP
and the cycle can start again.

The intracellular concentration changes of the Min pro-
teins are calculated by the balance equations (7)-(11)
and the reaction kinetics characterized by the equations
(12)-(15). The concentration changes of the intracellular
Min proteins depend on the mass diffusion flows jDADP

,
jDATP

, jE and jDADP
as well as the reaction kinetics

r1, r2, r3 and r4 describing the formation of cytosolic
MinDADP , membrane bound MinDATP ∶ E, membrane
bound MinDATP and cytosolic MinDATP , respectively.
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Fig. 2. Functional module-length sensor/positioner is rep-
resented by the energy driven MinE-MinD-protein
cycle (Huang et al., 2003). r1: ADP that bounds
to the intracellular MinD protein is replaced by
the more high energy molecule ATP . r3: MinDATP

bounds to the membrane primarily at locations where
already other MinDATP proteins are bound. r2: The
intracellular protein MinE bounds to a membrane
associated MinDATP and trigger the ATP hydrolysis
into ADP and a phosphate, the detachment of the
MinE from MinD and the detachment of MinD
from the membrane (r4).

The membrane bound components are denoted by ∗ in the
balance equations:

∂(R2DADP )
∂t

+ ∂(R2DADP ẋ)
∂x

= −∂(R
2jDADP

)
∂x

−R2r1 + 2Rr4 (7)

∂(R2DATP )
∂t

+ ∂(R2DATP ẋ)
∂x

= −∂(R
2jDATP

)
∂x

+R2r1 − 2Rr3 (8)

∂(R2E)
∂t

+ ∂(R2Eẋ)
∂x

= −∂(R
2jE)
∂x

+2Rr4 − 2Rr2 (9)

∂(RD∗ATP )
∂t

+ ∂(RD∗ATP ẋ)
∂x

=Rr3 −Rr2 (10)

∂(RD∗ATP ∶ E)
∂t

+ ∂(RD∗ATP ∶ Eẋ)
∂x

=Rr2 −Rr4 (11)

r1 = k1DADP (12)

r2 = k2D∗ATPE (13)

r3 = (k31 + k32(D∗ATP +D∗ATP ∶ E))DATP (14)

r4 = k4DATP (15)

In contrast to experimental and theoretical studies in
literature, which assume a fixed space domain, the balance
equations (7)-(11) describe the Min concentration waves
on a membrane with varying length. As discussed above
for the surfactant forming enzyme I, the cell growth has
a diluting effect on the Min proteins. It is found in
simulations that this dilution destroys the Min patterns
rather quickly. To preserve the patterns, a continuous
synthesis or dosage of Min proteins is required. The
numerical results in section 2.5 will show that the patterns
survive the cell growth, if MinD and MinE are fed in
a spatially constant way along the whole length of the

tube. We assume that the feeding is governed by a simple
proportional controller. How such a proportional controller
could be implemented experimentally in an artificial cell,
is an open question. The introduction of a controller
replaces equations (7) and (9) by equations (16) and (17),
respectively:

∂(R2DADP )
∂t

+ ∂(R2DADP ẋ)
∂x

= −∂(R
2jDADP

)
∂x

−

R2r1 + 2Rr4 +
Kg(D′ADP −DADP ) (16)

∂(R2E)
∂t

+ ∂(R2Eẋ)
∂x

= −∂(R
2jE)
∂x

+ 2Rr4 − 2Rr2

+Kg(E′ −E), (17)

with the controller gain Kg, the desired concentrations of
MinDADP andMinE (denoted byD′ADP and E′) and the
corresponding average concentrations of MinDADP and
MinE (denoted by DADP and E):

DADP = ∫
(πR2(DADP +DATP ))dx

∫ πR2 dx
+

∫(2πR(D∗ATP +D∗ATPE))dx
∫ πR2 dx

(18)

E = ∫(πR
2E + 2πRD∗ATPE)dx
∫ πR2 dx

(19)

2.3 Divisome

The third functional module that we consider is the
divisome, whose task is to cut the cell into two halves
by adding a contractile ring to the middle of the tube
shaped membrane. There are different options for such a
contractile ring. One possibility is the actin myosin system,
which is involved in many motility, deformation and signal
transduction processes of the cell (Zaidel-Bar et al., 2015).
Myosin is a motor protein, which converts the chemical
energy from the energy rich ATP molecule to mechanical
energy (Cooper, 2000). Myosin attaches to actin fibers,
crawls along the fibers and contracts them. An alternative
approach for an artificial divisome might be the FtsZ
protein, which is known to play a role in cell division and
is described as being able to contract by some authors (Li
et al., 2007; Surovtsev et al., 2009).

In our mathematical model of the divisome module, we
assume that there is some species Z that has the ability
to contract and that preferably attaches to the membrane
at places where the concentration of Min proteins is low.
The model equations are derived from models for the actin
myosin system by Lewis et al. (2014); George et al. (2013).
We denote the concentration of the contractile protein in
the cytosol as Z, and the membrane bound contractile
protein as Z∗. Mass balances for both species result in
equations (20) and (21):

∂(R2Z)
∂t

+ ∂(R2Zẋ)
∂x

= −∂(R
2jZ)

∂x
− 2Rr5 (20)

∂(R2Z∗)
∂t

+ ∂(R2Z∗ẋ)
∂x

= −∂(RvZ∗)
∂x

+Rr5 (21)
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The velocity v in the equation (21) denotes the move-
ment of Z∗ molecules on the membrane in x direction.
The preference of Z to bind to membrane sites that are
not occupied by Min molecules is captured by a simple
adsorption rate expression r5:

r5 = k5Z(Mmax −D∗ATP −D∗ATP ∶ E) − k5keqZZ∗ (22)
We assume that the membrane has a certain number of
binding sites Mmax which can be taken either by Min
proteins or by Z∗ molecules. The sites not occupied by
Min proteins are free for the attachment of the contractile
ring Z. k5 is the rate constant of adsorption of the Z ring
at the membrane and keqZ is a constant that describes the
equilibrium state of Z ring attachment.

After the attachment to the membrane the Z ring causes
the constriction of the cell. The Z ring formed from actin
fibers is regarded as a viscoelastic and contractile gel
(George et al., 2013; Lewis et al., 2014) and is calculated
by the momentum balance:

∂ρv

∂t
= −∂ρv

2

∂x
−
∂(−η ∂v

∂x
− σC + σe)
∂x

, (23)

where ρ represents the density of the Z ring fibers, v the
velocity of the Z ring relative to the membrane and η the
shear viscosity of the Z ring fibers. The contractile stress
tensor σC is calculated as follows:

σC = ψZ∗2exp(−
Z∗

Zsat
), (24)

where ψ is the constant for contractile stress and Zsat is the
saturation concentration of the Z ring. The elastic stress
tensor σe is calculated by equation (25) using the elastic
modulus constant g:

σe = gZ∗(e − 1)) (25)

The volumetric strain e is calculated by the following
elasticity equation:

∂Re

∂t
+ ∂Reẋ

∂x
= −∂Rve

∂x
−Rλ(e − 1), (26)

where λ is the relaxation rate of the Z fibers. The con-
tractile stress tensor σC causes a radial contraction of
the cell membrane. In principle, the resulting change of
shape could be computed from a minimum bending energy
model (Seifert et al., 1991; Surovtsev et al., 2009). In
this work, we take a much simpler approach. We assume
that the tubular membrane possesses a certain stiffness
and does not change its radius, as long as σC is below a
certain threshold σbuckle. If σC exceeds this threshold, the
membrane buckles, and its radius decreases quickly. The
change of the radius during the constriction of the cell is
defined by following equation:

∂R

∂t
+ ∂Rẋ

∂x
= −∂R

∂x
+ 1

Tbuckle
(rref −R) (27)

Tbuckle is the time constant of buckling and the rate
constant rref is calculated depending on the value of the
contractile stress tensor σC :

rref = {
R0 for σC < σbuckle

Rbuckle for σC ≥ σbuckle
(28)

R0 and Rbuckle denote the membrane radius in relaxed
state and after buckling, respectively.

2.4 Systemtheoretic representation of the coupled system

The modular nature of the cell model is illustrated by
Fig. 3, showing the information flows between the three
subsystems. The membrane module determines the shape
of the cell and passes the geometrical information to the
positioner module. Internally, the positioner module is
represented by the Min concentration profiles and the
corresponding spatial patterns, but the only output of
the module is the desired position of the contractile ring.
This output goes to the divisome module. The divisome
module provides a contractile stress tensor as an output
that couples back to the membrane module.

Fig. 3. Coupled system consisting of three modules: mem-
brane, positioner and divisome.

On this abstract level, each of the three functional modules
may be replaced by another subsystem providing the
same functionality. For example, the Min patterns are not
essential for the function of the positioner module, if one
can find some other mechanism that places the divisome in
the middle of the cell. There is an analogy to the design of
chemical plants, where one finds the need for a process unit
“separation”, but may decide later, if this process unit is
implemented as a distillation column, a chromatographic
adsorption, a membrane device etc.

2.5 Simulation results

By coupling the shown subsystems we achieve a descrip-
tion of a growing cell like entity which is able to constrict
in the middle of the cell and finally to divide.

Fig. 4 shows the coupled system of positioner and mem-
brane. One can see that the tube becomes longer in the
course of time. The plots show moving waves of the Min
proteins on the membrane (multiple color bars), where
high levels of the MinDATP ∶ MinE complex attached
to the membrane are represented by red color and the low
levels are blue. The central part of each plot represents the
cytosol with the relative concentration of MinE protein
(red line) and the relative concentration of MinDADP
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(blue line). It is obvious that the oscillations of the Min
proteins stop after a certain time due to the dilution of the
Min proteins.

Fig. 4. Simulation results of coupled system of membrane
and positioner. The upper and lower multiple color
bars of each plot show the membrane bound Min
proteins. High levels of Min proteins are represented
by dark red color and low levels by dark blue. In the
central area of each plot the cytosolic components
concentrations are shown, MinE protein by red line
and MinDADP protein by blue line.

To avoid the dilution of the Min proteins we implemented
a coupled system of controlled positioner described by
equations (16)-(19) and the membrane (Fig. 5). Here
the controlled supply of Min proteins occurs, so the
oscillations can be maintained.

Fig. 5. Simulation results of coupled system of membrane
and controlled positioner. The membrane bound Min
proteins are shown by the upper and lower multiple
color bars in each plot. The dark red color represents
high concentrations of Min proteins and dark blue
color represents low concentrations of Min proteins.
The central area of each plot demonstrates the cytoso-
lic components concentrations, red line is the MinE
protein and blue line MinDADP protein.

Additionally we coupled the membrane, positioner and the
divisome. Fig. 6 shows the simulation results. One can see
the moving waves of the Min proteins on the membrane.
At the middle area of the tube there is a low level of
the MinDATP ∶ MinE complex, so Z ring formation is
possible. Z ring accumulates on the membrane, which
is represented by green increasing peaks. The cytosol is
represented in the central area of each plot as before
with relative concentration of MinE protein (red line),
relative concentration of MinDADP (blue line) and the
concentration of the cytosolic Z (green line).

Fig. 6. Simulation results of coupled system of membrane,
positioner and Z ring. The multiple color bars repre-
sent the membrane bound Min proteins. High con-
centrations of Min proteins are dark red colored and
low concentrations dark blue. The cytosolic compo-
nents concentrations are shown in the interspace of
the multiple color bars, MinE protein by red line,
MinDADP protein by blue line and the cytosolic Z
by green line. The membrane bound Z∗ is represented
by the green peaks.

Fig. 7 shows the results of the implementation of radial
constriction. It becomes apparent here that the membrane
is able to constrict at any location. Thus the next step
will be the controlled constriction in the middle of the
tube with any necessary conditions for the progress of the
constriction until cell division.

The implementation of the described model was done in
ProMoT/DIANA (Ginkel et al., 2003; Mangold et al.,
2014).

3. CONCLUSION

A model of a prospective artificial cell has been con-
structed from parts described by experimentally validated
submodels. It turns out that throwing just together com-
ponents for containment, vesicle growth, and division is
not sufficient to obtain a reproducing cell. Instead, the
approach reveals deficiencies of the assembled system that
may be remedied by adding appropriate regulating in-
stances. The simulation results of the artificial cell allow
the formulation of control tasks to specify these regulators.
In the considered example, the identified control tasks
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Fig. 7. Simulation results of coupled system of membrane
and Z ring. The membrane bound contractile protein
Z∗ is represented by the green peaks that invaginates
and constricts the membrane.

are (i) to prevent the depletion of enzyme I, (ii) to keep
the Min concentrations on a certain level, and (iii) to
synchronize the growth of the tube shaped membrane and
the growth of the contractile ring. Currently, the simulated
assembled system does not contain solutions for these
tasks that can be implemented in experiments, but it may
give some indications how these solutions should look like;
e.g. it is found that a spatially constant dosing of Min
proteins suffices to preserve the pattern formation, more
sophisticated feeding strategies are not required. A weak
point of the presented model is that energy consumption
and energy supply are completely ignored at the moment.
Adding an energy module should be the next step towards
a more realistic model of an artificial cell.
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