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Zusammenfassung

In dieser Masterarbeit wird eine vollständig orts- und zeit-aufgelöste Beschrei-

bung von Quantenelektrodynamik (QED) vorgestellt. Der Ansatz basiert auf dem

Hamiltonian im Ortsraum und ermöglicht, den gesamten (aber trunkierten) Fock-

raum der Theorie aufzubauen. Somit ist dieser Ansatz grundsätzlich nicht-perturba-

tiv. Ableitung der diskretieierten Form des Hamiltonians erfolgt durch sehr allgemei-

nen Methoden, die sich leicht auf andere Quantentheorien übertragen lassen. Somit

dient diese Arbeit auch der Vorstellung einer Diskretisierungs-Methodik. Um die

Differentialoperatoren der Gleichungen zu approximieren, kommen zwei verschie-

dene Techniken zum Einsatz, die verglichen werden: Finite-Differenzen sowie eine

Fourier-Methode. Dabei werden die Differentialoperatoren innerhalb der Fourier-

Methode explizit aus der sogenannten diskreten Translationsgruppe mit Hilfe von

gruppentheoretischen Techniken abgeleitet. Um das Framework zu testen, wurden

Rechnungen in einem sehr simplen 1-Mode-2-Site Modell durchgeführt, die in al-

len untersuchten Beispielfällen gute Ergebnisse liefern. So kann zum Beispiel der

Übergang zwischen QED und verschiedenen Grenzwerten anhand der Variatio-

nen des Energiespektrums dargestellt werden. Der nichtrelativistische, der starke

Kopplungs- und der schwere Fermionen-Limes werden explizit gezeigt. Dabei er-

laubt es das Modell, die verschiedenen Beiträge des Hamiltonians während diesen

Übergängen separat zu betrachten und ihr Wechselspiel zu analysieren. Bei der

Variation des Gitter-Abstandes zeigen sich Unterschiede zwischen beiden Diskreti-

sierungsmethoden. Diese werden wichtig für kleine Abstände, was ein Zeichen für

eine Verbindung zu Ultraviolett-Divergenzen ist. Schließlich erlaubt das Framework

die explizite Untersuchung von Symmetrien und der Block-Struktur des symmetri-

sierten Hamiltonians. Das Potenzial des Modells für weitere Forschungsaktivitäten

wird im Ausblick diskutiert.
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Abstract

In this thesis, we present a fully space- and time-resolved numerical approach

to quantum electrodynamics (QED). It approximates the Hamiltonian in real-space

and is capable to build the complete (truncated) Fock space of the theory. It is by

construction non-perturbative. We show the making of such a model and hence show

a general discretization method for quantum field theories. We apply two different

discretization methods, namely finite-differences and a Fourier method and com-

pare them. In particular, the Fourier method is explicitly derived by the techniques

of group theory. The discrete differential operator is deduced as a representation

of the discrete translation group. We were able to make some proof-of-principle

calculations in a very simple 1-mode-2-sites model that exhibit reasonable results

in all analyzed cases. We visualize the transition between the full energy spec-

trum of QED and some limit cases: non-relativistic, the strong-coupling, and the

heavy-Fermion limit. Our framework also allows for visualizing the interplay of the

different contributions of the Hamiltonian within the transition. When we vary the

spacing of the grid, we observe that both our discretization methods differ strongly

for small spacings. This is probably connected to ultraviolet divergences and may

be a starting point for the investigation of renormalization issues. Finally, we were

able to analyze symmetries and the block-structure of the symmetrized Hamilto-

nian. The potential of the framework for further research is eventually discussed in

the outlook.
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1 Introduction

In this thesis, we present a fully space- and time-resolved numerical approach to quantum

electrodynamics (QED). It approximates the Hamiltonian in real-space and is capable

to build the complete (truncated) Fock space of the theory. In this sense, we construct

exact solutions as mentioned in the title. In the following, we explain our motivations to

develop such a model and give a short guideline through the work.

First of all, we want to emphasize that the techniques that are presented in this work are

very general. They are applicable to any kind of quantum field theory and in this sense,

this is more a technical work about discretization methods in quantum field theory and

QED is an example of application. Consequently, our numerical studies are not about

new topics, but they are rather proofs of principles. The main motivation behind the

work was to investigate discretization from a physical point of view. Therefore, we try to

look at the necessity of discretization not only as a mathematical but also as a physical

problem. This leads to our main research question, which could be formulated as “what

is the influence of the discretization on the ingredients of a physical theory: equations of

motion, spinor-wave fields and symmetries.”

Nevertheless, we needed to apply the method on a theory, and we choose quantum electro-

dynamics (QED). This is convenient for many reasons. QED is a fundamental quantum

field theory, so there is no other theory that describes the electromagnetic interaction

more precisely.1 Consequently, it is a good starting point for such a fundamental analysis

like ours. But at the same time QED is the one of the simplest quantum field theories

with “only” Abelian gauge invariance U(1). We do not have to complicate the model

by the treatment of non-commutating gauge-Bosons. Most important for our choice is

probably the range of applicability of QED: the whole chemistry, molecular and atomic

physics, solid state physics, plasma physics and even the physics of fluids and gases are

“only” special cases of QED. It is a very complex theory and we reserve for its proper

introduction to the whole first chapter 2.

Of course, in many situations it does not make sense to see, for example, chemistry as

special case of QED. Most of the relativistic effects do not play a role, and often such

limit cases are mathematically even more consistent and form a better point of view. But

still there are relativistic effects that survive these limits. The most prominent example

is undoubtedly the electron spin. It is an inherent property of fields on relativistic space-

time, but not of the ones of Euclidean space. Hence, we need to include it manually in

non-relativistic theories. Here we arrive again at our first research question: If symmetry

is directly connected to such important properties like spin, what is the consequence for

1 Although there are certain energy scales, where other interactions have a non-negligible influence on
QED phenomena.
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the corresponding symmetries of a discretized theory?

This of course is not new, and we know already a lot of effects that are due to the dis-

cretization. For example the Fermion-doubling problem.2 What could we contribute with

our method? Discretization is usually considered as a necessary tool to solve equations

on the computer. Typically, all derivations are made as far as possible by means of

the continuous theory and only the last step is the discretization, that then introduces

some errors. Hence, another of our research questions is, “whether it matters, on which

level the discretization takes place.” Is for example the non-relativistic limit of a discrete

QED-Hamiltonian the same as the discrete Pauli Hamiltonian?

In terms of the development of approximations to quantum theories, this can be very

important. Especially mathematical rigorous proofs become substantially easier on a

discrete lattice. For example, in time dependent density functional theory there is the

very important theorem of v-representability that, so far, was only possible to proof

rigorously on a lattice. As we cannot recapture density functional theory here to explain

this example, we instead refer to the original publication by Farzanehpour and Tokatly

[2012]. Instead, we want to point out the crucial point in the proof: the operators in the

Hilbert space of the discretized theory become bounded, which simplifies the mathematical

description enormously.

Additionally, our approach represents a conceptually new way to look at quantum electro-

dynamics. Typically, QED is solved perturbatively in scattering theory, so only in orders

of the interaction strength. But the number of known effects that cannot be described so

is constantly increasing with the experimental access to higher and higher energy scales.

But even very basic physical settings like the ground state of a system are not describable

by scattering theory. Our model with space- and (theoretically) time-resolution instead

is per definition a non-perturbative theory. It is a Hamiltonian-based approach, which

is not common in treating QED. We exploit the advantages of the canonical quantiza-

tion procedure that typically is used for either non-relativistic or non-interacting theories.

Furthermore, we introduce the field discretization by means of second quantization. This

is shown in chapter 3.

In contrast to most of the other approaches, our model is defined on a real-space grid. In

our opinion, this has two big advantages: First, probably most physicist would agree on

the statement that real-space is most intuitive. Nevertheless most of quantum simulations

are done in the reciprocal space and afterwards have to be Fourier-transformed for a good

visualization. The tools of our approach could be applied to other theories to avoid such

extra calculations.

Second, we use position space because we have the capabilities to do so. We actually

can investigate generally the role of such representations of a quantum theory. On the

2 See for example Frezzotti and Rossi [2004]

2



continuous level, the representations of any operator by any complete basis are equivalent.

But in approximated and especially discretized theories, this is for sure not true anymore.

One very interesting example is the photon position operator. Due to the vanishing photon

mass, it is not possible to construct a meaningful operator, that measures the position

of a photon [Bialynicki-Birula and Bialynicka-Birula, 2009]. This is the main argument

why photons are usually represented in the reciprocal space. However, on a lattice this

situation changes. Due to the inherent bandwidth-limitations, it is of course possible to

say, whether a photon is on a certain grid point. Only when we want to resolve this point

with arbitrary precision, the operator is not well-defined anymore.

Our last research question concerns the discretization method itself. In fact, there are var-

ious possibilities to discretize a differential equation and they have all different advantages

and disadvantages. Consequently, there is for sure a difference between the techniques

and the questions is, whether they differ crucially for any important parameter range. For

quantum mechanical simulations, the most important techniques are finite-differences and

Fourier transforms [Agarwal and O’Regan, 2008]. After showing in chapter 4 the appli-

cation of finite-differences according to the most common method, we show its numerical

results in chapter 5. We devote chapter 6 to a second method, which is a type of a Fourier

method. Crucially, we derived the latter from a very untypical, but physically much more

promising starting point. We tried to think about discretization in a more fundamental

way and ended up at the symmetry interpretation of QEDSchwichtenberg [2015]. From

this point of view, the most fundamental level of a relativistic quantum field theory is

its symmetry. QED is a U(1) gauge theory on Minkowski-space that is defined by the

Poincaré symmetry group. And indeed, all the ingredients of the equations of QED and

even their form can be deduced from representation theory [Niederer and O’Raifeartaigh,

1974].3 We derived the form of the discrete differential operators as representations of

discrete symmetry operators. And it turned out, that this is equivalent to the Fourier

method.

We eventually discuss the numerical results of the Fourier method and especially its

comparison to the finite-differences method in chapter 7.

We complete the thesis with a conclusion in chapter 8 and in chapter 9, we give a little

outlook on possible future continuations and new research topics.

3 A quantum theory also needs further postulates, but the fundamental spinor-fields and their (classical)
equations of motion are deducible from the symmetries.
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2 Quantum Electrodynamics

Although this thesis offers rather general considerations about the discretization of quan-

tum theories, the main focus in a physical sense is on Quantum Electrodynamics (QED),

which we want to introduce in this chapter. We first give an overview about the theory, its

mathematical classification and the problems of solving interacting quantum field theories

like QED in section 2.1. Because of these problems, we have to discuss the properties of

QED always under certain approximations.

We present a choice of such approximations in the second section (2.2). We introduce

propagator theory as an example for a perturbative approach to QED in subsection 2.2.1.

The corresponding solutions are derived in orders of the interaction strength, which is

sufficient to describe a huge class of experiments. We mention the most important prob-

lems that have to be dealt with and discuss the limits of such approximations (subsection

2.2.2). Building on that, we shortly introduce lattice gauge theory in subsection 2.2.3.

This is an important example of a non-perturbative approach. The last subsection (2.2.4)

is about another non-perturbative approach, which is also a lattice theory but does not

explicitly preserve gauge invariance. The focus here is on space- and time-resolved studies.

In the last section 2.3, we present the symmetries of QED. To do this properly, we in-

troduce group theory in the first subsection 2.3.1. It is the mathematical framework to

treat symmetries. Then we discuss Poincaré transformations (subsection 2.3.2) and gauge

invariance (subsection 2.3.3) as the defining symmetries of QED.

2.1 Introduction to QED

Quantum electrodynamics describes the interaction between photons, electrons, and posi-

trons on a full quantum mechanical level. Its corresponding phenomena are everywhere

present on earth and even very important on astronomic scales. In fact, electromagnetism,

optics, molecular physics, chemical reactions, solid-state physics, the physics of plasmas,

and fluids can all be regarded as special cases of QED. Also in the theories of other

interactions, QED plays an important role. It is more or less the only “measurement

instrument” that man have because we see and feel on the basis of electric and magnetic

forces [Bia lynicki-Birula et al., 2013]. Historically, QED was the first quantum field theory

and it achieved firstly full consistence between the theory of special relativity and quantum

mechanics. Consequently, there is much to say about it and this section only briefly

summarizes the main concepts and the most important issues for subsequent parts. For a

very intuitive introduction to QED, see the books of W. Greiner: Greiner and Reinhardt

[2003] and Greiner et al. [2013], which also were often consulted to write this thesis. For

a more exhaustive presentation of the topic, there is for example the book of Bia lynicki-

Birula et al. [2013]. It explains the problems of the formulation of QED much better as

4



2.1 Introduction to QED

we could and so we want to conclude this introduction by summarizing this.

The problem in introducing QED is that there is no clear way to describe it, especially

because QED is not complete. The postulates to define QED are still not proved to be

consistent or unique. However, certain approximations of the theory allowed for the most

precise theoretical predictions in the history of physics. Therefore, QED constitutes a

“programme rather than a closed theory” [Bia lynicki-Birula et al., 2013]. It is based on

two mathematically well-defined pillars. First, the quantum theory of electrons interacting

with external classical electromagnetic fields and second, the theory of quantized Maxwell

fields that interact with classical currents and charge densities. Combining both leads to

so many difficulties, that there are many different formulations of QED. They all agree

with respect to their numerical results but differ drastically in terms of mathematics. No

theory could be derived with satisfactory mathematical rigor so far. One always needs

somehow heuristic arguments. In this introduction, we present only the more or less

unquestioned (mathematical) framework and the most important problems that arise in

terms of the formulation of the full theory.

2.1.1 Definition of the Framework

In this subsection, we want to introduce the basis of quantum electrodynamics. It is built

on the theory of Dirac-electrons coupled to external (classical) electromagnetic fields and

the theory of Maxwell fields coupled to external (classical) charge currents. After intro-

ducing both of them shortly, we sketch how their combination in a proper mathematical

framework leads to quantum electrodynamics. The main references are Greiner and Rein-

hardt [2003] and Bia lynicki-Birula et al. [2013]

Dirac formulated already in 1928 the quantum theory of relativistic electrons. The agree-

ment between relativistic principles and quantum mechanics implies the introduction of

Dirac-spinors ψ that describes not only electrons with their possible spin states but also

positrons, their antiparticles. The free Dirac equation can be coupled in a mathematical

consistent way to an external vector potential Aµext
4

(i~γµ∂µ −mc)ψ = eγµA
µ
extψ. (1)

Here i denotes the imaginary unit, ~ the Planck constant, e the electron charge, m the

electron mass, c the velocity of light, and the γµ are the Dirac matrices that are defined

by their algebra5

γµγν + γνγµ = 2gµν ,

4 Minkowsi 4-vectors are denoted by a greek index. Their mathematical properties can be found in
any standard textbook, for example in Gourgoulhon [2013].

5 An explicit form is given in equation (61).
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2.1 Introduction to QED

where gµν = diag(−1, 1, 1, 1) is the metric tensor in Minkowski space. ψ̄ is the metric

dual to ψ

ψ̄ = ψ+γ0. (2)

We do not recall the general postulates of a quantum theory here; for an in-depth discus-

sion of the theoretical framework see [Bia lynicki-Birula et al., 2013, ch.1, p.5]. We just

mention that one can apply a quantum mechanical interpretation on ψ and its canonical

momentum ψ+, because the inner product ψ+ψ has the properties of a probability density.

Specifically, the canonical formalism of the quantization of the free theory is summarized

later in subsection 3.2.1.

The quantum theory of the Maxwell field is done by means of the quantization of the vector

potential ~A with corresponding momentum ∂t ~A = − ~E. They obey the inhomogeneous

Maxwell equations

∂µF
µν = ejνext, (3)

with the electric field tensor

F µν =


0 −E1/c −E2/c −E3/c

E1/c 0 −B3 B2

E2/c B3 0 −B1

E3/c −B2 B1 0

 (4)

= ∂µAν − ∂νAµ, (5)

that is defined by the electric field and magnetic field vectors ~E, ~B or by the four vector po-

tential Aµ = (A0, ~A), respectively. The latter definition implies the homogeneous Maxwell

equations automatically. The inhomogeneity of (3) is formed by an the external four cur-

rent jµext = (cρext,~jext), that includes external charge densities ρext and electric currents
~jext. The quantum theory of Maxwell fields necessarily involves the vector potential and

the related gauge invariance of (3). It is invariant under (local) gauge transformations of

the form

Aµ → A′µ = Aµ + ∂tξ(~x, t), (6)

where ξ(~x, t) is any differentiable function with the same domain as Aµ and in this sense

makes the transformation local. This complicates the quantization process but methods

where developed to also make the quantum field theory of free Maxwell fields coupled to

external currents mathematically consistent. The canonical quantization procedure of the

free theory is sketched in subsection 3.2.2.

6



2.1 Introduction to QED

Interestingly, gauge invariance turns out to be of major importance for the synthesis of

Maxwell and Dirac theory. Also (1) exhibits the invariance under certain gauge transfor-

mations. They are of the type

ψ → ψ′ = eiΘψ, (7)

where Θ is an arbitrary real number, which cannot vary in space or time, so this is a

global gauge invariance. A modern way to derive the equations of QED is to generalize

the global to a local gauge invariance to the Dirac field, so

Θ→ Θ(t, ~x). (8)

From this (differential geometric) point of view, QED is an Abelian gauge theory with

symmetry group U(1). It describes spin-1/2 fields that - to be gauge invariant - necessarily

interact through a gauge field which is the electromagnetic field. The resulting equations

of motion look exactly as (1) and (3), when the external quantities are identified with the

internal fields

Aµext → Aµ, (9)

jµext → jµDirac = ψ̄γµψ. (10)

This “derivation” is summarized in subsection 2.3.3.

But the equations are not enough for a theory of quantum electrodynamics. It is necessary

to make more postulates. Most important of those are the existence of a vacuum vector

and the spectral condition, that together guarantee for a well-defined ground state. And

requiring locality for field operators is necessary to guarantee causality. A complete list

of requirements can be found in [Bia lynicki-Birula et al., 2013, sec. 19, p.311]. The

latter postulates are of general nature and are true for every quantum field theory. This

axiomatic approach was developed by A. Wightman and is more or less unquestioned. But

these postulates are still not sufficient to determine the probabilities of physical processes.

This is done by means of the dynamical postulate, which is the main difference between

all the formulations of QED [Bia lynicki-Birula et al., 2013].

2.1.2 Solving QED

For QED like for every interacting quantum field theory there are no exact solutions

known. Consequently, we always face approximations when we want to treat QED and

we will introduce some important examples in the next section 2.2.

However, all approaches have to deal with major inherent difficulties. On the one hand,

some of them arise from problems that are already present in the free quantum theories.

7



2.2 Approaches to QED

For the Maxwell field, the gauge invariance of the vector potential is not compatible with

the canonical quantization formalism [Bia lynicki-Birula et al., 2013, sec. 8]. This can be

cured in certain gauges, 6 but so the quantization of the Maxwell field is gauge dependent.7

It is connected to the problem that photons have zero rest mass, and therefore, can have

arbitrarily small energy in a quantum field theory. This is called infrared catastrophe.8

Then, Dirac quantum theory already has a non-positive definite Hamiltonian, which is

only physically interpretable if we perform light renormalization procedures and introduce

antiparticles in some way. One method to do so is presented in subsection 3.2.1.

On the other hand, problems arise from the fusion of the two free theories. The already

mentioned problem of the infrared catastrophe change its quality and is accompanied by

an ultraviolet catastrophe9 in full QED. The reason for both is the infinite amount of

oscillators that is present in all quantum field theories. The infinities arising from that

have to be treated by a renormalization scheme. The principal idea of renormalization is

sketched in subsection 2.2.1.

2.2 Approaches to QED

In this section we present QED or better different aspects of QED by means of typi-

cal approximations. Propagator theory by Feynman and Stückelberg serves in the first

subsection 2.2.1 as an example for the most common and most important approaches,

that treat the interaction as a perturbation. It illustrates the involved processes well but

cannot describe all regimes of QED. To describe for example bound states or space-time

resolved experiments, other typically non-perturbative approaches are necessary.10 We

discuss the limits of propagator theory in subsection 2.2.2 and in subsection 2.2.3 and

2.2.4 we introduce two of the non-perturbative approaches.

2.2.1 The Classical Perturbative Approach: Propagator Theory

This subsection is about scattering theory, which is the most common approach to QED.

It introduces perturbation theory and exemplary shows the most important properties of

this regime. The content was mainly adopted from Bia lynicki-Birula et al. [2013]; Greiner

and Reinhardt [2003]; Brown [2012].

Probably most famous among the approaches to QED is propagator theory. Propagator

6 This is briefly discussed in subsection 3.2.2
7 This is an important obstacle for the construction of a consistent quantum field theory formalism.

See Strocchi [2004].
8 It can be treated by analyzing the measuring process of observables. The interested reader is referred

to [Bia lynicki-Birula et al., 2013, sec. 15].
9 This also is known from classical electromagnetism, where the energy of a point particle diverges.

10 There are also perturbative approaches that can describe bound-states of QED. We will not introduce
them here but refer to Fried [2002].
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2.2 Approaches to QED

theory was developed originally by Feynman and Stückelberg 11 and gives a comparatively

intuitive picture of the involved processes. It is formulated with boundary conditions that

are typically realized in scattering experiments and that are crucial for the description.

Specifically, given a state |ψi〉 that shall describe a wave-packet that was prepared so

long ago that there are no interferences present to a second somehow scattered wave-

packet |ψf〉 that is measured long time after the scattering process, then the overlap of

both states and hence all information on the scattering process can be expressed by the

so-called S-Matrix that is the time-evolution operator from −∞ to ∞

〈ψi |ψ(t→∞)〉 = 〈ψi |S |ψf〉 = 〈ψi |U(−∞,∞) |ψf〉 . (11)

In the interaction picture12 with time-dependent interaction operator V (t), one can derive

a formal expression for the S-Matrix

S = U(−∞,∞) = T exp

(
−i

∫ ∞
−∞

V (t)dt

)
, (12)

where T denotes the time-ordering operator. The S-Matrix is obviously very convenient

as the starting point for perturbation theory in orders of the interaction strength. Most

of the perturbative approaches treat only the S-Matrix.13 The series in orders of V (t) is

formally very easily derived by the expansion of the exponential

S = 1− i

∫ ∞
−∞

V (t1)dt1 +
(−i)2

2

∫ ∞
−∞

∫ ∞
−∞

T [V (t1)V (t2)]dt1dt2 + . . . (13)

This is called Dyson series and can be seen as the desired perturbation series if V (t) is

small with regard to the free Hamiltonian. In QED, the interaction term is

V = e jµAµ = e ψ̄γµψAµ. (14)

When we integrate this properly in (13), the small parameter is given by e2 or in dimen-

sionless form by the fine structure constant α ≈ 1/137. The smallness of α is the reason

for the enormous successes of the theory. Although there are strong arguments that (13)

does not converge, there are regimes of QED, that are unaffected by such higher order

divergences. This is discussed in the next subsection 2.2.2.

11 The original publication by Feynman was [Feynman, 1949].
12 The interaction picture takes advantages from the fact that free theories are possible to be solved

exactly by use of the eigen-representation of the kinetic operators. Let H(t) = H0 +V (t) be the Hamilto-
nian of the system that may be split into the free part H0 and the interaction V (t). Hence, time evolution
can also be split into a free part that is carried by the operators and the interaction part that is carried
by the state vectors. Hence it can be regarded as an intermediate representation between the Heisenberg
and the Schrödinger picture.

13 I. Birula for example formulates QED actually on the basis of the S-Matrix in [Bialynicki-Birula
and Bialynicka-Birula, 2009, ch. 6]. Hence, the S-Matrix is the dynamical postulate in contrast to the
Heisenberg equation with a Hamiltonian in the canonical procedure.
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2.2 Approaches to QED

FIG. 1: The Feynman diagram of an electron-positron annihilation experiment is shown. The
red solid lines represent electron and positron propagators SF . The curved lines are instead
photon propagators DF . The black dots are called vertices and the total number of vertices
counts the elementary interactions. It also denotes to order of the perturbation series that
exhibits this graph. This figure represents one integral of the second term in (13).

With the aid of Wick’s Theorem14 we can apply the Feynman diagram method on the

Dyson series. It introduces a direct link between the terms of (13) and graphical repre-

sentations, that are called Feynman diagrams. An example of such a diagram is depicted

in figure 1. Wick’s theorem brings the terms of (13) in a form, that consists of three

ingredients:

1. Dirac-propagators SF (x − y)15, which are the Green’s functions of the free Dirac

equation. In quantum field theory, SF (x− y) can be expressed as

iSFαβ(x− y) =
〈
0
∣∣T (ψα(x)ψ̄β(y))

∣∣ 0〉 . (15)

They are represented by solid (red) lines with starting point x and endpoint y in

the diagram in figure 1. Then

2. photon propagators DFµν(x − y), that are instead the Green’s functions of free

Maxwell equations. Hence their explicit form is gauge dependent but the abstract

definition of the quantum mechanical Green’s function is still applicable

iDFµν(x− y) = 〈0 |T (Aµ(x)Aν(y)) | 0〉 . (16)

They are represented by wiggly lines in 1. Finally,

3. vertices, that represent the order of perturbation and hence the number of integra-

tion variables and the number of elementary interactions. They add a factor ieγµ

14 This is a method to find the implications of the time-ordering operator for arbitrarily large terms of
such a perturbation series [Greiner and Reinhardt, 2003].

15 The index F refers to the developer of the concept: R. Feynman. With x ≡ xµ and z ≡ zµ, we denote
space-time coordinates. We spare the index µ in this subsection.
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2.2 Approaches to QED

FIG. 2: A loop diagram for a Dirac propagator SF is shown in the upper picture. It contributes
to the self-energy Σ of the respective particle. In the lower picture diagram of the dressed
propagator S′F is shown. Infinitely many loop diagrams contribute to its self-energy. Source:
Wikipedia.

to the integral and they are represented as dots in figure 1.

Practically one can interpret such a perturbative approach as follows: the zeroth order

describes free plane waves, the first order adds one scattering event (one vertex in a

Feynman diagram), the second order allows for one and two interactions and so on.

Within propagator theory, the emergence of the already mentioned infinities can be visu-

alized easily and it also provides a framework to deal with them. One origin of infinites

is visible in the propagators themselves. One can introduce the dressed Dirac propagator

S ′F , that is defined as the sum over all possible diagrams that connect two vertices. It is

an infinite sum because there can be infinitely many so-called loop diagrams in between

the points. The diagrams for a loop and the dressed propagator are depicted in figure 2.

For photons one can make the same considerations and also find a self-energy that is also

called vacuum-polarization. Self-energies in QED can be shown in perturbative theories

to diverge linearly with high energies. These infinities are due to ultraviolet divergences

and are a general feature of quantum field theories.16 There are so many high energy

modes that every sum over these diverges. The second reason for infinities can be found

in the vertices, which similarly can be dressed with loop diagrams. This is qualitatively

different to the self-energy. The divergence is logarithmic with higher energies.

Additionally, there are infrared divergences present that originate from the photons having

rest-mass zero. The propagator diverges for a vanishing wave-vector. This is in contrast

to the Dirac field, which due to is mass m exhibits a finite energy mc2 for zero wave-vector.

In different words, there are not only infinitely many photons with very high but also with

very small energies. Hence, the integral with domain border k = 0 over any product of

photon propagators must diverge.

Notably, divergences can at least in a perturbative sense be rigorously removed through

the so-called renormalization program. It is based on the observation that on certain

energy scales, QED performs very well in predictions. 17 But as we saw, for much smaller

or higher energies, it exhibits divergences. Hence, the main idea of renormalization is

16 Although the exact form of divergence cannot be deduced in most of the non-perturbative approxi-
mations.

17 Many physicists would argue that QED is the best existing physical theory, because it allowed for
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to rescale some quantities of the theory in a way that they counter the divergences.

For QED, we argue that this must be possible, because of its good performance on the

medium scales. Luckily, there are exactly enough parameters in the theory to counter

all the occurring infinities. The renormalization program is applicable. The parameters

are the electron mass me and the coupling constant e, as well as the Dirac and Maxwell

field-normalization factors. Of course, we need a physical interpretation for these energy-

dependent “constants.” One could argue that physical objects can never be measured

under exclusion of the interaction to their environment. In an experiment, we just can

determine something like the experimental value of the electron charge. But the electron

charge that appears in the equations instead, would have the bare value. In the propagator

picture, the free propagator would be defined with the bare constants, and the dressed

operator would exhibit the corrected experimental value. Hence, the infinities of, for

example, the self-energy corrections are countered due to altering bare constants.

The details of the renormalization program can be found in Bialynicki-Birula and Bialynicka-

Birula [2009] and Brown [2012].

2.2.2 The Limits of S-Matrix Theory

In this chapter we shortly want to classify the limits of all the perturbative methods that

involve the S-Matrix on a phenomenological basis.18 The objective is to collect the reasons

that led to developing other approximations.

First of all, as we already mentioned, the Dyson series does very probably not converge. It

was Dyson himself, who argued that the radius of convergence of a perturbation series in

the electric charge must be zero, because a negative coupling constant would “reverse” the

electromagnetic forces, and hence create a completely different theory. Formally, this is

incompatible with a well-defined vacuum [Bia lynicki-Birula et al., 2013]. These arguments

set general limits to the perturbative approach, although it is not always clear, on which

scales they appear exactly.

But for some physical settings, this is actually very clear. The ground state of a sys-

tem for example would necessarily involve all orders of perturbation theory and hence is

definitively part of the non-perturbative regime.

Additionally, it is not possible to calculate the ground state by means of S-matrix theory,

because the required boundary conditions of uncorrelated plane waves for t→ ±∞ cannot

be fulfilled. There are also other examples for the insufficiency of the S-Matrix. The

solutions of the Coulomb problem for example never converge to a plane wave. Rohrlich

the most precise predictions, that ever have been done. The value of the magnetic moment of an electron
for example can be calculated and measured on the 13th decimal place [Odom et al., 2006].

18 There are also other perturbative expansions for QED like generalized Green’s functions formalisms
that overcome some of the insufficiencies of the S-Matrix theory. We will not recapture them here. See
for example Fried [2002].
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[1980] discussed such problems.

Another very important shortcoming of the S-Matrix approach is that we loose all infor-

mation about the space- and time-resolved dynamics. For example, the actual absorption

and emission processes of photons cannot be understood [Wagner et al., 2011]. We present

in subsection 2.2.4 an approach that is non-perturbative and is capable to provide space-

and time-resolution.

Finally, we want to emphasize again that the perturbation theory is only applicable on

QED because of the small coupling constant. In other quantum field theories from the

standard model, this is not true anymore and so there is no chance to solve them pertur-

batively. The most successful tool to calculate typical problems of for example quantum

chromodynamics (QCD) is lattice gauge theory, which will be introduced in the next

subsection (2.2.3).

2.2.3 Lattice Gauge Theory

This subsection is about lattice gauge theory, which is a very important tool to describe

more complicated gauge theories than QED. Although its techniques are of minor interest

for our purposes, it is introduced because it is the most successful approach to quantum

field theories on a lattice.

Lattice gauge theory was developed for quantum chromodynamics (QCD), the quantum

field theory of strong interaction [Wilson, 1974]. QCD is a gauge theory with the gauge

group U(3). The coupling between the 12 dimensional Fermionionic spinor and the 8 gauge

fields of QCD is in dimensionless form of the order of 1. Hence, we cannot approach it

within a perturbation theory like the propagator theory of QED. Moreover the treatment

of its 8 gauge Bosons is much more complicated than that of the photon in QED. Instead,

one could try to develop a theory that describes the dynamics of a quantum field theory

on a space-time grid, as it is common in non-relativistic theories. The problem here is

that a lattice cannot approximate a flat space and the geometric structure of the gauge

symmetry19 at the same time [Wilson, 1974]. If gauge symmetry is not treated properly,

its continuum limit is wrong. And the gauge fields on the lattice are not well described.

Lattice gauge theory overcomes these difficulties by the introduction of a modified action.

In this way, gauge invariance can be preserved in a way, that the discrete gauge fields

approach their continuum limit continuously. The first formulation of such a theory was

due to Wilson [1974].

However, as this work is about Lattice QED, that does “only” exhibit U(1) symmetry,

we do not have to struggle with the problems related to gauge invariance. Therefore, we

spare the introduction of the theory apparatus and for example refer to Lin and Meyer

19 This structure is called a fibre-bundle and can be viewed as space of all possible coordinate changes,
which are determined by the gauge symmetry group.
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[2014].

2.2.4 Space- and Time-Resolved QED

This last subsection of approaches to QED sketches another lattice field theory, that

the group of R. Grobe recently started to develop [Wagner et al., 2011]. It is built to

study space- and time-resolved processes. Although Grobe’s group makes use of different

numerical techniques, their approach is very comparable to the one presented here, and

so it delivers some techniques that we can adopt in the future.

The goal of this approach is to investigate elementary effects like photon absorption and

emission on high energy scales. This involves strong relativistic effects and makes a full

QED treatment necessary. This goal is still kind of far but they could already obtain

some good results for model theories [Wagner et al., 2011]. Their model is formulated in

a Hamiltonian formalism in momentum space. It is discretized by imposing periodic box

boundary conditions and truncating the Bosonic space. As the dimension of the Fock

space in relativistic theories grows extremely fast with the number of grid points, this

approach is limited to very small systems.

So far, Grobe’s group analyzed some aspects of the interaction between Fermionions

that is mediated through Bosons and virtual Bosons. Recently, they could present a

renormalization scheme that can be applied to a discretized Hamiltonian Wagner et al.

[2013]. They found logarithmic divergences in the spectrum of the Hamiltonian.

2.3 Symmetries of QED

Eventually, we want to introduce an aspect of QED, that has rather different qualities.

The topic of this section is to look at QED from the point of view of its (defining)

symmetries.

It was already mentioned that QED was historically the first theory that unified special

relativity and quantum mechanics. Within this process the theory of special relativity

was proven to be much more important than just in changing some velocity laws. In fact,

one may be allowed to say that the development of special and later general relativity

introduced a whole new interpretation and view on physics.

One of these important changes emerged due to a deeper understanding of symmetries.

Of course, symmetries have been regarded important already at the beginning of classical

mechanics by Newton and Leibniz, but probably there is no doubt that the derivation of

the famous theorem by Emmy Noether [Noether, 1918] changed the perspective on sym-

metries fundamentally: Symmetries induce conservation laws, which proved to be among

the most important tools to solve the complicated differential equations that describe
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2.3 Symmetries of QED

physical systems. Consequently, symmetries became more and more the main player for

the investigation of a physical system instead of forces and fields: While in Newtonian

physics a problem was solved by finding the correct force, plugging it into the Newtonian

equation and adopting the latter to the physical setting,20 physicist started in the last

century to think first about the symmetries of the systems and then to construct the

theory according to that. The theory of special relativity, for example, does not need

something like Newtonian laws at all, but just the postulates of momentum and angular

momentum invariance.21

Hence, it may not be a coincidence that Noether’s theorem was discovered in 1918, in the

pioneer years of the theories of relativity. General relativity taught us finally that all our

basic physical concepts like energy or momentum do only make sense if there is a corre-

sponding symmetry according to Noether’s theorem: Energy does not exist without time

translation invariance.22 Today’s physicists started to describe all dynamics as symmetry

transformations of certain tensors that somehow contain the information about physical

objects. But even all these possible physical objects can be deduced from some assumed

fundamental symmetries of the universe, so that there are just some free parameters left

to define whether a theory describes a (free) electron or a (free) neutrino.23 In the frame-

work of the Standard Model one can further deduce all interactions from a second type of

symmetry which is called gauge invariance. Steven Weinberg once formulated it like this:

”The universe is an enormous direct product of representations of symmetry groups.”

Gallian [2016]

Of course all this is mainly a question of interpretation, but when we developed our

approach, this interpretation proved to be a very good starting point. And so we want to

introduce it properly in this section. We first recapitulate the mathematical tool to study

symmetries, which is group theory (subsection 2.3.1). Then we introduce the Poincaré

group, which is the symmetry group of Minkowski space, the proper mathematical space of

relativistic space-time (subsection 2.3.2). We summarize its elements and group structure

and sketch how representation theory can be used to characterize all the spinor-fields

that can be realized in Minkowski space. It is even possible to deduce the covariant wave

equations for these (free) spinor fields (so including Maxwell and Dirac equations), which

we do not show explicitly but refer to sources. We conclude with a subsection on gauge

20 This turned out to be so complicated that a complete new theory had to be developed: Lagrangian
mechanics.

21 This approach is very accurately developed in, for example, Gourgoulhon [2013].
22 This means that we always need a certain observer system that exhibits such invariance and hence

defines energy.
23 This is meant in terms of the respective equations of motion. Of course, equations and their solutions

have to be interpreted according to experiments and generally, there are many conceptual assumptions
behind physical theories that cannot be derived from any higher principle. Nevertheless, the equations of
motion of a theory are a very important if not the most important tool for a physicist and the derivation
of equations just by means of symmetries was surely an important step in the development of physics.
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invariance, which is crucial for the formulation of QED (2.3.3). We demonstrate how

the QED Lagrangian can be deduced from imposing local gauge invariance on the Dirac

equation, which can be deduced from Poincaré symmetry. In this sense, QED is defined

by its symmetries.

2.3.1 Group Theory

We now introduce the main ingredient to study symmetries, which is group theory. The

contents of the chapter are mainly taken from Wagner [1998]; Gourgoulhon [2013]; Greiner

[2000]; Lyubarskii [2013].

Fundamental symmetries in physical contexts have the great advantage that they can

be regarded mathematically as Lie groups. They have been investigated since the late

1880th and are very well understood today which may be the reason for the great success of

symmetry considerations in physics. The crucial property for treating a certain symmetry

transformation in terms of group theory is that it is linear, which means it admits a

(faithful) representation as linear transformations on a vector space. The typical argument

is that space-time must be homogeneous, which means that no point is special in relation

to any other point, because why should it? Then one can proof that the transformations

that connect the points have to be linear24. This is not true anymore in general relativity

where every type of energy changes space-time and hence destroys its homogeneity. One

could say that then at least the vacuum should be homogeneous, but as we know from

quantum mechanics that there are vacuum fluctuations, even this argument does not

apply anymore. Nevertheless one could at least assume approximative homogeneity of

space-time and hence apply group theory on its symmetries, which still turns out to be

very successful.

Let us start with the definition of a group, following Wagner [1998]. A group G is a set

of elements together with a group operation (we generally call it composition) that fulfill

1. composition of the group elements results again in a group element:

a, b ∈ G⇒ c = ab ∈ G,

2. associative law: a(bc) = (ab)c,

3. existence of the identity e ∈ G: re = er = r ∀r ∈ G,

4. existence of the inverse r−1 to r:

∀r ∈ G ∃r−1 ∈ G with rr−1 = r−1r = e,

5. groups that additionally fulfill the commutation law

ab = ba ∀a, b ∈ G
are called Abelian.

24 A good discussion can be found in Stackexchange-Physics [2011]
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The key part with respect to symmetries is the so-called representation theory. The

representation T of a group is defined as a homomorphic map from the group G on a linear

space L (which can always be identified with the space of matrices M) that
”
conserves“

the product:

T (g1g2) = T (g1)T (g2) ∀g1, g2 ∈ G. (17)

Of course there is an infinite amount of representations of one group but it is actually

possible to find them all up to so-called equivalence, which demonstrates the strength of

the formalism. Two representations T and T’ are equivalent if:

∃M ∈ L : T ′(g) = M−1T (g)M ∀g ∈ G. (18)

The next step in finding all the representations is the important theorem that a represen-

tation can always be decomposed in its irreducible representations T i

T = T 1 ⊕ T 2 ⊕ · · · (19)

where the T i are also representations of G and there is no further such decomposition for

them. This can be interpreted as a blockdiagonalization in the matrix picture:

T (g) =

T
1(g) 0 · · ·
0 T 2(g) · · ·
...

...
. . .

 . (20)

Every block contains one irreducible representation of the whole group. When we have

found all these possible blocks, we have found all representations up to equivalence.

We want to apply these properties to a certain example of groups, the so-called Lie groups.

A group G is called Lie-Group if

1. it is continuous, so every element g ∈ G can be regarded as a continuous function,

2. every g ∈ G has a finite amount of parameters {αi ∈ R} that describe it completely.

The minimal number of such parameters is called the dimension d of the Lie-Group,

and

3. the elements are differentiable with respect to the parameters.

Another way to say this, is that a Lie group G is isomorphic to a manifold M with

dimension d. Because of this, we can describe the local structure of G through a so-called

Lie-Algebra GA whose underlying vector space is the tangent space of M. A basis is given
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by the d so-called infinitesimal operators

ITj =
∂T (~α = (α1, α2, . . . , αd))

∂αj

∣∣∣∣
~α=~0

, (21)

where the point ~α = ~0 coincides with the identity T(E). Hence, the Lie-Algebra GA

is the linear span of the set of infinitesimal operators Ij (j = 1, 2, . . . , d) together with

their algebraic structure. For the matrix representation it can be formulated through the

commutation relations between the elements

IjIk − IkIj ≡ [Ij, Ik] =
m∑
i=1

CijkIi, (22)

with the structure constants Cijk, that are independent of the representation T. The

crucial point is that there is a surjective map between any Lie-group and its Lie-Algebra.

But there is always one Lie-group to every Lie-Algebra that maps bijective to it, which

is simply connected.25 It is called the covering group Gcover of GA. In other words, there

is a set of Lie-groups G = {G}GA which all share the same Lie-Algebra GA (so the same

local structure) and there is a map from one special element Gcover ∈ G to every other

element of G but not back. Gcover “covers” the other elements. All this is because of

the manifold structure of a Lie group: every finite group action can be composed by a

repeated application of the infinitesimal operator. Schwichtenberg [2015]

Mathematically, the map between GA and G has in most cases a very simple form: it is

the exponential map.26 One representation T (g) of any element g ∈ G is given by

T (g) = e−iH , H =
∑

αiIi. (23)

with a certain set of {αi}. This is why the Ii are also called generators: Ii “generates”

the transformation that is determined by the parameter αi (“in the direction of Ii”).

In terms of quantum mechanics we describe symmetry transformations as operators that

preserve the inner product, so that expectation values for example are invariant under

such transformations. Therefore, we look for a representation TH in a Hilbert space H
(with inner product 〈· | ·〉) that obeys

〈THf |THg〉 = 〈f | g〉 ∀f, g ∈ H. (24)

Wigner and Bargmann could prove27 that such representations are either unitary or anti-

25 This means that any closed curve on its corresponding manifold can be shrunk smoothly to a point.
26 To be precise, it is only true for groups with matrix representations, so also for all examples treated

in this work. Nevertheless there is a slightly more general definition that is even true for all groups. See
fore example [Gourgoulhon, 2013, sec. 7.4.1]

27 This can be found for example here [Thaller, 2010, Th. 2.7].
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unitary.28 Hence, we can always choose in the following those among all equivalent rep-

resentations that are (anti-)unitary.

With the help of the Lie-Algebra we have a very good access to the group and can

investigate any compositions or functions of the generators. Very interesting among those

are certain operators C that have a vanishing Lie-bracket with all of the infinitesimal

operators

[C, Ij] = 0 ∀ j. (25)

These are called Casimir operators and they represent something like the “fundamental

symmetries of a symmetry group.” One of the most important properties of a Casimir

operator is that it can be used to construct the irreducible representation. This is because

if C is invariant under the action of any element g ∈ G, then all eigenfunctions of C Ψl

with

CΨl = lΨl

also must be invariant under G in the sense, that they keep their eigenvalue

C ′Ψ′l = lΨ′l,

where the ’ denotes that any g ∈ G acted on the respective object. Then the complete

set of linear independent eigenfunctions Ψl
m, m = 1, 2, ..., dl (with degeneracy dl) build a

basis for the representations with dimension dl of the group. If this symmetry group is the

highest possible (that means that there is no group G′ ⊃ G that leaves O also invariant),

the representation can be proven to be irreducible.29.

Having introduced the mathematical apparatus, there is still the question of its connection

to physics. This lies in the symmetry interpretation of a group. Space-time can actually

be defined through its symmetries. In our case of QED (but also for the whole standard

model) space-time is the Minkowski space M4 which is defined through the Poincaré

symmetry group. Through representation theory this induces a vector bundle V: the set

of vector spaces for every irreducible representation. Then physical states (of a classical

field theory) are introduced as sections of M4 that are characterized by the eigenvalues

of the respective Casimir operators. These correspond to the mass and the spin of the

field, which we know from experiments. For every such section, a wave equation that is

covariant with respect to G can be deduced. In this sense, Maxwell equations or the Dirac

28 A unitary operator U is linear and obeys 24, whereas an anti-unitary operator A is instead anti-linear,
so A(a~x+ b~y) = a∗A(~x) + b∗A(~y).

29 But even if it is not the highest possible symmetry group, it nevertheless can induce irreducible
representation in certain cases. See Wagner [1998]
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equation are just representations of the Poincaré group. 30

2.3.2 Poincaré Transformations

Basing on the previous subsection, we are able to properly introduce the fundamental

symmetries of the theory of special relativity, namely Poincaré transformations. We

follow the presentations in Gourgoulhon [2013] and Greiner [2000].

Poincaré transformations are defined through the concept of a so-called inertial observer,

which physically means that the description of a certain experiment is made in coordinate

frames, that have vanishing acceleration in the Newtonian sense. The proper mathemat-

ical space that exhibits such frames is an affine (flat) space E over R. Experience tells us

that it must have 4 dimensions, 3 for space and 1 for time. Affine spaces are manifolds

and hence, they can be mapped at every point to a vector space E that for a 4D manifold

is isomorphic to R4. The special property of a flat space is that one coordinate frame is

enough to describe every point in E . Inertial observers now refer to the special coordinate

frames which “see” the same so-called line element ds. Mathematically it is defined in

any coordinate system {xµ} of R4 with the aid of the metric tensor31

ds2 = gµνdx
µdxν . (26)

If such a frame is inertial, the metric tensor has the simple diagonal form

gµν
inertial

= ηµν ≡ diag(−1, 1, 1, 1), (27)

→ ds2 inertial
= −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 ≡ −(cdt)2 + d~x2, (28)

where in the last part the time and space components32 were already separated. In 1905

this was derived by Einstein in his famous work by postulating the invariance of the speed

of light c, which enters the above definition to give the time axis the same unit like the

three space axes. We see the invariance of a velocity in the definition easily because of

the different sign of space and time

ds2

dt2
=

d~x2

dt2
− c2 = const.

ηµν is called Minkowski metric and it defines the basic geometric structure of E , the inner

30 For a general derivation of all Poincaré covariant wave equations see Niederer and O’Raifeartaigh
[1974].

31 Note that this is mathematically not a metric.
32 To distinguish between four-vectors and purely spatial three-vectors, the latter are denoted with an

arrow.
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2.3 Symmetries of QED

FIG. 3: The light cone for 2+1 D Minkowski space is depicted. It describes the geometric
properties of the Minkowski space M4: From any point in p ∈M4 one of its two cones shows the
future and the other the past time direction. Inside the cones lie all possible time-like distances,
so all possible trajectories of a massive object that cross p. Outside the cones lie all space-like
separations, which physically means that there is no possibility to exchange any information.
The cone itself is defined as the set of all light-like vectors, so all possible trajectories of a light
signal. Image: Wikipedia.

product between two vectors aµ, bµ ∈ E

〈a | b〉 = aµb
µ = ηµνa

µbν (29)

and the Minkowski norm

||aµ|| =
√
|aµaµ|, (30)

where the absolute value under the square root is necessary because the Minkowski metric

is not positive definite. It defines three classes of vectors that can be summarized in the

light cone (see figure 3): there are

• space-like vectors: ds2 > 0,

• time-like vectors: ds2 < 0,

• and light-like vectors: ds2 = 0,

and from every point one can draw the cone in two directions, the future and the past

cone, respectively.

With those ingredients we are able to define Minkowski Space-time M4 as the 4-tuple

consisting of
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2.3 Symmetries of QED

1. a 4 dimensional affine space E over R with underlying vector space E,

2. a metric tensor gµν , as defined above,

3. a chosen forward direction, and

4. a chosen orientation.

Having defined the mathematical space that is suitable to describe physics from inertial

frames, we can define the set of transformations that map any inertial frame Σ to another

Σ′

A = {M : M4 →M4,Σ 7→ Σ′ =M(Σ) |Σ,Σ′are inertial} (31)

which is called affine group.

Let us investigate the elements of A or better its subgroups by their physical interpre-

tation: The subgroup that carries the crucial elements that distinguishes the world of

special relativity from that of Newtonian mechanics is the Lorentz group O(3,1).33 Its

elements are Lorentz transformations Λ which are defined as theseM∈ A that leave the

inner product invariant

〈a | b〉 = 〈Λ(a) |Λ(b)〉 ∀ a, b ∈M4. (32)

The most important subgroup of O(3,1) is the restricted Lorentz group SOo(3, 1) that is

the intersection of the proper Lorentz group SO(3,1) that preserves the chosen orienta-

tion of M4 and the orthochronous Lorentz group Oo(3, 1) that preserves the chosen time

direction. It is continuously connected to the identity, which means that any element of

SOo(3, 1) can be constructed by the repeated application of infinitesimal transformations.

The connection between SOo(3, 1) and the full O(3,1) is given by the so-called discrete

transformations, which consist of reflections in time (time reversal T ) and space (parity

P). A possible representation that acts on Minkowski 4-vectors xµ ∈M4 would be

T =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , P =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (33)

From the given arguments, we know that we only need to study SOo(3,1) in the following.

SOo(3,1) is a noncompact non-Abelian Lie group of dimension 6. Its generators are the

three infinitesimal transformations L1, L2, L3 of rotations R that by their own form the

33 In contrast to the Galilean group in Newton theory.
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2.3 Symmetries of QED

subgroup SO(3) of SOo(3,1). Its Lie-Algebra is

[Li, Lj] = iεijkLk i, j, k = 1, 2, 3. (34)

The other generators are the three infinitesimal transformations K1, K2, K3 of Lorentz

boosts K. They do not form a subgroup of SOo(3,1), because their Lie-Algebra

[Ki, Kj] = −iεijkLk i, j, k = 1, 2, 3 (35)

shows that two boosts in different directions form a rotation. Finally the Lie-Algebra

between both

[Li, Kj] = iεijkKk i, j, k = 1, 2, 3. (36)

completes the Lie-Algebra of SOo(3,1). We give as example their differential representa-

tion which acts on the space of differentiable functions over M4

~L ≡

L1

L2

L3

 = −i

x1

x2

x3

×
∂1

∂2

∂3

 = i~x×∇, (37)

~K ≡

K1

K2

K3

 = −i

x0∂1 + x1∂0

x0∂2 + x2∂0

x0∂3 + x3∂0

 . (38)

As noted in the last subsection, a Lie-Algebra does not always map one-to-one to a Lie-

group and this is also the case for SOo(3,1). Its respective covering group is called SL(2),

which can be defined as the group of rotations in the complex plane. The map between

both is two-to-one and that is why SOo(3,1) is called doubly-covered. This has important

implications: The Casimir invariants that label the irreducible representations are those

of the covering group SL(2). Hence, the double cover means that for SOo(3,1) there are

instead two labels necessary for every invariant. Later in this subsection, we introduce the

Casimir invariants of SL(2) properly, but we want to anticipate that one of those is directly

connected to the square of the angular-momentum operator, that is known from non-

relativistic quantum mechanics. Its eigenvalues hence label the irreducible representations

of SL(2) and so its possible spinor-realizations.34 The eigenvalues are integer or half-

integer valued which correspond to the intrinsic spin of the respective field. From non-

relativistic quantum mechanics, we already know that the half-integer values are not

realized for angular-momentum states. For example, the hydrogen atom exhibits only

integer quantum numbers. The reason why the half-integer spinor representations are

realized in Minkowski space is exactly that the Poincaré symmetries are doubly covered

34 For details, see for example Lyubarskii [2013].
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2.3 Symmetries of QED

by SL(2). Thus, the two abstract labels can be interpreted as denoting the particle or

antiparticle part of the spinor, respectively. Hence, also antiparticles are the consequence

of the particular properties of relativistic space-time symmetry.

This induces another type of discrete symmetry transformation, which is the exchange of

both labels or the exchange of particle and antiparticle. We call this charge conjugation

C. Its representation in the space of Minkowski 4-vectors is trivially the identity matrix,

which means that a field that would be described by Minkowski 4-vectors does not have

an antiparticle or is its own antiparticle. This is also the case for the 3-vectors belonging

to photons with spin 1. A non-trivial representation of C can be found for Dirac spinors

that we want to mention for completeness

CψC−1 = γ0ψ∗ = ψ̄T . (39)

In Greiner et al. [2013, ch. 10.3.2], the implications of this definition are well illustrated

and it is shown that it really interchanges particle and anti-particle. We finally want to

emphasize that C is not part of SO(3,1) but it is obviously very connected to it. This

is expressed in the famous CPT-theorem.35 The CPT-theorem states under very loose

assumptions that every quantum field theory that is Lorentz covariant must be invariant

under the simultaneous application of C,P and T .

To complete the survey about the affine group A, there is only one last part left, which

is the 4 dimensional Lie group of translations T , that map a vector xµ ∈ M4 to another

x′µ ∈M4:

T (xµ) = x′µ = xµ + aµ, (40)

where aµ is a constant interconnecting vector. It is Abelian and hence its generators Pµ

have the trivial Lie-Algebra

[Pµ, Pν ] = 0 µ, ν = 0, 1, 2, 3. (41)

The respective differential representation is

Pµ = i∂µ. (42)

Both together finally form the Poincaré group IO(3,1) (or inhomogeneous Lorentz group),

which is the minimal subgroup of A. To complete its Lie-Algebra, we need to add to

35 The CPT-theorem was proved independently by different people, but for example by Bell [1954]
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2.3 Symmetries of QED

equations (34) to (36) and (42) the commutators between O(3,1) and T

[Li, P0] = 0 i = 1, 2, 3,

[Li, Pj] = iεijkPk i, j = 1, 2, 3,

[Ki, P0] = −iPi i = 1, 2, 3,

[Ji, Pj] = iδijP0 i, j = 1, 2, 3.

(43)

As already mentioned, ISO(3,1) has two Casimir invariants, the momentum square

PµP
µ (44)

that is proportional to the mass of a field36 and the square of the Pauli-Lubanski pseu-

dovector

WµW
µ, (45)

with W0 = JiPi,

Wi = Ji − εijkPjKk

that can be associated to the spin of the respective field.37 The already mentioned im-

plications of the double cover of the Lorentz group are integrated in the spin label: for

half-integer spins there are so called left-handed and right-handed labels possible.38 It was

E. Wigner who first discovered that this means that every quantum field of the standard

model can be categorized by its mass and spin (Wigner’s classification).

An electronic field spinor Ψ belongs to the irreducible representation of ISO(3,1) that has

pµp
µ = mec

2 and WmuW
µ = M2

e se(se + 1) with the electron mass me = 9, 109 · 10−31 and

the electron spin se = 1/2 for the left- and right-handed label. Its so defined transforma-

tion properties make it a Dirac spinor and it evolves due to the respective covariant field

equation, which is the Dirac equation. A Maxwell field spinor Φ consequently belongs

to the irreducible representation with pmup
µ = 0 and W0W

0/pip
i = sph with the photon

spin sph = 1. There is no difference between left- and right-handed label and Φ has the

transformation properties of a normal 3-vector. Its evolution is given through Maxwell

equations.39

Lastly, we shortly want to discuss the implications of Noether’s theorem that are implicitly

already integrated in the definitions of the generators of ISO(3,1). The theorem states

36 It could be called the group theoretical embodiment of the relativistic mass-shell-constraint.
37 For details see for example Niederer and O’Raifeartaigh [1974].
38 Interestingly it turns out that for integer spins there is no difference between the right- and the

left-handed label. For more detailed discussion see Schwichtenberg [2015].
39 A detailed derivation of these admittedly very short statements, including the different forms of Wmu

are given in Niederer and O’Raifeartaigh [1974].
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2.3 Symmetries of QED

that if any equation of motion is fully (and not form) invariant under certain symme-

tries, it exhibits conservation laws. A certain symmetry is always connected to the same

conservation law and the respective pairs are shown in table 1. This is also the tool to

interpret the group theoretical quantities: A translation by aµ of a state |Φ〉 for example

is generated by the infinitesimal momentum operator through the exponential map

Ta |Φ〉 = e−iaµP
µ |Φ〉 . (46)

If |Φ〉 is translationally invariant, then its momentum cannot change, so especially the

Energy E = P0 is conserved over time t = a0.

Symmetry Conservation of

Rotations R Angular Momentum
Boosts K Center of Energy
Translations T - spatial Momentum
Translations T - temporal Energy

TAB. 1: Conservation laws according to the different types of Poincaré transformations.

2.3.3 Gauge Invariance

In this last subsection about the symmetries of QED, we want to introduce gauge symme-

try, the last type of symmetry group that is important for quantum electrodynamics. We

eventually show how the QED Lagrangian with minimal coupling can be deduced from

imposing local gauge invariance on the Dirac theory.

We saw that Poincaré invariance is sufficient to classify all fundamental fields and to

find their equations of motion. For QED, we still need to find the right description of

the interaction between the so derived free Dirac and Maxwell fields. This also can be

done very elegantly by postulating a symmetry of a very different type, which is gauge

symmetry. it is common knowledge that gauge symmetry is more a formal description

of a mathematical redundancy instead of the property of a real physical object. But

interestingly, it turns that every theory of the standard model exhibits certain gauge

symmetry and their descriptions can be based on the assumption of local gauge invariance.

Formally this is done by defining the fields on so-called fibre-bundles that can roughly be

interpreted as the freedom of choosing arbitrary reference frames at every point. The

typical derivation is done in the action description that is especially suited for symmetry

considerations. To find the QED action we start with the Dirac part

SD =

∫
d4xψ̄

(
i~cγµ∂µ −mc2

)
ψ, (47)

and require local U(1) gauge invariance, which means that the action is invariant under
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2.3 Symmetries of QED

arbitrary local phase transformations of the field ψ40

ψ → ψ′ = ψeiΘ(xµ) ⇒ S ′ = S (48)

The term that arises from the derivative term is then countered by introducing the ap-

propriate covariant derivative

Dµ = ∂µ − i
e

~
Aµ (49)

with a new gauge field Aµ. This introduces minimal coupling

Lint = eψ̄γµψAµ. (50)

In the most general case, we must treat Aµ as independent field and find its free La-

grangian. There are several possibilities to do so, but in the QED case, there are good

arguments (e.g. dimensional reasons) that the free Lagrangian is found by means of the

Yang-Mills theory [Yang and Mills, 1954]. The corresponding term is exactly the free

Maxwell Lagrangian

LMW = − 1

4µ0

F µνFµν , (51)

if e is identified with the electric charge of an electron and µ0 with the permeability of

free space.

As for every symmetry, there is a conservation law associated to gauge invariance. It is

the (local) conservation of charge, which is embodied in the continuity equation

∂µj
µ = 0 (52)

for the electric current

jµ = eψ̄γµψ. (53)

In equation (52) contained, we find also the (global) conservation of charge

Q =

∫
d3x j0 = const, (54)

which refers to global gauge invariance. Already the free Dirac theory has this weaker

form of gauge symmetry, so the charge of a free Dirac field is also conserved.

40 It is also called internal symmetry, as it refers to transformations of the field itself and not of the
coordinates.
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3 Accessing QED by Means of Time Translations

As shown in the last chapter that there are a lot of different frameworks to study QED.

Most important in perturbative approaches was for example the S-Matrix. Lattice gauge

theory is typically formulated by means of the path integral formalism.41 Therefore, this

entire chapter is devoted to the framework that is the basis of the topic of this thesis: our

space- and time-resolved model in real-space. The model is a Hamiltonian-based approach,

so the first section 3.1 is about the construction of a QED-Hamiltonian. The second

section (3.2) reviews the canonical quantization procedure in continuous momentum space,

which is a well-developed formalism for the free Maxwell and Dirac theory. It serves as

reference for our formalism that also makes use of the second quantization procedure, but

in a different way. The idea to derive the discretized version of a quantum field theory by

a mode expansion is sketched in the last section (3.3) of this chapter.

3.1 A QED Hamiltonian

In this section we want to present the main tool for our model: the Hamiltonian. We

shortly explain the difficulties of distinguishing the time axis in a relativistically invariant

theory (subsection 3.1.1). The second subsection 3.1.2 discusses the problems and aspects

of the derivation of a QED Hamiltonian, especially within the usual framework of Lagrange

theory. In the last subsection (3.1.3), we present a different approach, introduced by

Bialynicki-Birula and Bialynicka-Birula [1984], that does not involve a Lagrangian at all

and that was followed during the derivation of our model. Of course, the Hamiltonians

are equivalent in both approaches.

3.1.1 What Means Hamiltonian in Minkowski Space?

As QED is a relativistically invariant theory one may question the need of a Hamiltonian

that, being conjugate to time translations, violates the relativistic principles by distin-

guishing one coordinate. In fact, there are a lot of approaches that do not necessarily

need a Hamiltonian. For calculations with propagator theory for example, one typically

works directly with the Lagrangian. But looking at more or less all other research fields

that are described on a (relativistic or non-relativistic) quantum mechanical level, one

finds Hamiltonian based approaches. Consequently, the advantage of a QED Hamiltonian

is that one can apply and compare results to a whole arsenal of techniques that where

developed in the last century.

41 It was not introduced, but the reader is referred to [Lin and Meyer, 2014].
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3.1 A QED Hamiltonian

3.1.2 Discussion of the Derivation

How can we derive such a relativistic Hamiltonian? The typical way in (non-relativistic

theories) would be the Legendre transformation of the velocity variables of the Lagrangian.

This is not trivially transferable to a relativistic theory. The reason is simply the fact that

the four degrees of freedom of spacetime, that the relativistic action principle necessarily

allows for, need to be constraint: also a relativistic field (or particle) can only move in

three directions. This is encoded in the fundamental mass-shell constraint

pαpα = m2c2 (55)

of the four-momenta of a field (or particle) with restmass m ≥ 0.42 This can also be

interpreted as a fundamental gauge invariance of relativistic theories. The gauge fixing

corresponds to a certain coordinate choice, especially to the choice of the time parameter.

To put it differently, although we can choose space and time coordinates arbitrarily, we

have to choose them. But it is possible to treat such Legendre transformations under con-

straints. Dirac for example developed complicated techniques to integrate the constraints

of relativistic space-time in the Hamiltonian formalism and based on this has formulated

a canonical quantum field theory [Dirac, 1964].

3.1.3 A Different Approach

We discussed the problems of deriving a meaningful Hamiltonian within a Lagrangian the-

ory. In this subsection, we want to follow a different approach formulated by Bialynicki-

Birula and Bialynicka-Birula [1984]. Birula directly postulates the Hamiltonian together

with the Heisenberg equations of motion. Hence, no Legendre transformations under con-

straints and even no Lagrangian at all are involved. Instead the Hamiltonian is “smartly

guessed” first and then justified post-hoc by the derivation of the coupled Dirac and

Maxwell equations, comparably to the Lagrangian theory. The derivation itself is done

by means of the postulated Heisenberg equation. The equivalent in Lagrangian theory

would be the least-action principle.

The starting point of the theory is the emphasis on energy being “undoubtedly, the most

important and universal physical quantity” [Bia lynicki-Birula et al., 2013, sec. 2, p. 41].

This implies the emphasis on the time translations, which is embodied in the Heisenberg

equation of motion

d

dt
F =

1

i~
[F,H], (56)

42 For particles without restmass, like the photon, there is even one more constraint. This complicates
the situation even more. We turn to that in subsection 3.2.2.
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3.1 A QED Hamiltonian

for any observable F.43.

Then we take into account the free limits (coupled to external sources, equations (1)

and (3)), that give us already the desired full equations, when we interpret the external

as the respective internal fields.44

Before we can postulate a well-defined Hamiltonian, we must apply a gauge condition

to the vector four-potential Aα = (A0, ~A). This is due to the same reasons that already

complicated the quantization of the Maxwell field. As photons have rest-mass zero, there

is no canonical conjugate to the A0 component of the four-potential. The canonical

quantization is only possible within a certain gauge. ~A is invariant under U(1) gauge

transformations

~A→ ~A′ = ~A+∇ · ξ, A0 → A′0 = A0 +
∂

∂t
ξ (57)

with any differentiable gauge function ξ. The latter equation shows that in the new

approach: without gauge condition, the time translations of A0 would not be uniquely

defined.45

To make time translations well-defined, we impose the minimal time-dependent gauge

condition

A0 = 0, (58)

that fixes the time choice but still leaves all spatial gauge freedom. Hence it is referred

to as temporal gauge.46

With the gauge condition, we can perform the canonical quantization. The canonical field

pairs are the Dirac-spinor and its Hermitian conjugate ψ̂, ψ̂+ and the spatial three-vector

of the vector potential ~̂A and its temporal derivative, the electrical field ~̂E. Now these are

treated as operators in Hilbert space and we postulate their canonical (anti-)commutation

relations47 [
ψ̂λ(~r), ψ̂

+
λ′(~r

′)
]

+
= δλλ′δ(~r − ~r′),[

Âµ(~r), Êµ′(~r
′)
]

= i δµ,µ′δ(~r − ~r′).
(59)

43 This is of course not a mathematically sufficient definition. Later F and H will become operators in
Hilbert space.

44 This was discussed in subsection 2.1.1.
45 This is a different ambiguity than the already mentioned one arising from the coordinate choice.

Hence, there are always two reasons for not well-defined time propagation in a covariant gauge theory:
Lorentz-covariance guarantees for no distinguished time axis in Minkowski space, Gauge invariance guar-
antees for no excellent “position” choice in the fiber bundle. The former one was actually already done
implicitly because for definition of the fields and their derivatives we had to choose an inertial frame.

46 The importances of the gauge condition in the quantization process is a long known issue. It is
discussed on a general level for example here Strocchi [2004].

47 The anti-commutator is marked by a +-sign.
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3.2 Mode Expansions in Quantum Field Theory

All other commutators vanish. Finally, we postulate the canonical Hamiltonian48

Ĥ =

∫
R3

1

2

[
ψ̂+,

(
mc2β − i~c ~α · ∇ − e ~α · ~A

)
ψ̂
]

+
ε0
2

((
∇× ~̂A

)2

+
(
c ~̂E
)2
)

d3r, (60)

where the original Dirac notation was used

β = γ0 = diag(1, 1,−1− 1), αi = γ0γi =

(
0 σi

σi 0

)
, (61)

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
. (62)

We show the consistency of our postulates by deriving the correct field equations:

∂tψ̂ =
1

i~
[ψ̂, Ĥ] =

1

i~

[
mβ − i~c ~α · ∇ − e ~α · ~̂A

]
ψ̂,

∂tψ̂
+ =

1

i~
[ψ̂+, Ĥ] = − 1

i~
ψ̂+
[
mβ + i~c ~α ·

←−
∇ − e ~α · ~̂A

]
,

∂t ~̂A =
1

i~
[ ~̂A, Ĥ] = − ~̂E,

∂t ~̂E =
1

i~
[ ~̂E, Ĥ] = ∇× (∇× ~̂A)− ~̂j,

(63)

where
←−
∇ indicates the derivative acting to the left and ~̂j is the spatial part of the electric

current density

ĵµ =
1

2
[ ˆ̄ψ, γµψ̂] = (ĵ0,~̂j). (64)

Crucially, we did not use the full gauge freedom to derive (60), we just made sure that the

time evolution is well-defined. It is still possible to choose pure spatial gauges to remove

unphysical solutions that would violate the Gauss law.

3.2 Mode Expansions in Quantum Field Theory

Before introducing our approach, we briefly want to recapitulate the usual second quan-

tization procedure for the Maxwell and the Dirac field. Throughout this section, Greiner

et al. [2013] served as general source, when not indicated otherwise.

48 In the quantized theory, the commutator in the Dirac part is necessary for charge conjugation
invariance. Typically this is done through normal-ordering. See for example Zakir [2007]
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3.2 Mode Expansions in Quantum Field Theory

3.2.1 Dirac-Field

We start with the Dirac field ψ49 that obeys the transformation laws of a relativistic

spinor. Its (classical) time evolution is determined by the free Dirac-Equation

(i~γµ∂µ −mc)ψ = 0. (65)

It can be derived from an action principle with the Lagrange density

LDirac = ψ̄
(
i~cγµ∂µ −mc2

)
ψ (66)

where ψ̄ = ψ+γ0 is the Lorentz covariant adjoint spinor. The field momenta are

πψ =
∂LDirac
∂ψ̇

= iψ+ and πψ+ =
∂LDirac
∂ψ̇+

= 0. (67)

Through the corresponding Legendre-transformation and integration we derive the Hamil-

tonian

HDirac =

∫
d3r ψ+

(
−i~c ~α · ∇+mc2β

)
ψ. (68)

We quantize by treating the fields as operators and by postulating the anti-commutation

relations [
ψ̂λ(~x), ψ̂+

λ′(~x
′)
]

+
= δλλ′δ(~x− ~x′), (69)[

ψ̂λ(~x), ψ̂λ′(~x
′)
]

+
=
[
ψ̂+
λ (~x), ψ̂+

λ′(~x
′)
]

+
= 0. (70)

The next step is the mode expansion that is performed in the eigenbasis of the Dirac

equation which is the set of plane-wave solutions50

ψs~p(~x, t) = (2π)−3/2

√
m

ωp
ωs(~p)e

−iεs(ωpt−~p·~x), (71)

where r represents the spinor index. Arbitrarily s = 1, 2 was chosen to denote the positive

energy solutions with E = +ωp =
√
~p2 +m2 and s = 3, 4 those with E = −ωp =

−
√
~p2 +m2. To capture this and to write general solutions the sign function εs = ±1

was introduced. One can show that they are normalized in a distributional sense∫
d3r (ψs

′

~p′)
+ψs~p = δrr′δ

3(~p− ~p′), (72)

49 We omit the spinor arrow ~ψ = ψ.
50 In this subsection, we change units to natural units as this is the usual way to present second

quantization in relativistic theories.
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3.2 Mode Expansions in Quantum Field Theory

where the special orthogonality and completeness relations for the unit-spinors ωr was

used. As those obey a spinor algebra, their momentum representation is not as trivial as

for a vector. Especially they become momentum dependent51.

The plane-wave expanded field operators read

ψ̂(~x, t) =
4∑
r=1

∫
d3p âs(~p)ψ

s
~p(~x, t),

ψ̂+(~x, t) =
4∑
r=1

∫
d3p â+

s (~p)ψs+~p (~x, t),

(73)

with the creation and annihilation operators â, â+. Their anti-commutation relations can

be derived from those of the field operators[
âs(~p), â

+
s′(~p

′)
]

+
= δss′δ(~p− ~p′),

[âs(~p), âs′(~p
′)]+ =

[
â+
s (~p), â+

s′(~p
′)
]

+
= 0.

(74)

The second quantized Hamiltonian can now be derived by inserting the expansion into

(68)

ĤDirac =

∫
d3p

(
2∑
s=1

ωpâ
+
s (~p)âs(~p)−

4∑
s=3

ωpâ
+
s (~p)âs(~p)

)
, (75)

where positive and negative energies have been separated. This Hamiltonian exhibits a

lot of the typical problems of relativistic quantum field theories. It is not positive definite

and so its spectrum is infinite in positive and negative direction. This implies that a

definition of a ground-state and even the vacuum is not possible. The most prominent

and first solution was due to Dirac with his “electron sea” construction (see figure 4):

One interprets the Dirac equation as an effective equation that only describes missing

electrons (”holes”) in a sea of infinite degrees of freedom as negative energy solution.

To formalize this process, a box normalization (regularization) is introduced to gain

Kronecker-anti-commutators. Then the so-called vacuum energy which is the sum over

all negative entries in H

E0 = −
4∑
s=3

∑
~p

ωp (76)

51 See Greiner et al. [2013, p. 124] for details.
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3.2 Mode Expansions in Quantum Field Theory

FIG. 4: The electron-positron picture due to Dirac is visualized: We assume a band of electron
states with negative energy that is completely filled (Dirac sea). The measurable continuum is
separated by a band gap of ∆E = 2mec

2. An electron with positive energy in that continuum is
created by the excitation of an electron in the negative band. The remaining hole behaves like
an electron with reversed charge but positive energy. So it is called positron, the antiparticle of
the electron.

is finite and can be subtracted from H

H ′ = H − E0 =
∑
~p

(
2∑
r=1

ωpâ
+
r (~p)âr(~p)−

4∑
r=3

ωp(1− â+
r (~p)âr(~p))

)

=
∑
~p

(
2∑
r=1

ωpâ
+
r (~p)âr(~p)−

4∑
r=3

ωpâr(~p)â
+
r (~p)

)
. (77)

This modified Hamiltonian H ′ is well-defined and positive-definite and also the vacuum

state |0〉 can be defined as

n~p,r |0〉 |r=1,2 = n̄~p,r |0〉 |r=3,4 = 0, (78)

with the electron/positron number operators

n~p,r = â+
r (~p)âr(~p), n̄~p,r = âr(~p)â

+
r (~p). (79)

From these definitions one can see that â acts as annihilation operator for r = 1, 2 but as

creation operator for r = 3, 4, which is a typical feature of charged theories. Therefore

one usually labels the unit spinors by spin

ω1(~p) ≡ u(p, s), ω2(~p) ≡ u(p,−s), (80)

ω3(~p) ≡ v(p,−s), ω4(~p) ≡ v(p, s), (81)
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3.2 Mode Expansions in Quantum Field Theory

and introduces new creation and annihilation operators for particles and antiparticles,

respectively

â1(~p) ≡ b̂(~p, s), â2(~p) ≡ b̂(~p,−s), (82)

â3(~p) ≡ ĉ+(~p,−s), â4(~p) ≡ ĉ+(~p, s). (83)

Notably, the operators for the negative branch are defined as the hermitian conjugate.

The expansion (73) reads (after performing the limit to infinite box size)

ψ̂(~x, t) =
∑
s

∫
d3p

(2π)3/2

√
m

ωp

(
b̂(~p, s)u(~p, s)e−i~p·~x + ĉ+(~p, s)v(~p, s)e+i~p·~x

)
, (84)

and the new modified Hamiltonian is

H ′ = H − E0 =
∑
s

∫
d3p ωp

(
b̂+(~p, s)b̂(~p, s) + ĉ+(~p, s)ĉ(~p, s)

)
, (85)

which is probably the most common form of the Dirac Hamiltonian. One naturally can

derive other operators from this expansion, for example the charge operator (54) that is

important later

Q = e

∫
d3x ψ̂+ψ̂ (86)

= e
∑
s

∫
d3p

(
b̂+(~p, s)b̂(~p, s) + ĉ(~p, s)ĉ+(~p, s)

)
. (87)

By subtracting the vacuum charge Q0, one can obtain an expression of the charge operator

Q′ = Q−Q0 = e
∑
s

∫
d3p

(
b̂+(~p, s)b̂(~p, s)− ĉ+(~p, s)ĉ(~p, s)

)
= e

∑
s

∫
d3p

(
n̂(~p, s)− ˆ̄n(~p, s)

)
(88)

that counts electrons positive and positrons negative as we want and thus can be seen as

the post-hoc justification of our definitions. The momentum operator reads

~̂P =
∑
s

∫
d3p ~p

(
n̂(~p, s) + ˆ̄n(~p, s)

)
, (89)

so we confirm that the plane-wave expansion (73) is also eigenbasis of ~̂P . Interestingly, ~̂P

does not exhibit problems with negative energies as all contributions from commutations

are canceled by the multiplication with ~p (
∫

d3p(~p · 1) = 0). Lastly, we want to mention

the spin operator. It has a simple expression for so-called helicity states. They are
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3.2 Mode Expansions in Quantum Field Theory

eigenfunctions of the helicity operator, that is defined as the projection of the angular

momentum onto the direction of the momentum ~p. This spin operator consequently is

~p-dependent

Ŝ~p =
1

2

(
n̂(~p,+)− n̂(~p,−) + ˆ̄n(~p, s)− ˆ̄n(~p, s)

)
. (90)

This justifies post hoc the spin definitions made before.

Eventually, we want to mention that the process of subtracting the vacuum energy can

be expressed equivalently by so-called normal ordering.52 This means that all operators

that contain positive frequencies (so for the just defined expansion (82) only annihilation

operators) are shifted to the right. The normal-ordered form : Ô : of the operator Ô = aa+

then takes the form

: Ô := a+a (91)

3.2.2 Maxwell-Field

The canonical quantization procedure of the Maxwell-field is on the one hand easier than

in the Dirac case, as one does not have to struggle with the antiparticle problem. On the

other hand, we encounter new difficulties due to the zero rest-mass of the photon. We see

this when we try to quantize the theory. The canonical field pair is the vector potential

and its canonical momentum, which is the electric field for the spatial part but turns out

to be zero for the time-component of the vector-potential. This must be prevented by

imposing a gauge condition.

In the following, we see that the gauge choice is very important for the canonical quan-

tization and up to today it is under discussion what this means for the properties of the

quantum theory at all.53

We start the derivation by recapitulating Maxwell’s equations for the free electromagnetic

field tensor F µν

∂µF
µν = 0 (92)

∂µε
µνρσFρσ = 0. (93)

The latter is automatically guaranteed by expressing F µν through the vector potential

F µν = ∂µAν − ∂νAµ. From this definition one can directly deduce the gauge invariance

of Aµ = (A0, ~A): for any differentiable function Λ,

A′µ = Aµ + ∂µΛ (94)

52 Or with the aid of a commutator, see footnote 48.
53 See for example Strocchi [2004].
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leads to the same field tensor as Aµ. To proceed, we need a Lagrangian that corresponds

to (92), which is the simplest Lorentz scalar that we can construct from the field tensor

LMW = −1

4
FµνF

µν

=
1

2
((−∂t ~A−∇ · ~A)2 − (∇× ~A)2) =

1

2
(( ~E)2 − ( ~B2).

(95)

When we want to construct a Hamiltonian through the Legendre transformation, we

encounter the already mentioned problems: The vector potential carries 4 degrees of

freedom whereas the actual photon field has only 2 polarizations. One reason is the

artificial inclusion of time as a free parameter, and the second one is that photons do

not have a free “mass parameter.” Usually the theory is quantized in Lorentz gauge or

Coulomb gauge. In the first case, one cannot impose the gauge before the quantization,

because this would lead to wrong commutation relations. As a consequence, one needs to

impose the gauge after the quantization as an operator condition on the state vectors

〈Φ|∂µAµ = 0|Φ〉 = 0. (96)

Put differently, we span the whole Hilbert space and allow all kinds of unphysical solutions

and afterwards just look at the physical states. This method was first introduced by Gupta

[1950] and Bleuler [1950] and is a tool that is often consulted to apply constraints on a

quantum theory.

Here we want to present a simpler but not covariant way of quantization. We impose the

so-called radiation gauge

∇ · ~A = 0, A0 = 0, (97)

which corresponds to Coulomb and temporal gauge together in a certain inertial frame.

Then the canonical conjugate to ~A is well-defined because the 0-component of Aµ was set

to zero. We find

π ~A =
∂LMW

∂t ~A
= ∂t ~A = ~E. (98)

This expression makes clear that the imposed transversality from ~A transfers to its canon-

ical momentum ~E. Consequently, there are only 3 independent variables and finally we

can construct a Hamiltonian

HMW =

∫
d3x

1

2

(
(∂t ~A)2 + (∇× ~A)2

)
=

∫
d3x

1

2

(
~E2 + ~B2

)
. (99)

After having solved the first problem, we move to the next one, namely the proper defini-

tion of commutation relations. We quantize the theory in the usual way by treating the
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3.2 Mode Expansions in Quantum Field Theory

canonical fields as operators but then we have to postulate transverse delta54 commutators

[
Êi(~r), Âj(~r ′)

]
= −i δ⊥ij(~r − ~r′) (100)

as the 6 components of ~A and ~E are not independent. Here we can clearly see the non-

local nature of photons in real space. The expressions become much easier in momentum

space and this is an important reason why QED is normally treated in k-space. For that

we introduce the plane-wave expansion

~̂A(~x, t) =

∫
d3k√

2ωk(2π)3

2∑
λ=1

~ελ(~k)
(
âλ~ke

−i~k·~x + â+

λ~k
ei
~k·~x
)
,

~̂E(~x, t) =

∫
d3k√

2ωk(2π)3

2∑
λ=1

iωk~ελ(~k)
(
âλ~ke

−i~k·~x − â+

λ~k
ei
~k·~x
)
,

(101)

which looks different than for the Dirac ansatz (73) because the fields are real valued.55

We interpret the prefactors as creation and annihilation operators and find

[âλ~k, â
+

λ′~k′
] = δλλ′δ

3(~k − ~k′),

[âλ~k, âλ′~k′ ] = [â+

λ~k
, â+

λ′~k′
] = 0

(102)

for the respective commutation relations and

ĤMW =

∫
d3x

1

2
: ~̂E2 + (∇× ~̂A)2: (103)

=

∫
d3k ωk

2∑
λ=1

â+

λ~k
âλ~k (104)

for the normal-ordered Hamiltonian where the vacuum energy was removed. The momen-

tum operator is

~̂P =

∫
d3x : ~̂E × (∇× ~̂A): =

∫
d3k

2∑
λ=1

~k â+

λ~k
âλ~k (105)

and finally one can define a spin operator

Ŝnl = i

∫
d3k

2∑
λ,λ′=1

εnλ′(
~k)εlλ(

~k)
(
â+

λ~k
âλ′~k − â

+

λ′~k
âλ~k

)
(106)

54 It is defined as the transverse projection of the 3D delta distribution δ⊥ij(~r−~r′) = (δij−∂i 1
∆∂j)δ

3(~r−
~r′). It has a Fourier representation δ⊥ij(~r − ~r′) =

∫
d3k

(2π)3 e
i~k·(~x−~x′)(δij − kikj

~k2
).

55 Note that ~E is real despite the i. This is actually the reason why there is the factor −i in the
commutation relations, which is a general feature of uncharged (real) fields.
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3.3 Discretization as a Mode Expansion

which can also be diagonalized by introducing helicity states with circular polarization

modes.56

3.2.3 Coupled Maxwell-Dirac Case

We presented the eigen-representation of the Dirac and the Maxwell theory with all nec-

essary complications. Generally speaking one can say that the free theories are more or

less well understood, because we know these eigen-representations. The problems and

also the interesting physics come with the interaction, which makes the theory non-linear

and non-solvable. This can be well visualized by applying the eigen-representations on

the coupling term. Hence, there is not much to say here but for completeness we want to

show the representation of the coupling term

Ĥint = ψ̂+ψ̂(~̂α · ~̂A)

= e

∫
d3x

4∑
r=1

∫
d3p âs(~p)ψ

s
~p(~x, t)

4∑
r=1

∫
d3p â+

s (~p)ψs+~p (~x, t)

~̂αcircular ·
∫

d3k√
2ωk(2π)3

2∑
λ=1

~ελ(~k)
(
âλ~ke

−i~k·~x + â+

λ~k
ei
~k·~x
)
, (107)

where ~̂αcircular is the representaiton of the α-Matrix in the respective circular frame that

was also used for the mode expansion in ~A.

We see, that the interaction terms becomes very complicated and especially non-local in

the eigen-representation of the free fields. Every mode of the Dirac-field couples to every

mode of the Maxwell field. This is another reason why we should formulate our theory in

real-space.

3.3 Discretization as a Mode Expansion

After sketching the continuous Hamiltonian and the canonical quantization procedure,

we now want to introduce the framework of our discretized theory. We perform this in a

maybe unusual but very effective way. It allows for the discretization of any given Hamil-

tonian or operator and at the same time taking advantage of the language of canonical

quantization.

Hence, we interpret the physical fields |Φ〉 as operators

|Φ〉 → Φ̂, (108)

56 See Greiner et al. [2013, p.165ff] for more details.
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3.3 Discretization as a Mode Expansion

that act on number state vectors in Fock space F

F =
∞⊕
n=0

Hn, (109)

where Hn denotes an n-particle Hilbert space.

In the typical procedure in continuous quantum field theory, one expands these operators

in any complete basis set like the eigenfunctions of the free theories

Φ̂ =
∞∑
i=0

âi |φi〉 , 〈φi|φj〉 = δij, (110)

and interprets the coefficients as creation and annihilation operators, as shown in the

last section (3.2). The discretization changes this crucially: we are not able to choose a

complete basis because that would need arbitrary spatial resolution. Instead we have to

truncate the basis to N functions

Φ̂ =
N∑
i=0

âi |φi〉 . (111)

This bandwidth-limited basis set is in contrast to the continuous case also well defined

in real space.57 We exploit this, to construct the theory on a more intuitive real-space

grid. Here one should remark that this is an especially unfamiliar picture of photons that

are not localizable.58 However, in our approach it is possible to construct a “localized”

photon on one grid site because of the bandwidth limitation.59

57 Mode functions of the continuous real space are only defined in a distributional sense (delta distribu-
tions), which is not convenient as the multiplication of distributions is not well-defined. See [Schwartz,
1966].

58 This can be shown very elegantly from a group theoretical point of view, see Rosewarne and Sarkar
[1992].

59 This is clear from the proof of Rosewarne and Sarkar [1992]: Localization means arbitrary precise
position. A photon in any position interval hence is not localized.
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In this chapter, we finally want to introduce our model. We construct a discrete Hamilton-

ian-based theory, from which we are able to numerically investigate the complete, finite-

dimensional Fock space of the theory.

We adopt the formalism of Birula, that was presented in subsection 3.1.3. It was shown

there, that the QED Hamiltonian

Ĥ =

∫
R3

1

2

[
ψ̂+,

(
mc2β − i~c ~α · ∇ − e ~α · ~A

)
ψ̂
]

+
ε0
2

((
∇× ~̂A

)2

+
(
c ~̂E
)2
)

d3r, (60)

together with the Heisenberg equation of motion (56) leads to the right coupled field

equations (63).

We see that the Hamiltonian is built by three ingredients: first, the Dirac spinors ~Ψ, ~Ψ+

and the three-spinors (vectors) of the Maxwell field ~A, ~E, second, differential operators

that act on the spinor, and third, some natural constants, which we directly adopt as

being fundamental.

Let us first turn to the spinors. A “typical” discretization procedure would consist of

discretizing the fields in any basis and approximating the differential operators by a finite-

differences method. From the symmetry point of view (dicussed in section 2.3), one could

think of going even one step back. We could try to discretize the Minkowski fibre-bundle

and then construct spinors as finite irreducible representations from the discrete forms

of Poincare and gauge symmetry. Unfortunately this is not possible, because there is no

discrete grid that is in its continuum limit Poincare and gauge invariant simultaneously

[Wilson, 1974].

Instead, we could break gauge symmetry and try to construct “discrete spinors” only from

Poincaré transformations . But also this is not possible. There are discretized versions

of the Poincaré group, that indeed have the correct continuous limit. But the transition

between discrete and continuous theory is by itself not continuous. Only translations can

be properly approximated to any order by a lattice. The subgroup of pure local Lorentz

transformations instead, cannot properly be mapped to any space-time grid. But the

spinor representation of the Poincaré group is mainly defined by the Lorentz group. Hence,

there is not such a thing like a “discrete spinor.” Consequently, the “typical” discretization

procedure is in terms of the fields also the only possible. We have to distinguish between

the two roles of Minkowski space: It defines the transformation properties of the spinors as

a continuous space. But as the definition space of the spinor fields we use the discretized

Minkowksi space. The discretization is formally done by a mode expansion. We present

this in 4.1.

The other ingredient of the discretization procedure is the treatment of the differential
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4.1 Mode Expansion in Rectangle Functions

operators. On the discretized space-time of the spinor fields we can define a vector space

of bounded functions with a proper inner product, that would be a finite Hilbert space.

Hence, the standard method, finite-differences, is easily applicable. This is the content of

section 4.2.

At this point, we want to mention that there is also an alternative way. From a group

theoretical point of view, the differential operators are representations of the Poincaré

group acting on a Hilbert space. We show in chapter 6 that there is a discrete analogue

and derive the respective operators. We can even formulate a Hamiltonian theory with

continuous transition to the continuum, because is its constructed by means of momentum

generators. There is no representation of the Lorentz group with its bad limit behavior

involved.

In the last section (4.3), we explain how to implement the model in a code and perform

numerical studies. The results of these studies for finite-differences are the content of

chapter 5.

4.1 Mode Expansion in Rectangle Functions

In this section we present the derivation of our discretized Hamiltonian in terms of the

fields. We want to introduce our approach by using the advantages and tools of second

(canonical) quantization for the discretization problem.

We first define the approximation of the 3D real-space. Let us consider a 3D box M of

lengths Lx, Ly, Lz. It is divided into small boxes of the lengths ∆x,∆y,∆z so that

Lx = ∆xNx, Ly = ∆yNy, Lz = ∆zNz, (112)

where Nx, Ny, Nz are the numbers of grid points in the three directions, respectively.

We introduce the following mode expansion of the field operators ψ̂, ψ̂+ and ~̂A, ~̂E60

ψ̂(~r) =

~N∑
~rn

4∑
λ=1

~eλ Θ3
~rn(~r) ĉλ,~rn , (113)

ψ̂+(~r) =

~N∑
~rn

4∑
λ=1

~eλ Θ3
~rn(~r) ĉ+

λ,~rn
, (114)

~̂A(~r) =

~N∑
~rn

3∑
µ=1

~eµ

(
âµ,~rn + â+

µ,~rn

)
Θ3
~rn(~r), (115)

60 The derivation is made in the Schrödinger picture, so that all time information is shifted to the state
vector.
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FIG. 5: The expansion in rectangle functions is illustrated: Any smooth function is approxi-
mated by piecewise constant steps.

~̂E(~r) = i

~N∑
~rn

3∑
µ=1

~eµ

(
âµ,~rn − â+

µ,~rn

)
Θ3
~rn(~r), (116)

with the definitions:

~N = (Nx, Ny, Nz) → vector, referring to the number of sites,

~rn = (xn, yn, zn) → site counter for all 3 spatial dimensions,

~eλ, ~eλ ~eλ′ = δλλ′ → unit spinor for the 4 spinor entries,

~eµ, ~eµ ~eµ′ = δµµ′ → unit vector for the 3 spatial components.

The actual discretization is done by the mode functions, which are chosen as rectangle

functions61

Θ3
~rn(~r) = Θxn(x) Θyn(y) Θzn(z)

Θri,n(ri) =
1√
∆ri

Θ

(
∆ri

2
− |ri − ri,n|

)
∫
M

Θ3
~rn(~r) Θ3

~rn ′(~r)d
3r = δ~rn~rn ′ ,

with {ri} = {x, y, z}. In other words, this procedure samples continuous functions by a

piecewise constant function as depicted in figure 5.

This discretization introduces a spatial bandwidth limitation. The minimal and maximal

wavenumber kmini , kmaxi that can be resolved along each Cartesian direction (i = x, y, z)

61 Also known as rectangular functions, see Wang, Ruye (2012). Introduction to Orthogonal Transforms:
With Applications in Data Processing and Analysis. Cambridge University Press. p. 135-136
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are

kmini =
2π

Ni

, (117)

kmaxi =
2π

∆ri

. (118)

In the limit of an infinitely large box Li →∞ and infinitesimally small steps ∆ri → 0, we

formally recover the continuous theory:62

lim
Li→∞

lim
∆ri→0

∑
~rn

Θ3
~rn(~r) Θ3

~rn(~r ′) = δ(~r − ~r ′). (119)

4.1.1 Commutation Relations

To perform the canonical quantization, we need to derive new discrete commutation rela-

tions from the postulated ones (59). To find them, we project the field operator on one

mode

∫
d3r
(
~eλΘ

3
~rn(~r)

)
ψ̂λ′(~r) =

~N∑
~rn

4∑
λ=1

~eλ~eλ′︸︷︷︸
δλ,λ′

∫
d3rΘ3

~rn(~r) Θ3
~r′n

(~r ′)︸ ︷︷ ︸
δ~rn~r′n

ĉλ′,~r′n

= ĉλ,~rn .

This gives us an expression for the annihilation operator

ĉλ,~rn =

∫
d3r~eλΘ

3
~rn(~r)ψ̂λ′(~r).

Similarly, for the creation operator one finds

ĉ+
λ,~rn

=

∫
d3r~eλΘ

3
~rn(~r)ψ̂+

λ′(~r).

Conveniently, we derive the same commutation relations like in the continuous theory[
ĉλ,~rn , ĉ

+
λ′,~rn ′

]
+

=

∫
d3r

∫
d3r′~eλ~eλ′Θ

3
~rn(~r)Θ3

~r′n
(~r ′)

[
ψ̂λ(~r), ψ̂

+
λ′(~r

′)
]

+︸ ︷︷ ︸
δλλ′δ(~r−~r ′)

= ~eλ~eλ′δλλ′︸ ︷︷ ︸
δλλ′

∫
d3rΘ3

~rn(~r)Θ3
~r′n

(~r)

= δλλ′δ~rn~r′n .

62 although there is not a well-defined real-space mode expansion as mentioned before.
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All other anti-commutators vanish and altogether we have

[ĉλ,~rn , ĉλ′,~rn ′ ]+ =
[
ĉ+
λ,~rn

, ĉ+
λ′,~rn ′

]
+

= 0, (120)[
ĉλ,~rn , ĉ

+
λ′,~rn ′

]
+

= δλλ′δ~rn~r′n . (121)

The same (but slightly more complicated) method is applicable to the electromagnetic

field,63 but we can also just insert the mode expansion into the given commutation rela-

tions (59)[
Êµ(~r), Âµ′(~r

′)
]

=
∑
~rn,~r′n

i~eµ~eµ′Θ
3
~rn(~r) Θ3

~rn ′(~r
′)
[(
âµ,~rn − â+

µ,~rn

)
,
(
âµ′,~rn ′ + â+

µ′,~rn ′

)]
︸ ︷︷ ︸

C

=
∑
~rn,~r′n

i~eµ~eµ′Θ
3
~rn(~r) Θ3

~rn ′(~r
′) C,

where we calculate C explicitly

C = âµ,~rn âµ′,~rn ′ + âµ,~rn â
+
µ′,~rn ′

− â+
µ,~rn

âµ′,~rn ′ − â+
µ,~rn

â+
µ′,~rn ′

−
(
âµ′,~rn ′ âµ,~rn + â+

µ′,~rn ′
âµ,~rn − âµ′,~rn ′ â+

µ,~rn
− â+

µ′,~rn ′
â+
µ,~rn

)
=
[
âµ,~rn , âµ′,~rn ′

]
+
[
âµ,~rn , â

+
µ′,~rn ′

]
−
[
â+
µ,~rn

, âµ′,~rn ′
]
−
[
â+
µ,~rn

, â+
µ′,~rn ′

]
.

When we assume the desired commutation relations[
âµ,~rn , âµ′,~rn ′

]
=
[
â+
µ,~rn

, â+
µ′,~rn ′

]
= 0 (122)[

âµ,~rn , â
+
µ′,~rn ′

]
= δµµ′δ~rn,~r′n , (123)

the commutator becomes the original one in the continuous limit(119)[
Êµ(~r), Âµ′(~r

′)
]

=
∑
~rn,~r′n

i~eµ~eµ′Θ
3
~rn(~r) Θ3

~rn ′(~r
′)
([
âµ,~rn , â

+
µ,~rn

]
−
[
â+
µ,~rn

, âµ,~rn

])
︸ ︷︷ ︸

2
[
âµ,~rn ,â

+
µ′,~rn ′

]
=2δµµ′δ~rn,~r′n

= 2i
∑
~rn,~r′n

~eµ~eµ′δµµ′Θ
3
~rn(~r) Θ3

~rn ′(~r
′)δ~rn,~r′n

= i2 δµµ′
∑
~rn

Θ3
~rn(~r) Θ3

~rn(~r ′)

~L→∞
=

∆ri→0
i2 δµµ′δ(~x− ~x ′).

63 See for example [Greiner et al., 2013, p. 78].
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In fact, we see that the assumed discrete commutators (122) have the right continuous

limit. Notably, the Bosonic commutation relations can only be fulfilled if at least one of

both operators is unbounded. This was already proven during the beginnings of quantum

mechanics by von Neumann v. Neumann [1931]. For the anti-commutator algebra of

the Fermionic spinor operators this is not the case and hence the deduced commutation

relations (120) are exact.

4.1.2 Discretized Operators

In this subsection, we deduce the general way to discretize operators that only depend on

the fields. Operators with derivatives will be treated in the next section (4.2).

We construct the operators in our truncated Fock space by the “correspondence rules” of

second quantization: given any ÔH that acts on state vectors in a Hilbert space |ψ〉 and a

Fock expansion |ψ〉 → ψ̂, then the representation of ÔF in the so constructed Fock space

is given by64

ÔF =

∫
ψ̂+ÔHψ̂d3r. (124)

As an illustration, we want to construct the Fock representation of the charge operator C
with the expansion in rectangle functions

ĈF =

∫
ψ̂+ ĈH ψ̂d3r =

∫
ψ̂+
(
eβ
)
ψ̂d3r (125)

= e
∑
~rn,~r′n

∑
λ,λ′

~eλ β ~eλ′︸ ︷︷ ︸
=(1,1,−1,−1)T≡~β

ĉ+
λ,~rn

ĉλ′,~r′n

∫
Θ3
~rn(~r) Θ3

~rn ′(~r)d
3r︸ ︷︷ ︸

δ~rn~rn ′

(126)

ĈF = e
∑
~rn

∑
λ

βλ ĉ
+
λ,~rn

ĉλ,~rn . (127)

This is enough to already find the expressions for the mass term

Ĥmass = mc2

∫
R3

d3r
1

2

[
ψ̂+, β ψ̂

]
, (128)

and the interaction term of the Hamiltonian

Ĥint = −e
∫

R3

d3r
1

2

[
ψ̂+, ~α · ~̂A ψ̂

]
. (129)

64 A proof can be found for example in Gross et al. [1991].

46



4.2 Differential Operators in Finite Differences

4.2 Differential Operators in Finite Differences

In this section, we show how differential operators are constructed by means of the finite-

differences method. Together with the contents of the last section, we are able to derive

discretized differential operators. We demonstrate this explicitly for the kinetic energy

operator. We want to mention at this point that the derivation is principally straight

forward, but it becomes very technical. Therefore, the length of this chapter is rather

short in comparison with the actual time and energy that were invested to get to the final

form of the Hamiltonian.

Although the mode expansion discretizes the quantum fields, it is - in contrast to a

continuous (complete) mode expansion - still not clear how differential operators act on

these rectangle modes that are not differentiable.65 The most common approach to do so

is the finite-difference method (FD), that shall be discussed in this chapter.

In FD of n-th order a function f is interpolated by a polynomial P(n) of n-th order

that is entirely defined through n given points {(pi, f(pi))|i = 1, . . . n} of f. A differential

operator D is then approximated as the derivative of P(n) at the points pi. Consequently,

it is a weighted difference expression between the pi. It is possible to construct such

an approximation coming from left, right or both sides, last of which is called central

differences. For a second order approximation in central differences, the corresponding

coefficients are given in table 2.66

Derivative Accuracy -1 0 1

1 2 −1/2 0 1/2
2 2 1 2 1

TAB. 2: Coefficients of the central finite differences method in second order. For example,
the first derivative of a function f at the sampling point x0 is approximated by ∂xf(x0) =
1/∆x(−1/2f(x−1) + 1/2f(x+1)) +O(∆3

x), where ∆x denotes the spacing.

To apply the approximation on the rectangle discretization, we interpret the grid points

as sampling points of the polynomials. This is done by the following replacement rules:

∂riΘri,n =
1

2∆ri,n

(
Θri,n+1

−Θri,n−1

)
, (130)

∂2
ri

Θri,n =
1

(∆ri,n)2

(
Θri,n+1

+ Θri,n−1
− 2 Θri,n

)
. (131)

To sum up, we want to bring the discretized kinetic energy operator as an example. The

65 Actually one can define the derivative of a Θ function in a distributional sense, sloppy ∂xΘ(x) = δ(x).
But this obviously would not make sense in our interpretation.

66 Taken from Fornberg [1988].
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4.2 Differential Operators in Finite Differences

kinetic energy operator is defined as

Ĥkin =

∫
ψ̂+Ĥkinψ̂d3r, Ĥkin = −i ~α · ∇. (132)

To construct its discretized version we identify its principal components

Ĥkin = −i~ ψ̂+ αi ∂i ψ̂ = Ĥkin,x + Ĥkin,y + Ĥkin,z.

As an example, we show

Ĥkin,x = −i~
∑
~rn,~r′n

∑
λ,λ′

ĉ+
λ,~rn

~eλ αx ~eλ′ ĉλ′,~r′n︸ ︷︷ ︸
≡Ax

Θ3
~rn(~r) ∂xΘ

3
~rn ′(~r)︸ ︷︷ ︸

≡Tx

→
∫

d3rTx =
1

2∆x

(
δxnx′n+1

δyny′nδznz′n − δxnx′n−1
δyny′nδznz′n

)
→ Ax = e1 δλ1δλ′4 + e2 δλ2δλ′3 + e3 δλ3δλ′2 + e2 δλ4δλ′1

≡
∑
λ

Ĥkin,x,λ.

From these 4 terms, the first is:

Ĥkin,x,1 = − i~
2∆x

∑
~rn

(
ĉ+

1,~rn
ĉ4,xn+1ynzn − ĉ+

1,~rn
ĉ4,xn−1ynzn

)
The other terms are computed by a change of indices according to Ax. For the x and y

component the delta symbols are listed, respectively:∫
d3rTy =

1

2∆y

(
δxnx′nδyny′n+1

δznz′n − δxnx′nδyny′n−1
δznz′n

)
Ay = e1 δλ1δλ′4 + e2 δλ2δλ′3 − e3 δλ3δλ′2 − e4 δλ4δλ′1∫

d3rTz =
i

2∆z

(
δxnx′nδyny′nδznz′n+1

− δxnx′nδyny′nδznz′n−1

)
Az = e1 δλ1δλ′3 + e2 δλ2δλ′4 + e3 δλ3δλ′1 + e4 δλ4δλ′2

Also the electromagnetic part of the Hamiltonian

Ĥem =
ε0
2

∫
R3

d3r

((
∇× ~̂A

)2

+
(
c ~̂E
)2
)

(133)

can now be treated. The derivation of the whole Hamiltonian in its discretized form is

given in Appendix A.1.

Crucially, these results shed light on a disadvantage of the real-space picture: it does not

belong to eigenstates of the free theories, so the mode expanded Hamiltonian has many
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4.3 Numerical Implementation

terms.

4.3 Numerical Implementation

The approach introduced in the last sections is very well suited for numerical studies. We

do this in a Matlab code that works directly on the operator level. For that, we derive

in the first subsection (4.3.1) creation and annihilation (C/A) operators that act in the

truncated Fock space. Therefore, we do not have to implement the underlying n-particle

states. This results in a framework that allows for exploring the complete Fock space of

the (truncated) problem. We show the results in the next chapter 5.

In the second subsection 4.3.2, we explain how we derived our model system, that for

computational capacity reasons is very low-dimensional. The full Hamiltonian can be

found in the Appendix A.3.

4.3.1 Matrix Representation of Creation and Annihilation Operators

In the truncated Fock space, all operators can be represented by finite matrices. To

keep things simple we show their form for a linear chain of N sites with maximal B

Bosonic levels per site. This can of course be expanded trivially to a full 3D model. The

matrix that creates/destroys a Boson on site i can be constructed by the algebra of the

creation/annihilation (C/A) operators

â+
i |n0, n1, . . . , ni, . . . , nN〉B =

√
ni + 1 |n0, n1, . . . , ni + 1, . . . , nN〉B

âi |n0, n1, . . . , ni, . . . , nN〉B =
√
ni |n0, n1, . . . , ni − 1, . . . , nN〉B .

(134)

We choose the set of all Bosonic number states

|n0, n1, . . . , nN〉B → ~n0 ⊗ ~n1 ⊗ · · · ⊗ ~nN (135)

as basis, where we write the ~ni as column vectors

~ni =


0

1
...

B

 i = 1, 2, . . . , N. (136)
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The vectors hence are BN -dimensional. For any site the respective creator/annihilator is

a B ×B matrix67

â+ =


0
√

1 0 · · · 0

0 0
√

2 · · · 0
...

...
. . . . . .

...

0 0 0 0
√
B

0 0 0 0 0

 , (137)

â =


0 0 0 · · · 0√
0 0 0 · · · 0

0
√

1 0 · · · 0
...

...
. . . . . .

...

0 0 0
√
B − 1 0

 (138)

and the complete BN ×BN matrix that acts on (135) is given by the Kronecker product

between those and several B ×B identity matrices 1B

â+
i = 1B ⊗ · · · ⊗ 1B︸ ︷︷ ︸

(i−1)−times

⊗â+ ⊗ 1B ⊗ · · · ⊗ 1B︸ ︷︷ ︸
(N−i)−times

. (139)

These operators obey the Bosonic commutation relations except for a truncation error

[
âi, â

+
j

]
=


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1−B

 . (140)

This error plays an important role during the exploration of the Fock space and is discussed

in section 7.2.

For the Fermionic C/A operators we do the same without the necessity of truncating

any levels because the Pauli principle already reduces them to two. In exchange we need

to explicitly introduce anti-symmetry in the representation, to have anti-commutators

between all sites. This is done through the Jordan-Wigner Transformation [Jordan and

Wigner, 1993]. We describe the Fermionic state for a field with two spin components68 in

analogy to having twice as many sites

|n0,↑, n0,↓, . . . , nN,↑, nN,↓〉F ≡ |n1, n2, . . . , n2N〉F (141)

67 We identify here and in the following the matrix representation âM with the abstract â and drop the
index M to keep the number of indices low.

68 For QED this would be 4 for all the 4 components fo the Dirac spinor.
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which are formed by a Kronecker product of column vectors

|n1, n2, . . . , n2N〉F → ~n0 ⊗ ~n1 ⊗ · · · ⊗ ~n2N ,

~ni =

(
0

1

)
i = 1, 2, . . . , N. (142)

Then the creation/annihilation matrices on any site are just the circular Pauli matrices

ĉ+ = σ+ =

(
0 1

0 0

)
, ĉ = σ− =

(
0 0

1 0

)
. (143)

The Jordan-Wigner transformation now tells us that for the respective matrix of the whole

Fermionic Fock space, we must include the third Pauli matrix

σz =

(
1 0

0 −1

)
(144)

in the following way:

ĉ+
i = 12 ⊗ · · · ⊗ 12︸ ︷︷ ︸

i−1 times

⊗σ+⊗σz ⊗ · · · ⊗ σz︸ ︷︷ ︸
2N−i times

(145)

Through such a construction the Fermionic anti-commutation rules

[ci, c
+
j ]+ = δij (146)

are satisfied over the whole grid. Finally the operators of the coupled space of Bosons

and Fermions are easily found as the Kronecker products

â
(+)
i,coupled = â

(+)
i ⊗ 12 ⊗ · · · ⊗ 12︸ ︷︷ ︸

2N times

(147)

ĉ
(+)
i,coupled = 1B ⊗ · · · ⊗ 12︸ ︷︷ ︸

N times

⊗ ĉ(+)
i (148)

because both spaces are disjoint. Throughout the following chapters, we only use these

operators and hence drop the “coupled” indication.

4.3.2 The Model System: A 2-Site-1-Mode-Hamiltonian

The biggest advantage of our approach that allows for to investigating the whole Fock

space of a QED system coincides with its biggest disadvantage: Its degrees of freedom

grow extremely fast with the dimension of the system. If we have N sites and B Bosonic
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levels the dimension of the Fock space becomes

F = (42)N ∗BN . (149)

Only to describe the smallest possible motion in three directions (N = 8 points), and allow

for the minimal Bosonic dynamics with B = 2 Bosonic levels, equation (149) results in

F ≈ 1012. Hence, the state vectors would be F ≈ 1012-dimensional and the corresponding

matrices could not even be diagonalized on a huge cluster.

Nevertheless we can do very general research about the Fock space in terms of symmetries

and limits to other theories. For that we derived something like the minimal model of our

QED Hamiltonian, which describes the dynamics of a full Dirac spinor that is strongly

confined in two directions and very poorly resolved in the third one by two sites. It

interacts with Maxwell Bosons that are as confined as the Fermions, so that only one

mode with two degrees of freedom is considered. The derivation of the corresponding

Hamiltonian can be found in Appendix A.3.
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With the help of the model developed in last chapter, we shall now show the first results

for the finite-differences (FD) discretization in this chapter. To explore the complete Fock

space, our technique of choice is exact diagonalization (ED). To keep things as simple as

possible, we restrict ourselves to time-independent phenomena in this work. Yet, we could

include time evolution with, for example, the Lanczos algorithm [Lanczos, 1950].

In the first section (5.1), we introduce the important numerical parameters and have a

look into the structure of the Hamiltonian to get a feeling for the formalism. In the second

section (5.2), we show how to make use of the possibility to control the parameters of the

theory and we investigate limits to other theories. We conclude in section 5.2 by analyzing

the symmetry structure of the theory.

5.1 Exact Diagonalization for Finite-Differences

As mentioned in subsection 4.3.2, the dimensionality of the problem rises extremely fast.

Hence, we are limited to a Hamiltonian for N=2 sites and B=2 Bosonic degrees of free-

dom to still be able to perform numerical studies. The corresponding state vectors have

according to (149) the dimension

F = (42)N ∗BN N=2→
B=2

F = (42)2 ∗ 22 = 1024

and hence the Hamiltonian H is a (1024 × 1024)-matrix. Throughout this chapter all

figures respect those parameters, when not indicated otherwise.

For the finite-differences method, there is the possibility to include different types of

boundary conditions.69 If not indicated differently, in this chapter these are of Dirichlet-

type, which physically corresponds to a resonator. Explicitly, for any operator b̂, we

have

b̂(0) = b̂(N + 1) = 0. (150)

Additionally, we can impose periodic boundary conditions (PBC)

b̂(1) = b̂(N + 1). (151)

These are imposed in chapter 7 for a better comparison to the Fourier method that is

introduced in chapter 6.

We want to mention that all calculations are performed in atomic units (a.u.), which

69 In contrast to the Fourier method, that is presented in chapter 6
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Dimension Expression Value in SI-units

mass me 9.10938291(40) · 10−31kg
charge e 1.602176565(35) · 10−19C
action ~ 1.054571726(47) · 10−34Js
length a0 = ~/(mecα) (Bohr) 5.2917721092(17)10−11m
energy Eh = α2mec

2 (Hartree) 4.35974417(75)10−18J(= 27, 2eV )

TAB. 3: Overview over the most important quantities in atomic units.70

are appropriate for atomic scales. We obtain them by setting the electron mass me, the

elementary charge e, Planck’s constant ~ and the Coulomb force constant 1/(4πε0) to one.

The speed of light becomes c = 1/α ≈ 137, with the fine-structure constant α ≈ 1/137,

that being dimensionless has the same value in every unit system. The derived units are

given in table 3.

Let us now turn to the Hamiltonian. In figure 6, we show the so-called sparsity pattern of

H, which shows all entries in H that are not zero, and its eigenvalues. We see that most of

the entries are zero and it has a symmetric structure. The eigenvalues of H are (nearly)

symmetrically distributed around zero and there are

L = 4N + 1 = 9 (152)

main energy manifolds, which for our case of N = 2 yields L = 9. These are the main

Fermionic energy levels. We can understand this number by a qualitative view on the

total charge operator C. We know from the continuous case that it counts two entries

of the spinor negative and two entries positive and so justifies the particle/antiparticle-

interpretation. Hence, every site can maximally have total charge Cmax = 2 and minimally

Cmin = −2, so summed up for N sites we have

CN,max = 2N, CN,min = −2N. (153)

As all the intermediate values are also possible, we find (152). In the regime that we

analyze here, these charge energies are dominating over all others and so we see the

L = 9 manifolds. We do not want to get into further detail on the various operators

and their properties here, but leave this discussion for the following sections. We just

want to emphasize that the form of L is especially due to the combinatorics problems of

how many options there are to distribute particles in the system. Therefore, also other

operators exhibit the same number of eigenvalue manifolds (like the momentum term of

the Hamiltonian, see 7).

70 SI units are taken from The NIST Reference on Constants, Units, and Uncertainty 2016, see
http://physics.nist.gov/cuu/Constants/index.html.
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5.1 Exact Diagonalization for Finite-Differences

FIG. 6: The sparsity pattern of the Hamiltonian (left) and its eigenvalues (right).

In the next figure (7), we show the individual parts of the Hamiltonian, which show that

the manifolds are not entirely degenerated. There are small deviations on different scales

present and the electromagnetic term introduces a small asymmetry of the spectrum. We

discuss the contributions of the individual terms of the Hamiltonian later in section 7.1.

At this point, we want to emphasize that all comparisons between different parameter

choices that we perform in the following, have to be treated carefully. To make robust

statements, we would need to implement a proper renormalization technique, like for

example in the approach of R. Grobe (see subsection 2.2.4). This will hopefully be the

topic of a subsequent work. A good starting point is our possibility to compare two

different methods of discretization with actually very strong deviations in certain regimes.

This is discussed in section 7.1.

Nevertheless, the found eigenvalue structure fits well to the typical interpretation of QED:

the positive (negative) energies correspond to eigenstates with a surplus of electrons

(positrons), the electromagnetic interaction splits the main electronic energy manifolds

and shifts them slightly to more negative energies as the interaction term enters negative

in the Hamiltonian.71

71 The Hamiltonian exhibits negative eigenvalues because we did not perform a renormalization proce-
dure like that mentioned in subsection 3.2.1. This will be part of future work.
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FIG. 7: Contribution of the different constituents to the energy spectrum of the Hamiltonian:
the mass-term (up, left) dominates with energy scales around 104 Hartree, followed by the
momentum term (up, right) with energy contributions of up to 300 Hartree. The smallest
contributions are due to the interaction (down, left) and the electromagnetic term (down, right).
All terms are symmetric around zero energy, except the electromagnetic term. It only contributes
negative energy.
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5.2 Lattice QED under Variation of Parameters

In this section we investigate the influence of the parameters of the theory on the energy

spectrum of the Hamiltonian H. This allows us to visualize the transition of QED to

certain limit cases, that are

1. the non-relativistic limit: c→∞72,

2. the strong coupling limit: e→∞

and we can investigate the dependence of H in terms of

3. the mass m of the QED electrons and

4. the influence of the spacing ∆x.

The last case is unfortunately not separable from the confinement L = N · ∆x, because

we cannot increase the number of grip points N for computational reasons. We want to

emphasize that the following calculations are not exhaustive investigations about limits or

renormalization, they should rather be considered as “proofs of principles.” There is still

a lot of potential in these limits like comparisons to the analytically derived limits, that

we want to explore in future research. The interested reader is referred to the outlook,

chapter 9.

1. Variation of c

In figure 8, the variation of the speed of light, c, is depicted. With increasing c, we

see that the energy levels rapidly approach each other until they are (nearly) com-

pletely degenerated to the already discussed L = 4N + 1 = 9 equidistant manifolds.

The high-c regime (down, right) strongly suggests that the degeneration becomes

complete for c → ∞. This is also predicted by analytical studies (see Bialynicki-

Birula and Bialynicka-Birula [1984]). Numerically, this corresponds to the domi-

nation of the rest-energy, because all other terms have a weaker c-dependence and

hence become negligible for a high c-value. Hence, we can interpret this as the

expected decoupling between electron and positrons in the non-relativistic limit,

where the Pauli-equation describes pure electrons (or positrons) with their spin

Bialynicki-Birula and Bialynicka-Birula [1984].

For small c-values instead, we see that the already recognized asymmetry between

negative and positive energies becomes stronger. This is the opposite effect: the

72 As c is connected to the electric and magnetic constants ε0, µ0 through the dispersion relation 1/c2 =
ε0µ0, there are actually different non-relativistic limits. This shall not be further discussed here and the
reader is referred to Le Bellac and Lévy-Leblond [1973]
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FIG. 8: Energy spectrum of H (normalized to the rest energy of an electron mec
2) as a

function of the velocity of light c for different scales: We see the general trend of all eigenvalues
degenerating in the up-left figure. The up-right figure shows that 9 energy manifolds remain in
the non-relativistic limit. Every energy manifold has contributions from the whole spectrum, so
energy levels cross each other (down-left figure) and for very high c, the levels approach each
other very close (down-right figure). Notably, the colors do not correspond to one certain state
but rather to one entry in the array of eigenvalues that is sorted.
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FIG. 9: Energy spectrum of H as a function of the charge e (normalized by e): We see that the
energy levels degenerate very fast to the 9 decoupled manifolds (left). We see that the process of
degeneration is different compared to the variation of c, but there are still line-crossings present
(right).

energy is especially dominated by the interaction and the magnetic term that do

not depend on c.

The comparison of figure 8 to figure 6 from the last subsection, where the “real”

c = 137 in atomic units was chosen, shows that these “real” units correspond to

a very non-relativistic regime in our model. This is because the resonator with

L = 2 ∗ ∆x = 2a0 is on the scale of small atoms and so very large with respect

to relativistic scales. In the following, we distinguish between the relativistic and

non-relativistic regime through the artificial change of c. The influence of the box

is instead analyzed later in this section (see figure 11).

2. Variation of e

The results of the variation of the electric charge e (, which is the coupling constant

between Fermions and Bosons) are shown in figure 9. The calculations were per-

formed in the relativistic regime by setting c = 0.1, to analyze the non-degenerate

spectrum. We see that the spectrum degenerates comparably to the non-relativistic

limit.73 We did not show the relativistic case, where we already have the degenerate

spectrum for small e and where these just stay degenerate. But here this is not

due to the electron-positron decoupling but the opposite: the Fermions are maxi-

mally coherent and they act again like free particles. This was for example already

observed in the non-relativistic case Pellegrini et al. [2015].

3. Variation of m

We show the variation of the electron mass me in figure 10. Our analysis was

performed in the relativistic regime by setting c = 0.1 in order to investigate the

73 We also calculated the spectrum for very high e and confirmed that they approach each other to
(arbitrary) small distances.
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5.3 Symmetries in Finite-Differences

FIG. 10: Energy spectrum of the Hamiltonian as a function of the electron mass m (normalized
by m): We see like in the other cases that the energy levels degenerate very fast to the 9 decoupled
manifolds.

non-degenerate spectrum. We see that the spectrum degenerates similarly to the

non-relativistic and the strong coupling limit, so we have free particles. This is also

explainable as the interaction becomes unimportant for very heavy particles.

4. Variation of ∆x

Eventually, the results of the variation of the spacing ∆x is depicted in figure 11.

Here, we did not change any other constant. As ∆x is strongly connected to the

ultraviolet divergence of QED, we can assume that results for different ∆x cannot

be compared well. We would need to apply a renormalization technique. However,

the Grobe group found in their approach a logarithmic divergences for the energy

Wagner et al. [2013]. Therefore, we plotted all data with logarithmic ∆x axis,

although we can guess that this is not enough to have reasonable energies values.

In the plot, we can see how the degeneracies are lifted for a small resonator length

L = ∆x ·N . The nine manifolds split into four strands, that by themselves consist

of 9 energy manifolds. These manifolds are probably related to the formation of

standing waves in the small resonator. Unfortunately, we could not investigate this

deeper as we are not able to increase the number of grid points so far.

Later in section 7.1, we will again look at the variation of ∆x, because finite-

differences and the Fourier method (introduced in chapter 6) depend differently

on ∆x.

5.3 Symmetries in Finite-Differences

In this section, we analyze the symmetry aspects of the finite-difference Hamiltonian.

Later, we compare this to the Fourier method (section 7.2).
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5.3 Symmetries in Finite-Differences

FIG. 11: Energy spectrum of the Hamiltonian as a function of the (logarithmic) spacing ∆x

(not normalized and denoted by dx in the plot): On the left, we can see how the lifting of
degeneracy takes places for small spacing and consequently small resonator length L = ∆x ·N .
The 9 energy manifolds split into four strands, that by themselves consist of 9 manifolds (with
lower degree of degeneracy). This can be seen well in the right plot.

We want to study the behavior of the Hamiltonian H under symmetry transformations.

From the theoretic considerations in section 2.3, we know that symmetries of H should

block-diagonalize it. Therefore, let us assume an operator O74 with eigenvectors |Ψl〉 and

corresponding eigenvalues ol

O |Ψl〉 = ol |Ψl〉 , (154)

that commutes with H

[O,H] = 0. (155)

Then the |Ψl〉 combined to a matrix form a unitary transformation

U = (|Ψ1〉 , |Ψ2〉 , . . . |ΨF 〉) (156)

that brings H in block-form, where the blocks are labeled by the eigenvalues ol.

All possible symmetries of QED are known (see chapter 2.3). There are the discrete charge

conjugation, parity and time reversal symmetries that we have not analyzed in this work.

It may be part of future investigations. Then, there is local gauge invariance that we

definitely loose in our discretized theory.75 Nevertheless, the global gauge symmetry and,

corresponding to that, charge is preserved. We analyze this in the first subsection (5.3.1)

together with the behavior of the particle number operator. Due to pair-creation and

-annihilation processes in QED, the particle number should not be conserved in contrast

to non-relativistic theories. However, we find it being conserved and the reasons are still

74 We drop the hat symbol in this section, since it is clear that operators are meant.
75 As discussed in the introduction to chapter 4.
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5.3 Symmetries in Finite-Differences

unclear.

Lastly, there are the Poincaré symmetries, that consist of a pure local part, the Lorentz

transformations, and a translation part. From those, only translational invariance can

be approximated well by a space(-time) lattice. This will be the content of the second

section 5.4.

We do not further analyze Lorentz transformations, but we want to remark that indeed

it is possible to construct a grid, that exhibits a discrete form of rotational invariance.76

We mean this in the sense, that we can approximate the rotation angle with arbitrary

precision. We can for example just choose polar coordinates and discretize those in the

same way as the Cartesian ones. But this always needs a symmetry axis (the center of

rotation) which distinguishes one point of the grid. Consequently, it is only possible to

describe a global Lorentz invariance well, which is simply the case, when the boundary

conditions have that symmetry. The local Lorentz invariance of every grid point can

only be approximated with one definite angle for every grid structure. Thus, there is

no possibility of sampling such rotations finer. A 2D quadratic grid for example exhibits

only invariance under 4 rotations. In contrast to that, we can render the minimal distance

between translations arbitrarily small. In section 6.3, this is also discussed by means of

the Fourier method.

5.3.1 Total Charge and Particle Number

We first want to analyze operators, that are not influenced by the discretization method.

The first example is the total charge operator that is related to global gauge invariance

Ĉ = e

∫
d3rψ̂+ψ̂. (157)

This definition has to be slightly modified to get the right spectrum of the eigenval-

ues. This is due to the interpretation of the ψ̂-operator. To get negative and positive

eigenvalues, we need to introduce the positron picture as shown in subsection 3.2.1:77We

reinterpret the third and fourth component of ψ̂ so that the role of the creation and

annihilation operators are exchanged.

In figure 12 we can see how the total charge eigenvalues label the blocks in the spectrum

of H. Every block by itself contains a symmetric spectrum of positive and negative values.

For example, if we want to describe a physical situation with a total charge of zero, only

256 of the 1024 eigenvalues of the Hamiltonian are important for any dynamics. Hence,

we only need to diagonalize 256 × 256-matrices and save computational costs up to a

76 The Lorentz group is the double cover of the group of complex rotations SU(2).
77 In the subsection, this is shown for momentum modes, but it is a general phenomenon. A general

definition of positron operators is given in Bialynicki-Birula and Bialynicka-Birula [1984].
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5.4 Translational Invariance

FIG. 12: Energy spectrum of the Hamiltonian that is block-diagonalized through the total
charge operator: There are nine blocks that correspond to the nine different charge eigenvalues.

factor of 43 = 64.78

The second example is the Fermion number operator

N̂ =

∫
d3r ψ̂+βψ̂. (158)

In QED, this actually should not be a symmetry, because photons can spontaneously

create electron-positron pairs. Interestingly, our finite differences Hamiltonian H actually

commutes with N. We still do not exactly know why this is, but it is probably related to

the particle/antiparticle interpretation. This will be part of future research.

5.4 Translational Invariance

In this last section for the finite-differences method, we want to discuss the invariance of

the theory under translations. The Hamiltonian H is invariant under translations, if it

commutes with the corresponding generator, the generalized momentum operator

~̂P =

∫
d3rψ̂+

(
−i~∇− e ~̂A

)
ψ̂. (159)

In our matrix-based code, we can easily implement such a commutator. The problem of

the full ~̂P is, that it contains Bosonic operators, that by definition have a commutation

error (see subsection 4.3.1). Together with the Fourier method, this is discussed in section

7.2. Hence, we only consider here the bare Dirac theory excluding Bosonic operators. The

78 The numerical diagonalization of a N ×N -matrix scales with N3. See Golub and Van Loan [1996].
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respective momentum operator is

~̂PDirac = −i~
∫

d3rψ+∇ψ. (160)

We found as expected that ~̂PDirac commutes with ĤDirac, although we cannot block-

diagonalize ĤDirac explicitly. This is due to numerical problems with pure imaginary, but

symmetric entries. The corresponding eigenvalues are purely real-valued. Consequently,

they are computed by sums of complex conjugated pairs. This is numerically very unsta-

ble, because little deviations in the imaginary parts between two theoretically complex

conjugated numbers lead to imaginary rests in their sum.

64



6 Group Theoretical Approach

In this chapter, we derive a second method, besides finite-differences, to discretize the

differential operators of our theory. This will be done by means of representation theory

of the symmetry group of a discrete lattice.

We begin in the first section 6.1 by inquiring the coordinate space to be discrete, which

is the most fundamental postulate in a group-theoretical perspective. We introduce a

3D Cartesian grid to develop our Hamiltonian theory. This somehow samples a possible

spatial part of the Minkowski space. The grid has discrete translational symmetry and

is invariant under a four element rotation group. We do not discuss the time degree of

freedom and so also for example no Lorentz-boosts. Then, we need to define the state

space. The entries of the spinor waves are functions over the coordinate space. In the

continuous theory, the correspondence would be a Hilbert space. We define such a “finite

Hilbert space” as the space of bounded discrete functions with a proper inner product.

In the next and main section (6.2), we introduce translations and their generator, the

momentum operator. Within the framework presented in the first section, we show a

general rule to derive representations of differential operators of any order. Moreover,

we show how differential operators they act on a choice of model state functions and

we compare the method to finite differences. Lastly, we also define the position operator.

With the position operator, we are able to analyze the fundamental commutation relations

of the finite theory.

In section 6.3, we briefly discuss the other symmetry operators, which may be of impor-

tance for future work.

6.1 The Framework: A Discrete World

In this section, we introduce the relevant setting for our group theoretical approach.

Let us define a 3D bounded discrete space L, formally with spacing ∆79

L = ({1, 2, . . . , N} ∗∆)3. (161)

These 3N grid points are meant to sample a compact subset of the continuous real space

K ⊂ R3. This could be a cuboid or a ball in the spatial Minkowski space.

On L, we now need to define how to “sample” the state space, which is a vector space and

with inner product. Hence, we want to define the vector space of all bounded complex

79 To keep things simple, we assume the same spacing in all three dimensions: ∆x = ∆y = ∆z = ∆.
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valued functions over L

f ∈ C[L] = {f : L→ C|‖f‖ <∞}
f : L→ C, f(~x) ≡ f~x ≡ fx1,x2,x3 ∈ C, i, j, k ∈ L.

(162)

with the inner product

〈· | ·〉 : C[L]× C[L]→ C,

〈f | g〉 =
N∑
~x=1

f ∗~x g~x ∈ C for f, g ∈ C[L].
(163)

and the corresponding norm

‖·‖ : C[L]→ C, (164)

‖f‖ =
√
〈f | f〉 ∈ C for f ∈ C[L]. (165)

The theory converges for N →∞ to the continuum limit H[K]. It is the space of square-

integrabel functions L[K ∈ R3] with inner product

〈f | g〉 =

∫
K

f ∗(~x) g(~x) d3r for f, g ∈ H[K]. (166)

At this point, we are able to define unitary transformations U. They are linear maps that

leave the inner product invariant

U : F [L]→ F [L], (167)

〈Uf |Ug〉 = 〈f | g〉 ∀f, g ∈ C[L]. (168)

This definition is equivalent to the unitarity condition

⇔ U−1 = U+. (169)

To complete the list of ingredients for a quantum mechanical theory, we have to define

a second class of operators that represent observables. To be physically interpretable,

observables need to be self-adjoint

O : C[L]→ C[L] (170)

〈f |Og〉 = 〈Of | g〉 ∀ f, g ∈ C[L]. (171)

They have only real eigenvalues (possible measurement results) and their eigenfunctions

form a basis of the corresponding Hilbert space. In a finite setting, this is equivalent to
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O, being symmetric80

O+ = O. (172)

6.2 Accessing Real Space by Means of Translations

To access our just set “discrete world”, we first want to introduce its most important

symmetry transformations: translations (subsection 6.2.1). The next subsection (6.2.2)

is devoted to its generator, the momentum operator and the related discrete from of a

derivative operator. In subsection 6.2.3, we define also the position operator and show

how the these discrete operators act on certain test functions. With the position operator

we can analyze the fundamental commutation relations in subsection 6.2.4. Finally in

subsection 6.2.5, we compare these results to finite-difference representations by means

of test functions. The comparison by means of our Hamiltonian model is discussed in

section 7.1.

6.2.1 Translations as a Group

In this subsection, we want to introduce the translation group of our discrete setting.

But to represent any operator in our discrete Hilbert space, we need to fix the boundary

conditions. To apply group theoretical methods, the only possible choice are periodic

boundaries so that the closure postulate holds. A translation T is described by a connec-

tion vector ~z = (z1, z2, z3) ∈ L81

T~z : C[L]→ C[L]

(T~zf)~x = f~x+~z mod N

(173)

From this definition, we are able to derive a matrix representation of the operator by

using group theoretical methods. In order to do that, we have to prove that the set of all

translations T = {T~z | ~z ∈ L} together with multiplication form an (Abelian) group:

1. T~x, T~y ∈ T ⇒ T~x ∗ T~y = T~x+~y ∈ T

2. T~x ∗ (T~y ∗ T~y) = (T~x ∗ T~y) ∗ T~y

3. ∃E = T~0 with T~x ∗ E = E ∗ T~x = T~x ∀ T~x ∈ T
80 In the continuous Hilbert space, self-adjointness is more complicated. For a well-defined theory,

we have to handle the infiniteness of the Hilbert space. An operator on the whole L2[K] has an infinite
domain. Therefore, in the continuum theory, symmetry is not sufficient for self-adjointness, because there
are operators that change their domain after transposing. Nevertheless, for the Hilbert space over L[K]
for any subset of K ∈ R3 , it was proven that any representation of the Poincaré group is self-adjoint.

81 The Wigner convention would result in a minus sign in this definition: T Wigner
~z f~x ≡ f~x−~z.
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4. ∀T~x ∈ T ∃T −1
~x = T−~x with T~x ∗ T−~x = E

This is very easy to validate for (173) and we do not explicitly show it here. We now try

to find the unitary matrix representation that T should have

UT~z : L→ L (174)

UT~zf(~x) = f(~x+ ~z) (175)(
UT~z
)−1

=
(
UT~z
)+
. (176)

It turns out, that the unitary representations of translations are directly linked to Fourier-

transformations. As in the continuous case we can find the reciprocal space L̃ by a

Fourier-Transform F :

f̃ = F(f) : L̃→ C (177)

f̃~k =
∑
~x∈L

e−i
~k·~xf~x =

∑
~x∈L

e−i
2π
N

(k1x1+k2x2+k3x3)f~x (178)

with ~k =
2π

N
(k1, k2, k3) kl ∈ {1, 2, . . . , N}/∆ l = 1, 2, 3 (179)

and its back transformation F−1

F−1(f̃) : L→ C (180)

f~x =
1

N3

∑
~k∈L

ei
~k·~xf̃~k. (181)

We can easily deduce its matrix representation, when we combine the three spatial indices

into one 
fk1

fk2

...

fk3N

 =


eik1·x1 eik1·x2 · · · eik1·x3N

eik2·x1 eik2·x2 · · · eik2·x3N

...
...

. . .
...

eik3N ·x1 eik3N ·x2 · · · eik3N ·x3N

 ·

fx1

fx2

...

fx3N

 . (182)

Both spaces are equivalent, but their units and the distance between two neighboring

points differ. The latter is given for any coordinate xi by the spacing ∆82

xi,min = ∆ ∀i (183)

82 To keep things simple, we defined a uniform grid in the beginning of this chapter.
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for the real space, and

ki,min =
2π

N∆
∀i (184)

for the reciprocal (k)-space ki,min .

The irreducible representation of discrete translations can be found for example in Wagner

[1998]. It is the multiplication by a complex number with absolute value equal to one in

the reciprocal space:

(T~zf)~x = F−1ei
~k·~zF(f)

= F−1

ei~k·~z∑
~y∈L

e−i
~k·~yf~y


=

1

N3

∑
~k∈L̃

ei
~k·~xei

~k·~z
∑
~y∈L

e−i
~k·~yf~y

=
1

N3

∑
~k∈L̃

ei
~k·(~x+~z)

∑
~y∈L

e−i
~k·~yf~y

= f~x+~z

(185)

The same identity exists in continuous theory

f(x+ y) =
1

2π

∫
dk eik(x+y)

∫
dx′e−ikx

′
f(x′). (186)

The construction of the unitary representation of elements of T shows us already how to

change to its eigen-representation. We first formally decompose the operator

(T~zf)~x =
∑
~y∈L

3N∑
i=1

ai 〈~x |Φi〉 〈Φi | ~y〉 〈~y | f〉 (187)

with (T~zf)~x |Φi〉 = ai |Φi〉 . (188)

(189)

Now we compare it to the unitary representation

(T~zf)~x =
1

N3

∑
~k∈L̃

ei
~k·~xei

~k·~z
∑
~y∈L

e−i
~k·~yf~y (190)

f~y → 〈~y | f〉 (191)

e−i
~k·~y → 〈Φi | ~y〉 (192)

ai → ei
~k·~z (193)

ei
~k·~x → 〈~x |Φi〉 . (194)
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We see that the Fourier-transformation is actually the transformation from position co-

ordinates to the eigenfunctions of translations which are reciprocal coordinates. The

eigenvalues are just complex exponentials. We see here that translation operators are

not self-adjoint. We can also conclude that all operators and states that are diagonal in

Fourier-space are translational invariant.

6.2.2 Momentum Operator and Derivatives

It is important to emphasize that T is unitary and not self-adjoint, hence it does not

correspond to any observable. But we can now construct a self-adjoint operator that

is diagonal in Fourier-space, which means that the vectors Φ~k, that were introduced in

the last subsection, are its eigenvectors. This simplest possible self-adjoint operator that

shares its eigenfunctions with translations would be

Pf =
∑
~k∈L̃

~k
∣∣Φ~k

〉 〈
Φ~k

∣∣ f〉
=

1

N3

3N∑
i=1

eiki·~xki
∑
~y∈L

e−i
~k·~yf~y. (195)

This definition seams to be reasonable, as it has the right continuum limit Pcont = −i∂x

Pcontf(x) = −i∂xf(x)

= −i∂x
1

(2π)3

∫
dk eikx

∫
dy e−ikyf(y)

= −i
1

(2π)3

∫ ∫
dydk ∂xe

ik(x−y)f(y)

= −i
1

(2π)3

∫ ∫
dydk ikeik(x−y)f(y).

(196)

We want to remark that this approach is computationally fast, when we implement it by

means of the fast Fourier transform algorithm, as already Feit et al. [1982] argued.

Finally, let us also define the nth derivative operator

(∂i)
nf =

1

n!
F−1((iki)

n(Ff)~k), (197)

∂if(~y) =
1

N3

∑
~k∈L

ei
2π
N

(k1y1+k2y2+k3y3)iki
∑
~x∈L

e−i
2π
N

(k1x1+k2x2+k3x3)f~x (198)

=
1

N3

∑
~k∈L

ei
~k·~yiki

∑
~x∈L

e−i
~k·~xf~x (199)

=
1

N3

∑
~k,~x

ikie
i~k·(~y−~x)f~x. (200)
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FIG. 13: We show the test function f : L → L, f(x) = sin(x) and the action of the operators
of the last subsection on it: the translation, momentum and kinetic energy operator. The all
act, as expected from the continuum limit.

Note that every operator for odd derivatives has purely imaginary eigenvalues and con-

sequently is not self-adjoint. Thats why we need to add the i in the definition of the

momentum. As special case, we define the non-relativistic kinetic energy operator K
analogously to P as K = −P2/2

Kf : C[L]→ C[L] (201)

Kf =
1

2N3

3N∑
i=1

eiki·~x(ki)
2
∑
~y∈L

e−i
~k·~yf~y. (202)

6.2.3 The Action of Translations

In this subsection, we want to visualize the new definitions in one dimension. For that,

we show two examples for the action of the developed operators on test functions. Figure

13 shows the function f : L → R, f(x) = sin(x), that is one eigenmode of the “periodic

resonator.” We see, that all our defined operators act exactly as we expect: Translations

translate the coordinates of the function f, the momentum operator P gives the negative

derivative of f and the kinetic energy operator applied to f is proportional to the function

itself. We also verified that the amplitudes correspond to the continuous limit operators.

The second example is shown in figure 14. The text function here is f : L→ R, f(x) = x,

that was translated by means of the developed formalism. Here we see well how important

the domain of the function is: we defined a certain function f : L → R that has in fact
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FIG. 14: The test function f : L → L, f(x) = x and the action of the z = 0.5 translation
operator (185) on f is shown. As expected, we see the coordinate change in x.

the same rule like the identity on R : f : R → R, f(x) = x. But on L with periodic

boundary conditions, it is a sawtooth function with very steep jump. Consequently, its

continuous limit can never be part of the domain of any differential operators. For pure

translations there is no difference, but we see in subsection 6.2.5, how the jump visualizes

the differences to the finite-differences method.

6.2.4 Discrete Commutation Relations

In this subsection, we first introduce and discuss the position operator of our discrete

lattice. Then we use this expression to define the fundamental commutation relations.

To demonstrate the concepts that were developed so far, let us have a look at the position

operator ~̂x83 that measures the position of an object in our space. As we defined the space

in position space we already used its eigenrepresentation

~̂x : L→ L (203)

~̂xf(~y) = (x̂1, x̂2, . . . , x̂3N)f(~y) (204)

~̂xf(~y) =
∑
~y∈L

3N∑
i=1

ai 〈~z |xi〉 〈xi | ~y〉 〈~y | f〉 (205)

83 We denoted the vector operator ~̂x with a hat to distinguish it from the coordinate ~x. Other operators
are not denoted by a hat like in other chapters.
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=
3N∑
i=1

ai 〈xi | f〉 . (206)

The eigenvalues ai are of course translational invariant, but within a certain representation

we need to specify one origin. Here, we need to distinguish between two situations. Either

there is a distinguished origin or not. Such origin could be defined by the experimental

setting, like for example the monopole of a charge distribution that is the origin for the

dipole operator. We want to show the difference in a small Gedankenexperiment. Let us

assume that we want to make a measurement of the position of a test function (in only 1

dimension):

〈x̂〉f =
N∑
i=1

〈f |xi〉 ai 〈xi | f〉 (207)

= a1|f(x1)|2 + a2|f(x2)|2 + · · ·+ aN |f(xN)|2 (208)

standard
= 0|f(x1)|2 + 1|f(x2)|2 + · · ·+ (N − 1)|f(xN)|2. (209)

If we would have a very peaked function with only one entry, like

fp(x1) = 1, fp(xi) = 0 for i = 2, 3, . . . N, (210)

our standard definition would result as we want in 〈~x〉fp = 0 = x1. But what happens if

we translate the coordinate system by an arbitrary distance?

〈Tzx〉f =
N∑
i=1

〈f | Tz |xi〉 Tzai 〈xi | Tz | f〉 (211)

=
N∑
i=1

〈f |xi + z〉 (Tzai) 〈xi + z | f〉 (212)

= (Tza1)|f(x1 + z)|2 + · · ·+ (TzaN)|f(xN + z)|2 (213)

(214)

For vectors, the translation is well defined but we do not know how T acts on the eigen-

values of an operator. We summarize the two possibilities:

1. Tzai = ai + z → 〈Tzx̂〉f = 〈x̂〉f , so the origin is distinguished and e.g. a dipole

moment would not change under the actions of a translation or

2. Tzai = ai → 〈Tzx̂〉f =
∑N

i=1 〈f |xi + z〉 ai 〈xi + z | f〉, so it does not act on the

eigenvalues which corresponds to a normal position measurement

73



6.2 Accessing Real Space by Means of Translations

Consider for example a translation by 2

〈Tz=2x̂〉fp
1.
= 2|fp(x3)|2 + 3|fp(x4)|2 + · · ·+ 0|fp(x1)|2 + 1|fp(x2)|2

= 0|f(x1)|2 + 1|f(x2)|2 + · · ·+ (N − 1)|f(xN)|2

= 0

2.
= 0|fp(x3)|2 + 1|fp(x4)|2 + · · ·+ (N − 1)|fp(x2)|2

= N − 2

Of course we could also say that the dipole operator is invariant under translations but

the position operator is not.

Let us now use this definition to analyze the discrete fundamental commutator between

position x̂ and momentum p̂. Commutation relations are essential in quantum physics

and in a way they set a limit to discretized theories. This is because of the finiteness

of the theory. It can be proven [v. Neumann, 1931], that the fundamental commutator

between position x̂ and momentum p̂

[x̂, p̂] = 1 (215)

can only be fulfilled if one of two operators is unbounded.

Instead, the commutation relation in the discretized theory has a commutation rest R(N)

x̂ip̂if(~x) = ixi
1

N3

∑
~k,~y

ikie
i~k·(~x−~y)f~y

p̂ix̂if(~x) = i∇(xif~x) = if~x∇xi + ixi∇f~x

= if~x
1

N3

∑
ki,yi

ikie
iki(xi−yi)yi + ixi

1

N3

∑
~k,~y

ikie
i~k·(~x−~y)f~y

⇒ [x̂i, p̂i]f(~x) = if~x
1

N3

∑
ki,yi

ikie
iki(xi−yi)yi

= iR(N)f~x. (216)

The commutation rest R(N) is for finite grid size N not the 1 matrix, but

R(N) ≡ 1

N3

∑
ki,yi

ikie
iki(xi−yi)yi 6= 1. (217)

Instead in the continuous limit, we would have:

[x̂, p̂]f(x) = if(x)
1

(2π)3

∫ ∫
dydk ikeik(x−y)y (218)
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6.2 Accessing Real Space by Means of Translations

FIG. 15: We that both, the FD and FM method behave neraly identically. The deviation is
due to Dirichlet boundary conditions being imposed on the FD operator.

= if(x)
1

(2π)3

∫ ∫
dydk ∂xe

ik(x−y)y (219)

= if(x)∂x
1

(2π)3

∫
dkeikx

∫
dy e−ikyy (220)

= if(x)∂x
1

(2π)3

∫
dkeikx(F id)k (221)

= if(x)∂xx (222)

= if(x), (223)

where we used the inverse of the proof (196). In the continuous limit, the commutation

relations are fulfilled.

In equation (140), we saw this rest already in the respective form for the Bosonic com-

mutators.

6.2.5 Comparison to Finite Differences

Lastly, we want to compare both methods to discretize operators, finite-differences (FD)

and the just presented Fourier-method (FM).

We start again by means of a mode function of the domain: f : L → R, f(x) = cos(x).

We see that both method are (nearly) identically. Only close to the domain boundary,

the finite-differences method exhibits a deviation. But this is simply because we have

imposed Dirichlet boundary conditions. There is only one of the two terms of the central
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6.3 Other Symmetry Operators

FIG. 16: Differences are best stressed by a function that would not be in the domain of any
operator in the continuous case, a not differentiable ramp function. Here we see that FD (nearly)
recovers the behavior of a derivative but FM

”
presses“ it into its domain.

differences method at the boundary. We checked that both methods agree with periodic

boundary conditions up to the discretization error.

Now we want to demonstrate the differences between both methods. We apply the op-

erators on a function, that is not part of the domain of the respective continuous limit:

the ramp function f(x) ∝ −|x|. In figure 16, we can see what this means. The FD

operator (nearly) recovers the behavior of a derivative. But the FM derivative exhibits

a “wiggle”-structure. These could be called the ghosts of the discontinuities from the

continuous limit. In this sense, the FM operator “knows” about its continuum limit or

more precisely, about the domain of it.

From these results we see that both methods obviously exhibit differences and that their

comparison is worth analyzing further: this is done in chapter 7.

6.3 Other Symmetry Operators

Beside translations, a general cubic grid exhibits some more symmetries. These are the

48 different symmetry transformations, consisting of all possible rotations and reflections

[Wagner, 1998]. In theory it is thus possible to construct something like the angular

momentum operator for such a grid, what we spare here. Anyway, such an operator may

define certain rotations, but they do not change, when the number of grid points is varied.

Hence, the continuous limit is approached non-continuously.
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FIG. 17: Comparison of the eigenvalues of the Hamiltonian for FD and FM method. We see
that they look exactly the same on large scales (left), but zooming closer, we see deviations
(right).

7 Numerical Results of the Fourier Method

In this last chapter, we want to present the first results, that we obtained with the Fourier

method. In the first section (7.1) we present the energy spectra of the Fourier-Hamiltonian

in comparison with the finite-differences method. There we see that both methods have

indeed a different behavior. We can proof that is due to a different spacing dependency.

In the second section (7.2), we try to analyze the commutator between the Hamiltonian

and the momentum for the full interacting theory. We show that it does not vanish,

because of the commutation rest between Boson operators.

7.1 Comparison to Finites-Differences

In this section, we finally compare the finite-differences (FD) and the Fourier meth-

ods (FM). To properly do that, we impose periodic boundary conditions on the finite-

differences Hamiltonian.84

In figure 17, we see the comparison between the energy spectrum of the FM and FD

method. On big scales, their lines entirely overlap in the plot, but closely around the

energy plateaus, there are deviations. Let us analyze this more precisely: The difference

between both methods is mainly due to a different dependence on ∆x. Therefore, let

us briefly recapitulate the terms of the Hamiltonian and its dependence on ∆x. The

Hamiltonian consists of five terms85

H = Hmass +Hkin +Hint +Hmag +Helec, (224)

84 We mentioned the deviations in 4.2.
85 We dropped the hat symbol to denote operators in this chapter for simplicity.
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7.1 Comparison to Finites-Differences

FIG. 18: We see the different contributions of the spectra of the FD and FM method. The
momentum contribution in FM (left) is on a medium energy scale up to ±1000 Hartree but the
FD momentum term vanishes. Likewise, for the sum of interaction and electromagnetic part
(that are on the same scale), we can observe deviations.

that are all functions of ∆x with very different dependencies:

Hmass = mc2

∫
R3

d3r ψ+βψ ∝ 1

∆x

(225)

Hkin = −i~c
∫

R3

d3r ψ+~α · ∇ψ ∝ 1

∆2
x

(226)

Hint = −e
∫

R3

d3r ψ+~α · ~Aψ ∝ 1√
∆3
x

(227)

Hmag =
ε0
2

∫
R3

d3r
(
∇× ~A

)2

∝ 1

∆3
x

(228)

Helec =
ε0
2

∫
R3

d3r
(
c ~E
)2

∝ 1

∆x

. (229)

We see, that Hmass and Helec have to weakest dependency on ∆x and hence they will be

dominated by the others for small spacing.

For our standard choice ∆x = 1 (Bohr) instead, we already know from chapter 5, that

the mass term is dominating over any other. Yet we can expect that this will change for

small ∆x. Figure 18 confirms this guess. We also see in the figure another feature of the

finite-differences method with periodic boundary conditions: the momentum operator is

zero, because all the contributions cancel out each other pairwise. This of course is a very

inconvenient fact, especially when we compare it to the Fourier method, which shows high

eigenvalues for the momentum operator.

Let us now analyze the derivations of the FD-Hamiltonian with respect to ∆x. From our

previous considerations we can guess that we will observe exchanges of the dominating

energy contributions. We compare both spectra under variation of ∆x in figure 19. Al-

though the energy values approach each other for ∆x = 1, there are strong deviations for

small ∆x. These are due to the different growth of all the terms but the mass and the

78



7.1 Comparison to Finites-Differences

FIG. 19: The FD and FM method are compared under variation of the spacing ∆x. For
∆x ≈ 0.1, the respective energy values become nearly identically (up,left). But for smaller ∆x,
both methods deviate strongly (up,right). This is due to the growth of the momentum term
(down,left), the interaction and the electric term (down,right).

electric term Hmass, Helec.

We also repeated the other parameter variations, but we did not find comparable, quali-

tative differences between the Fourier and finite-differences method.
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7.2 Remarks on Symmetries in Full QED

FIG. 20: The eigenvalue spectrum of the Dirac Hamiltonian, reordered by two different sym-
metry operators. On the left, we block-diagonalized the Hamiltonian by means of the total
momentum operator and on the right, we show its reordered spectrum according to the charge
operator. The energy spectrum is exactly equivalent.

7.2 Remarks on Symmetries in Full QED

In this last section, we want analyze the translation symmetry of the Hamiltonian with

the aid of the Fourier method.

We want to start again with the bare Dirac Hamiltonian like in section 5.4. For the sake

of completeness, we show in figure 20 the eigenvalues of the Hamiltonian in the Fourier

method that was block-diagonalized with the aid of the momentum operator. Due to

numerical problems, we could not perform this operation for the finite-differences case.

It is compared to the corresponding figure of the block-diagonalization by means of the

charge operator in the Fourier method.86 Interestingly, the energy eigenvalues are exactly

equivalent.

Having confirmed the translational invariance of the free theory, the logical next step is

to analyze the [H,P]-commutator in the full interacting theory. The P operator is then

generalized to

~P =

∫
d3rψ+

(
−i~∇− e ~A

)
ψ, (60)

so it consists of the canonical part

~Pcan = −i~
∫

d3rψ+∇ψ, (230)

86 It is equivalent to figure 12 of subsection 5.3.1, where the same is already shown for finite-differences.
As the charge operator does not depend on the discretization method, this equivalence could be expected.
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7.2 Remarks on Symmetries in Full QED

FIG. 21: We see the three different parts of commutator between H and P ): One of them is due
to the fundamental Bosonic commutation rest (left, R1). The second and the third contribution
have the same sparsity pattern (right, R2, R3). See text for further explanations.

and a part, with Bosonic contribution

~Pbos = −e
∫

d3rψ+ ~Aψ. (231)

As expected, the commutator between the Hamiltonian and the canonical momentum

does not vanish. In figure 21 instead, we show the commutation rest. It has three parts:

first, the contribution from the Bosonic parts of the Hamiltonian Hbos = Hint +Helectric +

Hmagnetic and the momentum

R1 = [Hbos, ~Pbos], (232)

second, the contribution from Hint and the canonical momentum

R2 = [Hint, ~Pcan], (233)

and last, another contribution from the Bosonic momentum, but this time with the kinetic

part of H

R3 = [Hin, ~Pbos]. (234)

The first part R1 is due to the truncation error of the Bosonic commutators that was

discussed in subsection 4.3.1. If we want to find the block-diagonalized form of the full

interacting Hamiltonian, we have to find a way to eliminate the truncation error. This

will be topic of future research.

For the latter two parts R2, R3, this is different. Interestingly, both have exactly the same

sparsity structure. And not only that, the difference between both matrices is only a real
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7.2 Remarks on Symmetries in Full QED

FIG. 22: We see the factor between the two commutation rests

factor

f = R2,ij/R3,ij ∀i, j. (235)

By manually multiplying the Bosonic part of the momentum operator Pbos with this factor

P fix
bos = f · Pbos, (236)

both contributions cancel out each other

Rfix
3 = [Hin, P

fix
bos ] = −R2. (237)

Only the Bosonic rest R1 remains.

Interestingly, we found out that the factor varies with the spacing ∆x (see figure 22). This

is again a hint for a renormalization effect, that can be the object of further research.
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8 Conclusion

The content of this thesis is rather diverse. We presented a technique to discretize quan-

tum field theories. This was achieved by means of a mode expansion and the interpretation

of the resulting terms in the sense of second quantization. But this is not enough to dis-

cretize differential equations. We have to decide how differential operators act on the

discrete fields. Especially because it is computationally very efficient, a very common

way in numerical analysis to handle this is the finite-differences method. But we also

developed a different approach, which is based on the group theoretical interpretation of

physical theories. By means of representation theory, the differential operators in a field

theory are representations of certain generators of the group. In the second approach, we

treated the differential operators as representations of the (discrete) symmetry group of

the discretized space. This is mathematically equivalent to solving differential equations

with the aid of Fourier transformations. (But in terms of physics, this gives us a different

interpretation and connection to symmetries.)

We applied these methods on a Hamiltonian-based theory of quantum electrodynamics.

We derived two different discrete expressions of the Hamiltonian and implemented them

in a code. One of the main advantages of our approach is that it allows for analyzing the

complete (discrete) Fock space of the theory. The price for that is like usual in interacting

quantum theories, that we are restricted to very small model systems.

Nevertheless, the developed methods form a good framework to analyze the fundamental

problems of QED like renormalization, or the negative energy solutions of the Hamilto-

nian. We see that traces of all of them are still present in our small system. Even our

very small model system allows for visualizing certain limit cases. This is good to verify

the theory, so we are able to see that the non-relativistic, the strong-coupling, and the

heavy-Fermion limit is reasonable. Moreover, we are able to visualize the transition be-

tween the general theory and its limits. We can observe which eigenvalues degenerate to

one energy manifold and where. Or if and where there are line-crossings. In future work,

we want to compare this to certain analytically derived limit cases like the Pauli equation

for the non-relativistic limit, so that we can identify where and how the theories deviate.

One could also include higher order terms, etc.

As we have access to the complete Fock space, we can study the role of symmetries in

a remarkable way. We can track how a Hamiltonian in any basis is symmetrized due to

any symmetry operator. This just corresponds to a block-diagonalization in our matrix

picture. For example, we have illustrated that the total charge operator divides the QED-

Hamiltonian in L = 4N + 1 blocks of different charge eigenvalues. But the framework is

very general and we can redo this (theoretically) for any symmetry.

And finally, we can investigate the role of the discretization itself. We found that especially
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the behavior under spacing variations depends strongly on the discretization method.

Both our methods have a very different energy spectrum for strong confinement. This is

connected to renormalization. To compare the energies for different ∆x values, we need

to properly renormalize the theory. The unequal behavior of the two methods is a hint

for a difference in their renormalization procedures, especially because the differential

operators, that “carry the difference” between both methods, have the same continuous

limit.

We also directly see the commutation errors arising from the truncation of the Bosonic

space. This was visible when we analyzed the commutation error between the Hamiltonian

and the momentum for the full interacting theory. We were able to identify two reasons:

one is spacing dependent and probably also linked to renormalization, and we were able

to eliminate it by inserting an artificial factor. Yet another error remained from all the

terms with Bosonic operators, and we could show that this is exactly due to the Bosonic

truncation error. One of our future projects is to apply methods to also eliminate that

error. Our framework should be perfectly suited to analyze such a procedure with all its

implications.

In conclusion, we were able to develop a framework that is very promising for the inves-

tigation of discretization. As noted in the introduction, our work was guided by three

research questions. The first and most general of our research question was “what is the

influence of the discretization on the ingredients of a physical theory: equations of mo-

tion, spinor-wave fields and symmetries.” From our results we can conclude that there is

definitely an influence, but that it is very difficult to quantify its importance. Especially

symmetries are broken in discretized settings, and the derivation of spinor algebras or

covariant equations of motion as representations of something like a “discrete Minkowski

space” are not possible in our point of view. Maybe there are generalizations of group

theory possible that could allow for that, but we did not investigate this more deeply.

The second question was “whether it matters, on which level the discretization takes

place.” This questions is definitely not answered so far, but at least we can say that our

analyzed limit cases look qualitatively reasonable. But quantitative and precise answers

definitely need larger grids. The possibility of comparing QED with a limit case before

and after the discretization is mentioned in the outlook.

The third and last question was ”whether the discretization methods differ crucially.”

This turned out to be a very promising research topic for our model, because we indeed

found a difference between our two discretization methods. The deeper reasons for this

are still to be found and the results could be very important for theories that have to deal

with any renormalization.
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9 Outlook

As the development of our new approach is still at a very early stage, this outlook is

probably an especially important part. We hope that the reader shares our opinion that

the developed framework presents a big potential. A lot of the possible future applications

were already mentioned in the respective chapters and we do not want to repeat all of

them. Here, we focus on the most important part from our perspective, where some of

them are already in process.

To complete our survey on symmetries is essential for lots of other things. We aim to

maximally block-diagonalize the Hamiltonian with the aid of all possible symmetry op-

erators. With this, we hope to find an effective algorithm that gives us any of these

blocks without the necessity of building the whole Fock space. This is especially impor-

tant to make studies on bigger domains feasible. We saw already that the truncation

error of the fundamental Bosonic commutation relations is an important obstacle to such

block-diagonalizations. A possible way to clear this could be a method called “discrete

canonical commutation relations” [Hammel, 2004] or the use of finite Bosonic oscillators

(e.g. Kravchuk Polynomials, see Atakishiyeva et al. [2014]).

To finalize the chapter on symmetry, we would like to also analyze gauge symmetry in our

framework. We could implement the techniques of the lattice gauge theory community

to see, whether corrected gauge Bosons behave different.

Another very interesting topic for future research is renormalization. This is especially

interesting for us as it is directly connected to the discretization. Not unexpectedly, we

already found a lot of traces of the divergences of the continuous theory. A lot of the

quantities diverge for small spacing, but interestingly, some of them diverge differently.

It turned out that the two discretization methods considered in this work are a good tool

to analyze this and we believe that we can find some interesting physics behind these

observations.

Another important difficulty of QED is defining the ground state. We are still not sure,

how a QED ground state with non-diverging continuum limit would look like in our

approach. To investigate this phenomenon deeper, we could try to implement time-

dependence and perform imaginary time-propagation. This is a typical tool in other

communities [Pang, 1997].

Also the analysis of electron and positron states appears possible: we could implement

different techniques to differentiate between electrons and positrons and analyze their

interaction. Especially the non-locality of pure electron or positron states could be inves-

tigated.

A very fruitful aspect of our model is its capability to visualize the complete Fock space of

the theory also under variation of parameters, which allows for the investigation of limits
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to other theories. The quantitative comparisons of analytical limits could be added to the

qualitatively good results from section 5.2. For example, we could implement the non-

relativistic Pauli Hamiltonian in our code to see whether the QED-Hamiltonian converges

to it for C →∞. Also higher order corrections could be added.

Analyzing the Fock space of the limit theories is of course a promising task by itself.

Finally, we want to mention that our approach allows for arbitrary coordinate choice.

Although we presented it here in real-space, we can do the same in momentum or any

other space. It could also be interesting to deeper investigate the choice of coordinates

within a certain space, for example exploiting the full Minkowski space and implement

lightcone-coordinates. This is a typical tool for relativistic theories, and allows among

others for a very easy definition of the ground state Brodsky et al. [1998].
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A Derivation of the Discretized Hamiltonian

For further usage and completeness, the derivation of all terms of the Hamiltonian is

shown here explicitly. In the first part, the derivation is shown with examples for

finite-differences and the Fourier method, respectively. In the second part, the terms are

written-out and in the third part the specific 1D-1-mode model is shown.

A.1 Derivation of the Terms one by one

A.1.1 Mass Term Hmass

ψ+Hmass ψ = m
∑
~rn,~r′n

∑
λ,λ′

~eλ β ~eλ′︸ ︷︷ ︸
=(1,1,−1,−1)T≡~β

ĉ+
λ,~rn

ĉλ′,~r′n Θ3
~rn(~r) Θ3

~rn ′(~r)︸ ︷︷ ︸∫
d3r→ δ~rn~rn ′

Hmass = m
∑
~rn

∑
λ

βλ ĉ
+
λ,~rn

ĉλ,~rn

A.1.2 Kinetic Term Hkin

ψ+Hkin ψ = −i~ψ+ αi ∂i ψ = Hkin,x +Hkin,y +Hkin,z

Finite Differences

Hkin,x = −i~
∑
~rn,~r′n

∑
λ,λ′

ĉ+
λ,~rn

~eλ αx ~eλ′ ĉλ′,~r′n︸ ︷︷ ︸
≡Ax

Θ3
~rn(~r) ∂xΘ

3
~rn ′(~r)︸ ︷︷ ︸

≡Tx

→
∫

d3rTx =
1

2∆x

(
δxnx′n+1

δyny′nδznz′n − δxnx′n−1
δyny′nδznz′n

)
→ Ax = e1 δλ1δλ′4 + e2 δλ2δλ′3 + e3 δλ3δλ′2 + e2 δλ4δλ′1

≡
∑
λ

Hkin,x,λ

From these 4 terms exemplary the first is:

Hkin,x,1 = − i~
2∆x

∑
~rn

(
c+

1,~rn
c4,xn+1ynzn − c+

1,~rn
c4,xn−1ynzn

)
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A.1 Derivation of the Terms one by one

The rest follows just by changing indices according to Ax. For the x and y component

just the respective delta symbols will be listed:∫
d3rTy =

1

2∆y

(
δxnx′nδyny′n+1

δznz′n − δxnx′nδyny′n−1
δznz′n

)
Ay = e1 δλ1δλ′4 + e2 δλ2δλ′3 − e3 δλ3δλ′2 − e4 δλ4δλ′1∫

d3rTz =
i

2∆z

(
δxnx′nδyny′nδznz′n+1

− δxnx′nδyny′nδznz′n−1

)
Az = e1 δλ1δλ′3 + e2 δλ2δλ′4 + e3 δλ3δλ′1 + e4 δλ4δλ′2

Fourier-Method

Hkin,x = −i~c
∑
~rn,~r′n

∑
λ,λ′

ĉ+
λ,~rn

~eλ αx ~eλ′ ĉλ′,~r′n︸ ︷︷ ︸
≡Ax→like before

Θ3
~rn(~r) ∂xΘ

3
~rn ′(~r)︸ ︷︷ ︸

≡Tx

→
∫

d3rTx = −i~
Nx∑
m=1

Dxn,xmδxmx′nδyny′nδznz′n

≡
∑
λ

Hkin,x,λ

Hkin,x,1 = −i~c
∑
~rn

c+
1,~rn

Nx∑
m=1

Dxn,xm c4,xmynzn

A.1.3 Interaction Term Hint

ψ+Hint ψ = −eψ+ αiAi ψ = Hint,x +Hint,y +Hint,z

Hint,x = −e
∑
~rn,~r′n

∑
λ,λ′

ĉ+
λ,~rn

~eλ αx ~eλ′ ĉλ′,~r′n︸ ︷︷ ︸
=Ax like in the kinetic case

Θ3
~rn(~r)AxΘ

3
~rn ′(~r)︸ ︷︷ ︸∫

d3r→Ax,~rn δ~rn~rn ′

≡
∑
λ

Hint,x,λ

Note that the order of ~A and ψ was changed, which is possible as both operators access

a different part of the Hilbert space. Again only the first term is presented exemplary,

the rest follows straightforward:

Hint,x,1 = − e√
2

∑
~rn

(
c+

1,~rn
c4,~rn

)(
â+

1,~rn
+ â1,~rn

)
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A.1 Derivation of the Terms one by one

A.1.4 Magnetic Part of the EM Term HEM,M

HEM,M =
ε0
2

(
∇× ~A

)(
∇× ~A

)
Lagrange

=
Identity

ε0
2

(
∆ ~A2 −

(
∇ · ~A

)(
∇ · ~A

))
=
ε0
2

(∂i∂iAjAj − ∂iAj∂jAi)

=
ε0
2

(∂i∂i (Aj)Aj + Aj∂i∂i (Aj)− ∂i (Aj) ∂jAi − Aj∂i∂jAi)

There are three different types of terms: ∂iAj, ∂i∂jAj, ∂i∂iAjAj. For each of them, one

example will be shown explicitly in the following:

(A2(~r))2 =
1

2

~N∑
~rn~r′n

~ey~ey

(
â+

2,~rn
+ â2,~rn

)(
â+

2,~r′n
+ â2,~r′n

)
Θ3
~rnΘ3

~r′n

=
1

2

~N∑
~rn~r′n

(
â+

2,~rn
â+

2,~r′n
+ â+

2,~rn
â2,~r′n+

+â2,~rn â
+
2,~r′n

+ â2,~rn â2,~r′n

)
Θ3
~rnΘ3

~r′n

≡ A2
2,++ + A2

2,+0 + A2
2,0+ + A2

2,00

Finite Differences

∂2
x (A2,++)A2,++ =

1

2

~N∑
~rn~r′n

(
â+

2,~rn
â+

2,~r′n

)
∂2
xΘ

3
~rnΘ3

~r′n︸ ︷︷ ︸∫
d3r→ 1

∆x2

(
δ~rn,x′n−1y

′
nz
′
n

+δ~rn,x′n+1y
′
nz
′
n
−2δ~rn,~r′n

)
∫
∂2
x (A2,++)A2,++d3r =

1

2∆2
x

~N∑
~rn

(
â+

2,~rn
â+

2,xn−1ynzn
+

+ â+
2,~rn

â+
2,xn+1ynzn

− 2 â+
2,~rn

â+
2,~rn

)
The other terms follow by dropping the dagger for the first, the second or both

operators, respectively.

The second part Aj∂i∂i (Aj) is the same with the order of the two operators exchanged.

As operators commute for different sites, the terms just double:

∫
∂2
x (A2,++)A2,++ + A2,++∂

2
x (A2,++) d3r =

1

∆2
x

~N∑
~rn

(
â+

2,~rn
â+

2,xn−1ynzn
+

+ â+
2,~rn

â+
2,xn+1ynzn

− 2 â+
2,~rn

â+
2,~rn

)
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A.1 Derivation of the Terms one by one

For the other two terms follows:

∂x∂yA2 =
1√
2

~N∑
~rn

(
â+

2,~rn
+ â2,~r′n

)
∂x∂yΘ

3
~rn︸ ︷︷ ︸

→ 1
4∆x∆y

(Θxn+1Θyn+1Θzn−Θxn−1Θyn+1Θzn−

Θxn+1Θyn−1Θzn+ Θxn−1Θyn−1Θzn)

∂xA2 =
1√
2

~N∑
~rn

(
â+

2,~rn
+ â2,~r′n

)
∂xΘ

3
~rn︸ ︷︷ ︸

→ 1
2∆x(Θxn+1ΘynΘzn−Θxn−1ΘynΘzn)

The explicit terms thus are:

∂x (A1) ∂yA2 =
1

2

~N∑
~rn,~r′n

(
â+

1,~rn
+ â1,~rn

) (
â+

2,~r′n
+ â2,~r′n

)
︸ ︷︷ ︸

A12

∂xΘ
3
~rn∂yΘ

3
~r′n︸ ︷︷ ︸

Txy

→A12=â+
1,~rn

â+

2,~r′n
+â+

1,~rn
â2,~r′n

+â1,~rn â
+

2,~r′n
+â1,~rn â2,~r′n

→Txy= 1
2∆x

(Θxn+1ΘynΘzn−Θxn−1ΘynΘzn) 1
2∆y

(
Θx′n

Θy′n+1
Θz′n
−Θx′n

Θy′n−1
Θz′n

)
∫

d3rTxy= 1
4∆x∆y

(
δxn+1x

′
n
δyny′n+1

δznz′n
−δxn−1x

′
n
δyny′n+1

δznz′n
−δxn+1x

′
n
δyny′n−1

δznz′n

+δxn−1x
′
n
δyny′n−1

δznz′n

)
≡ R++ +R+0 +R0+ +R00

R++ =
1

8∆x∆y

~N∑
~rn

â+
1,xn+1ynzn

â+
2,xnyn+1zn

− â+
1,xn−1ynzn

â+
2,xnyn+1zn

− â+
1,xn+1ynzn

â+
2,xnyn−1zn

+ â+
1,xn−1ynzn

â+
2,xnyn−1zn

A1∂x∂yA2 =
1

2

~N∑
~rn,~r′n

(
â+

1,~rn
+ â1,~rn

) (
â+

2,~r′n
+ â2,~r′n

)
︸ ︷︷ ︸

A12

Θ3
~rn∂x∂yΘ

3
~r′n︸ ︷︷ ︸

T−xy

→Axy→like above

→T−xy= 1
4∆x∆y

ΘxnΘynΘzn

(
Θx′n+1

Θy′n+1
Θz′n
−Θx′n−1

Θy′n+1
Θz′n
−

Θx′n+1
Θy′n−1

Θz′n
+ Θx′n−1

Θy′n−1
Θz′n

)
∫

d3rT−xy= 1
4∆x∆y

(
δxnx′n+1

δyny′n+1
δznz′n

−δxnx′n−1
δyny′n+1

δznz′n
−δxnx′n+1

δyny′n−1
δznz′n
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A.1 Derivation of the Terms one by one

+δxnx′n−1
δyny′n−1

δznz′n

)
≡ S++ + S+0 + S0+ + S00

S++ =
1

8∆x∆y

~N∑
~rn

â+
1,~rn

â+
2,xn+1yn+1zn

− â+
1,~rn

â+
2,xn−1yn+1zn

− â+
1,~rn

â+
2,xn+1yn−1zn

+ â+
1,~rn

â+
2,xn−1yn−1zn

Fourier-Method Let us consider the first two terms:

∂2
x (A2,+o)A2,+o =

1

2

~N∑
~rn~r′n

(
â+

2,~rn
â2,~r′n

)
∂2
xΘ

3
~rnΘ3

~r′n︸ ︷︷ ︸∫
d3r→

∑Ni
m=1 Lxn,xmδxmx′n

δyny′n
δznz′n∫

∂2
x (A2,+o)A2,+od

3r =
1

2

~N∑
~rn

Nx∑
m=1

Lxn,xm â
+
2,xmynzn â2,~rn

The second term is equivalent to the first up to a commutation error (that does not

arise in the finite differences case):

∫
A2,+o∂

2
x (A2,+o) d3r =

1

2

~N∑
~rn

â+
2,~rn

Nx∑
m=1

Lxn,xm â2,xmynzn

=
s

2

~N∑
~rn

Nx∑
m=1

Lxn,xm â2,xmynzn â
+
2,~rn

+ r

with r =


Nx +Ny +Nz for o+

−(Nx +Ny +Nz) for +o

0 for ++,oo

and s =

{
−1 for o+

1 else

where we used: aia
+
j − a+

j ai = δij

So we have for both terms together:

++→
~N∑
~rn

Nx∑
m=1

Lxn,xm â
+
2,xmynzn â

+
2,~rn

2(+o)→
~N∑
~rn

Nx∑
m=1

Lxn,xm â
+
2,xmynzn â2,~rn +

~N∑
~rn

Nx∑
m=1

Lxn,xm â2,xmynzn â
+
2,~rn
− (Nx +Ny +Nz)
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A.1 Derivation of the Terms one by one

2(o+)→
~N∑
~rn

Nx∑
m=1

Lxn,xm â2,xmynzn â
+
2,~rn
−

~N∑
~rn

Nx∑
m=1

Lxn,xm â
+
2,xmynzn â2,~rn + (Nx +Ny +Nz)

oo→
~N∑
~rn

Nx∑
m=1

Lxn,xm â2,xmynzn â2,~rn

We see that the commutation terms cancel each other and that the one of the mixed

terms that contains the derivative of the creation operator becomes zero:

∫
∂2
xA

2
id

3r =

~N∑
~rn

(
Nx∑
m=1

Lxn,xm â
+
i,xmynzn

â+
i,~rn

+
Nx∑
m=1

Lxn,xm âi,xmynzn â
+
i,~rn

+
Nx∑
m=1

Lxn,xm âi,xmynzn âiu,~rn

)

For the other two terms follows:

∂x∂yA2 =
1

2

~N∑
~rn

(
â+
i,~rn

+ âi,~rn

)
∂x∂yΘ

3
~rn︸ ︷︷ ︸

→
∑Nx
m=1Dxn,xmΘxm

∑Ny
m=1Dyn,ymΘymΘzn

∂xA2 =
1√
2

~N∑
~rn

(
â+

2,~rn
+ â2,~r′n

)
∂xΘ

3
~rn︸ ︷︷ ︸

→
∑Nx
m=1Dxn,xmΘxmΘynΘzn

Now we can construct all the explicit terms of the magnetic part:

∂x (A1) ∂yA2 =
1

2

~N∑
~rn,~r′n

(
â+

1,~rn
+ â1,~rn

) (
â+

2,~r′n
+ â2,~r′n

)
︸ ︷︷ ︸

A12

∂xΘ
3
~rn∂yΘ

3
~r′n︸ ︷︷ ︸

Txy

→Axy=â+
1,~rn

â+

2,~r′n
+â+

1,~rn
â2,~r′n

+â1,~rn â
+

2,~r′n
+â1,~rn â2,~r′n

→Txy=
∑Nx
m=1Dxn,xmΘxmΘx′n

Θyn
∑Ny
m=1Dyn,y′m

Θy′m
ΘznΘz′n∫

d3rTxy=
∑Nx
m=1Dxn,xmδxm,x′n

∑Ny
m=1 Dy′n,y′m

δyn,y′m
δznz′n

≡ R++ +R+o +Ro+ +Roo

→ R+o =
1

2

~N∑
~rn

Nx∑
m=1

Dxn,xm â
+
1,xmynzn

Ny∑
m=1

Dyn,ym â2,xnymzn
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A.2 The Full Hamiltonian

And for the last type of term:

A1∂x∂yA2 =
1

2

~N∑
~rn,~r′n

(
â+

1,~rn
+ â1,~rn

) (
â+

2,~r′n
+ â2,~r′n

)
︸ ︷︷ ︸

A12

Θ3
~rn∂x∂yΘ

3
~r′n︸ ︷︷ ︸

T ∗xy

→Axy→like above

→T ∗xy=Θxn
∑Nx
m=1 Dx′n,x′m

Θx′m
Θyn

∑Ny
m=1Dy′n,y′m

Θy′m
ΘznΘz′n∫

d3rT ∗xy=
∑Nx
m=1 Dx′n,x′m

δxn,x′m

∑Ny
m=1Dy′n,y′m

δyn,y′m
δznz′n

≡ S++ + S+0 + S0+ + S00

→ S+o =
1

2

~N∑
~rn

â+
1,xnynzn

Nx∑
k=1

Dxn,xk

Ny∑
m=1

Dyn,ym â2,xkymzn

A.1.5 Electric Part of the EM-Term HEM,E

As we defined already ~E as the conjugate momentum to ~A, it is comparatively easy to

calculate this last part of the Hamiltonian:

HEM,E =
1

2
~E2 =

1

2

(
E2

1 + E2
2 + E2

3

)
E2

1 =
i2

2

~N∑
~rn,~r′n

(
â1,~rn − â+

1,~rn

)(
â1,~rn ′ − â+

1,~rn ′

)
Θ3
~rn(~r) Θ3

~rn ′(~r)︸ ︷︷ ︸∫
d3r→ δ~rn~rn ′

HEM,E,1 =
1

2

~N∑
~rn

−â1,~rn â1,~rn + â+
1,~rn

â1,~rn + â1,~rn â
+
1,~rn
− â+

1,~rn
â+

1,~rn

A.2 The Full Hamiltonian

All put together we have:

Finite differences

HDirac = Hmass +Hkin

= m
∑
~rn

∑
λ

βλ ĉ
+
λ,~rn

ĉλ,~r′n

− i~c
2∆x

∑
~rn

(
c+

1,~rn
c4,xn+1ynzn

− c+
1,~rn

c4,xn−1ynzn

)
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A.2 The Full Hamiltonian

− i~c
2∆x

∑
~rn

(
c+

2,~rn
c3,xn+1ynzn

− c+
2,~rn

c3,xn−1ynzn

)
− i~c

2∆x

∑
~rn

(
c+

3,~rn
c2,xn+1ynzn

− c+
1,~rn

c4,xn−1ynzn

)
− i~c

2∆x

∑
~rn

(
c+

4,~rn
c1,xn+1ynzn

− c+
4,~rn

c1,xn−1ynzn

)
+Hkin,y +Hkin,z

Fourier Method

HDirac = Hmass +Hkin

= mc2
∑
~rn

∑
λ

βλ ĉ
+
λ,~rn

ĉλ,~r′n

− i~c
∑
~rn

c+
1,~rn

Nx∑
m=1

Dxn,xm c4,xmynzn − i~c
∑
~rn

c+
2,~rn

Nx∑
m=1

Dxn,xm c3,xmynzn

− i~c
∑
~rn

c+
3,~rn

Nx∑
m=1

Dxn,xm c2,xmynzn − i~c
∑
~rn

c+
4,~rn

Nx∑
m=1

Dxn,xm c1,xmynzn

+Hkin,y +Hkin,z

The interaction term does not involve derivatives, so there is only one version

Hint = − e√
2

∑
~rn

(
c+

1,~rn
c4,~rn

)(
â+

1,~rn
+ â1,~rn

)
− e√

2

∑
~rn

(
c+

2,~rn
c3,~rn

)(
â+

1,~rn
+ â1,~rn

)
− e√

2

∑
~rn

(
c+

3,~rn
c2,~rn

)(
â+

1,~rn
+ â1,~rn

)
− e√

2

∑
~rn

(
c+

4,~rn
c1,~rn

)(
â+

1,~rn
+ â1,~rn

)
+

e√
2
i
∑
~rn

(
c+

1,~rn
c4,~rn

)(
â+

2,~rn
+ â2,~rn

)
+

e√
2
i
∑
~rn

(
c+

2,~rn
c3,~rn

)(
â+

2,~rn
+ â2,~rn

)
− e√

2
i
∑
~rn

(
c+

3,~rn
c2,~rn

)(
â+

2,~rn
+ â2,~rn

)
− e√

2
i
∑
~rn

(
c+

4,~rn
c1,~rn

)(
â+

2,~rn
+ â2,~rn

)
− e√

2

∑
~rn

(
c+

1,~rn
c3,~rn

)(
â+

3,~rn
+ â3,~rn

)
− e√

2

∑
~rn

(
c+

2,~rn
c4,~rn

)(
â+

3,~rn
+ â3,~rn

)
+

e√
2

∑
~rn

(
c+

3,~rn
c1,~rn

)(
â+

3,~rn
+ â3,~rn

)
+

e√
2

∑
~rn

(
c+

4,~rn
c2,~rn

)(
â+

3,~rn
+ â3,~rn

)

Finally the em-field:
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A.2 The Full Hamiltonian

Finite Differences

HEM =
ε0

2∆x2

~N∑
~rn

(
â+

1,~rn
â+

1,xn−1ynzn
+ â+

1,~rn
â+

1,xn+1ynzn
− 2 â+

1,~rn
â+

1,~rn

)

+
ε0

2∆x2

~N∑
~rn

(
â+

1,~rn
â1,xn−1ynzn + â+

1,~rn
â1,xn+1ynzn − 2 â+

1,~rn
â1,~rn+

)

+
ε0

2∆x2

~N∑
~rn

(
â1,~rn â

+
1,xn−1ynzn

+ â1,~rn â
+
1,xn+1ynzn

− 2 â1,~rn â
+
1,~rn

)

+
ε0

2∆x2

~N∑
~rn

(
â1,~rn â1,xn−1ynzn + â1,~rn â1,xn+1ynzn − 2 â1,~rn â1,~rn

)
+HA2,dx,2 +HA2,dx,3

+HA2,dy +HA2,dz

+
ε0

16∆x2

~N∑
~rn

(
â+

1,xn+1ynzn
â+

1,xn+1ynzn
− â+

1,xn−1ynzn
â+

1,xn+1ynzn

−â+
1,xn+1ynzn

â+
1,xn−1ynzn

+ â+
1,xn−1ynzn

â+
1,xn−1ynzn

)
+

ε0
16∆x2

~N∑
~rn

(
â+

1,xn+1ynzn
â1,xn+1ynzn − â+

1,xn−1ynzn
â1,xn+1ynzn

−â+
1,xn+1ynzn

â1,xn−1ynzn + â+
1,xn−1ynzn

â1,xn−1ynzn

)
+

ε0
16∆x2

~N∑
~rn

(
â1,xn+1ynzn â

+
1,xn+1ynzn

− â1,xn−1ynzn â
+
1,xn+1ynzn

−â1,xn+1ynzn â
+
1,xn−1ynzn

+ â1,xn−1ynzn â
+
1,xn−1ynzn

)
+

ε0
16∆x2

~N∑
~rn

(
â1,xn+1ynzn â1,xn+1ynzn − â1,xn−1ynzn â1,xn+1ynzn

−â1,xn+1ynzn â1,xn−1ynzn + â1,xn−1ynzn â1,xn−1ynzn

)
+HA1,xA2,y +HA1,xA3,z +HA2,yA1,x +HA2,yA2,y +HA2,yA3,z

+HA3,zA1,x +HA3,zA2,y +HA3,zA3,z

+
ε0

4∆x2

~N∑
~rn

(
â+

1,~rn
â+

1,xn+1ynzn
+ â+

1,~rn
â+

1,xn−1ynzn
− 2 â+

1,~rn
â+

1,~rn

)

+
ε0

4∆x2

~N∑
~rn

(
â+

1,~rn
â1,xn+1ynzn + â+

1,~rn
â1,xn−1ynzn − 2 â1,~rn â

+
1,~rn

)

+
ε0

4∆x2

~N∑
~rn

(
â1,~rn â

+
1,xn+1ynzn

+ â1,~rn â
+
1,xn−1ynzn

− 2 â1,~rn â
+
1,~rn

)
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+
ε0

4∆x2

~N∑
~rn

(
â1,~rn â1,xn+1ynzn + â1,~rn â1,xn−1ynzn − 2 â1,~rn â1,~rn

)
+HA1A2,xy +HA1A3,xz +HA2A1,yx +HA2A2,yy +HA2A3,yz

+HA3A1,zx +HA3A2,zy +HA3A3,zz

− ε0c

4

~N∑
~rn

(
â1,~rn â1,~rn − â+

1,~rn
â1,~rn − â1,~rn â

+
1,~rn

+ â+
1,~rn

â+
1,~rn

)

− ε0c

4

~N∑
~rn

(
â2,~rn â2,~rn − â+

2,~rn
â2,~rn − â2,~rn â

+
2,~rn

+ â+
2,~rn

â+
2,~rn

)

− ε0c

4

~N∑
~rn

(
â3,~rn â3,~rn − â+

3,~rn
â3,~rn − â3,~rn â

+
3,~rn

+ â+
3,~rn

â+
3,~rn

)

Fourier-Method

HM,A2 =
ε0
2

((∂i∂iAj)Aj + Aj(∂i∂iAj))

= ε0

~N∑
~rn

(
Nx∑
m=1

Lxn,xm â
+
1,xmynzn â

+
1,~rn

+
Nx∑
m=1

Lxn,xm â1,xmynzn

(
â+

1,~rn
+ â1,~rn

))

+ ε0

~N∑
~rn

(
Nx∑
m=1

Lxn,xm â
+
2,xmynzn â

+
2,~rn

+
Nx∑
m=1

Lxn,xm â2,xmynzn

(
â+

2,~rn
+ â2,~rn

))

+ ε0

~N∑
~rn

(
Nx∑
m=1

Lxn,xm â
+
3,xmynzn â

+
3,~rn

+
Nx∑
m=1

Lxn,xm â3,xmynzn

(
â+

3,~rn
+ â3,~rn

))
+HA2,dy +HA2,dz

HM,dAidAj = −ε0
2

(∂iAj)(∂jAi)

= −ε0
4

~N∑
~rn

Nx∑
m=1

Dxn,xm â
+
1,xmynzn

Ny∑
m=1

Dxn,xm â
+
1,xmynzn

− ε0
4

~N∑
~rn

Nx∑
m=1

Dxn,xm â
+
1,xmynzn

Ny∑
m=1

Dxn,xm â1,xmynzn

− ε0
4

~N∑
~rn

Nx∑
m=1

Dxn,xm â1,xmynzn

Ny∑
m=1

Dxn,xm â
+
1,xmynzn

− ε0
4

~N∑
~rn

Nx∑
m=1

Dxn,xm â1,xmynzn

Ny∑
m=1

Dxn,xm â1,xmynzn
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+HA2,dxA1,dy
+HA3,dxA1,dz

+HA1,dyA2,dx
+HA2,dyA2,dy

+HA3,dyA2,z

+HA1,dzA3,x +HA2,dzA3,dy
+HA3,dzA3,dz

HM,AiddAj = −ε0
2
Aj(∂i∂jAi) = −1

2
Aj(∂j∂iAi)

= −ε0
4

~N∑
~rn

â+
1,xnynzn

Nx∑
k=1

Dxn,xk

Nx∑
m=1

Dxk,xm â
+
1,xkynzn

− ε0
4

~N∑
~rn

â+
1,xnynzn

Nx∑
k=1

Dxn,xk

Nx∑
m=1

Dxk,xm â1,xkynzn

− ε0
4

~N∑
~rn

â1,xnynzn

Nx∑
k=1

Dxn,xk

Nx∑
m=1

Dxk,xm â
+
1,xkynzn

− ε0
4

~N∑
~rn

â1,xnynzn

Nx∑
k=1

Dxn,xk

Nx∑
m=1

Dxk,xm â1,xkynzn

+HA1A2,xy +HA1A3,xz +HA2A1,yx +HA2A2,yy +HA2A3,yz

+HA3A1,zx +HA3A2,zy +HA3A3,zz

HE =
ε0c

4

~N∑
~rn

(
−â1,~rn â1,~rn + â+

1,~rn
â1,~rn + â1,~rn â

+
1,~rn
− â+

1,~rn
â+

1,~rn

)

+
ε0c

4

~N∑
~rn

(
−â2,~rn â2,~rn + â+

2,~rn
â2,~rn + â2,~rn â

+
2,~rn
− â+

2,~rn
â+

2,~rn

)

+
ε0c

4

~N∑
~rn

(
−â3,~rn â3,~rn + â+

3,~rn
â3,~rn + â3,~rn â

+
3,~rn
− â+

3,~rn
â+

3,~rn

)

A.3 The 1D-1-Mode-Hamiltonian

To derive the model that was used throughout this work, let us consider spatial

confinement in y and z direction, which means Ny = Nz = 1 and thus vanishing

differential operators in y and z direction. It is also assumed, that the field has only one

polarization mode (e.g. longitudinal photons). It follows:
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Finite Differences

Hpre = mc2
∑
xn

∑
λ

βλ ĉ
+
λ,xn

ĉλ,x′n

− i~c
2∆x

∑
xn

(
c+

1,xnc4,xn+1
− c+

1,xnc4,xn−1

)
− i~c

2∆x

∑
xn

(
c+

2,xnc3,xn+1
− c+

2,xnc3,xn−1

)
− i~c

2∆x

∑
xn

(
c+

3,xnc2,xn+1
− c+

1,xnc4,xn−1

)
− i~c

2∆x

∑
xn

(
c+

4,xnc1,xn+1
− c+

4,xnc1,xn−1

)
− e√

2

∑
xn

(
c+

1,xnc4,xn

) (
â+

1,xn + â1,xn

)
− e√

2

∑
xn

(
c+

2,xnc3,xn

) (
â+

1,xn + â1,xn

)
− e√

2

∑
xn

(
c+

3,xnc2,xn

) (
â+

1,xn + â1,xn

)
− e√

2

∑
xn

(
c+

4,xnc1,xn

) (
â+

1,xn + â1,xn

)
+

3ε0
4∆x2

∑
xn

(
â+

1,xn â
+
1,xn−1

+ â+
1,xn â

+
1,xn+1

− 2 â+
1,xn â

+
1,xn

)
+

3ε0
4∆x2

∑
xn

(
â+

1,xn â1,xn−1 + â+
1,xn â1,xn+1 − 2 â+

1,xn â1,xn

)
+

3ε0
4∆x2

∑
xn

(
â1,xn â

+
1,xn−1

+ â1,xn â
+
1,xn+1

− 2 â1,xn â
+
1,xn

)
+

3ε0
4∆x2

∑
xn

(
â1,xn â1,xn−1 + â1,xn â1,xn+1 − 2 â1,xn â1,xn

)
+

ε0
16∆x2

∑
xn

(
â+

1,xn+1
â+

1,xn+1
+ â+

1,xn−1
â+

1,xn−1
− 2 â+

1,xn+1
â+

1,xn−1

)
+

ε0
8∆x2

∑
xn

(
â+

1,xn+1
â1,xn+1 + â+

1,xn−1
â1,xn−1 − 2 â+

1,xn−1
â1,xn+1

)
+

ε0
16∆x2

∑
xn

(
â1,xn+1 â1,xn+1 + â1,xn−1 â1,xn−1 − 2 â1,xn+1 â1,xn−1

)
+
ε0c

4

∑
xn

(
−â1,xn â1,xn + â+

1,xn â1,xn + â1,xn â
+
1,xn − â

+
1,xn â

+
1,xn

)
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Fourier Method Note that some terms of the magnetic field part could be conflated.

Hpre = mc2
∑
~rn

∑
λ

βλ ĉ
+
λ,~rn

ĉλ,~r′n

− i~c
∑
~rn

c+
1,~rn

Nx∑
m=1

Dxn,xm c4,xmynzn − i~c
∑
~rn

c+
2,~rn

Nx∑
m=1

Dxn,xm c3,xmynzn

− i~c
∑
~rn

c+
3,~rn

Nx∑
m=1

Dxn,xm c2,xmynzn − i~c
∑
~rn

c+
4,~rn

Nx∑
m=1

Dxn,xm c1,xmynzn

− e√
2

∑
xn

(
c+

1,xnc4,xn

) (
â+

1,xn + â1,xn

)
− e√

2

∑
xn

(
c+

2,xnc3,xn

) (
â+

1,xn + â1,xn

)
− e√

2

∑
xn

(
c+

3,xnc2,xn

) (
â+

1,xn + â1,xn

)
− e√

2

∑
xn

(
c+

4,xnc1,xn

) (
â+

1,xn + â1,xn

)
+
ε0
4

~N∑
~rn

(
Nx∑
m=1

Lxn,xm â
+
1,xmynzn â

+
1,~rn

+
Nx∑
m=1

Lxn,xm â1,xmynzn

(
â+

1,~rn
+ â1,~rn

))

− ε0
4

~N∑
~rn

Nx∑
m=1

Dxn,xm â
+
1,xmynzn

Ny∑
m=1

Dxn,xm â
+
1,xmynzn

− ε0
4

~N∑
~rn

Nx∑
m=1

Dxn,xm â
+
1,xmynzn

Ny∑
m=1

Dxn,xm â1,xmynzn

− ε0
4

~N∑
~rn

Nx∑
m=1

Dxn,xm â1,xmynzn

Ny∑
m=1

Dxn,xm â
+
1,xmynzn

− ε0
4

~N∑
~rn

Nx∑
m=1

Dxn,xm â1,xmynzn

Ny∑
m=1

Dxn,xm â1,xmynzn

+
ε0c

4

∑
xn

(
−â1,xn â1,xn + â+

1,xn â1,xn + â1,xn â
+
1,xn − â

+
1,xn â

+
1,xn

)
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