
INFRARED PHOTODISSOCIATION SPECTROSCOPY 

OF MASS-SELECTED CLUSTER IONS                                 

IN THE GAS PHASE 

 
 
 
 
 
 
 

Habilitationsschrift 
 
 

eingereicht am 
 

Fachbereich Physik 
der 

Freien Universität Berlin 
 
 
 
 
 
 

vorgelegt von 
 

von Knut R. Asmis 
aus Berlin 

 

 

Berlin, im August 2005 

 



 ii 



   

 iii



 iv 



   

 The only limits we have are those we give ourselves. 

 Gordo Byrn

 v



 vi 



   

                                          to Catherine Mary Speer

 vii



 viii 



   

PREFACE 

This habilitation thesis describes my research activities at the Institute for Experimental 

Physics of the Free University Berlin, which I conducted in the group of Prof. Dr. 

Ludger Wöste in the period from September 1999 until December 2004. These research 

activities were the central part of, and financed by, the projects Asmis/Wöste of the 

Dedicated Research Center „Structure, Dynamics und Reactivity of Transition Metal 

Oxide Aggregates“ (SFB-546) and the Graduate School „Hydrogen Bonding and 

Hydrogen Transfer" (GK-788) of the German Research Foundation DFG. 

The central goal of this work was the development of novel experimental 

methods to characterize the structure of mass-selected gas phase cluster ions (see 

Chapter A). Infrared spectroscopy (Chapter B) has been a standard method for structural 

characterization of condensed phase samples for many decades. Its application to gas 

phase ions poses mainly two experimental challenges. First, the low number densities of 

ions attainable in the gas phase, roughly less than one million per cubic centimeter, 

generally prohibit direct absorption measurements. Second, most of the characteristic 

infrared transitions lie in the fingerprint region (500 to 2000 cm-1) of the 

electromagnetic spectrum, a region which cannot be continuously covered with the 

required intensity using commercially available infrared radiation sources.    

To address these problems a novel, mobile tandem mass spectrometer was 

constructed (Chapter C.1), which allows trapping, cooling, and probing of mass-

selected gas phase ions. The infrared photodissociation experiments (Chapter B.1) were 

performed at the FOM Institute for Plasma Physics Rijnhuizen (Nieuwegein, The 

Netherlands) using the free electron laser FELIX (Chapter C.2). In these experiments, 

FELIX is used as a monochromatic “Bunsen burner”, i.e., the ions are irradiated with 

intense infrared radiation of a specific wavelength. If the wavelength coincides with an 

infrared transition, the ion is resonantly heated and eventually breaks apart (Chapter 

B.3). The absorption is detected indirectly by measuring the fragment ion yield, 

resulting in a high selectivity and sensitivity. The measured infrared spectrum is a 

“fingerprint” of the molecular structure and its assignment is generally based on a 

comparison with the simulated spectra of possible candidates.    
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The developed techniques were applied to two research areas. As part of the 

SFB-546 we were able to measure the infrared spectra of small vanadium oxide ions for 

the first time and, based on these, characterize their geometric and electronic structure 

(Chapter D.1). Unexpectedly, we were able to show a correlation between the spectra of 

a vanadium oxide surface and cluster ion cages of moderate size (~30 atoms). As part of 

the GK-788 we measured the first infrared spectra of model systems containing strong 

hydrogen bonds in the spectral region of the shared proton modes (Chapter D.2). The 

characterization of the spectral signature of the protonated water dimer H5O2
+, also 

referred to as the „Zundel cation“, was particularly noteworthy. The failure to accurately 

model this infrared spectrum impressively demonstrates the difficulties of present day 

electronic structure theory in describing strongly coupled vibrational modes.  

 The experimental work described in this thesis was a team effort and only 

possible as such. Parts of this work constitute the Ph.D. and Diploma theses of Mathias 

Brümmer, Sara Fontanella, Oliver Gause, Cristina Kaposta, Gabriele Santambrogio, and 

Carlos Cibrián-Uhalte.      
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VORWORT 

Diese Habilitationsschrift umfaßt meine Forschungstätigkeit am Institut für 

Experimentalphysik der Freien Universität Berlin, die ich in der Arbeitsgruppe von 

Prof. Dr. Ludger Wöste im Zeitraum von September 1999 bis Dezember 2004 

durchgeführt habe. Die hier beschriebenen Untersuchungen sind zentraler Bestandteil 

des Teilprojektes Asmis/Wöste des Sonderforschungsbereiches „Struktur, Dynamik und 

Reaktivität von Übergangsmetalloxid-Aggregaten“ (SFB-546) und des 

Graduiertenkollegs „Wasserstoffbrücken und Wasserstofftransfer" (GK-788) der 

Deutschen Forschungsgemeinschaft DFG und wurden daraus größtenteils finanziert. 

Das Hauptziel dieser Arbeit war die Entwicklung neuer experimenteller 

Methoden zur Strukturaufklärung massenselektierter Clusterionen in der Gasphase 

(siehe Kapitel A). Die Anwendung der  Infrarot-Schwingungsspektroskopie (Kapitel B), 

welche für Systeme in kondensierter Phase seit Jahrzehnten zu den Standardmethoden 

gehört, auf geladene Gasphasenteilchen ist vor allem aus zwei Gründen experimentell 

anspruchsvoll. Zum einen verhindern die niedrigen erzielbaren Teilchendichten von 

weniger als einer Million Ionen pro Kubikzentimeter eine direkte Absorptionsmessung. 

Zum anderen liegen die strukturcharakteristischen Schwingungsübergänge in der 

sogenannten „Fingerprint“-Region (500 to 2000 cm-1), ein spektraler Bereich der durch 

kommerziell erhältliche Laser nicht komplett mit ausreichender Intensität abgedeckt 

werden kann.      

Der Lösungsansatz umfaßte den Bau eines maßgeschneiderten, mobilen 

Tandem-Massenspektrometers (Kapitel C.1), mit dem massenselektierte 

Gasphasenionen gespeichert, gekühlt und dann untersucht werden konnten. Die 

Infrarot-Photodissoziationsexperimente (Kapitel B.1) wurden am FOM Institut für 

Plasmaphysik Rijnhuizen (Nieuwegein, Niederlande) am Freien Elektronenlaser FELIX 

(Kapitel C.2) durchgeführt. Hierbei dient FELIX als monochromatischer 

„Bunsenbrenner“, d.h., die größenselektierten Teilchen werden mit intensivem 

Infrarotlicht einer Wellenlänge bestrahlt. Bei charakteristischen Wellenlängen kommt es 

zur Infrarotanregung. Die Strahlung wird resonant absorbiert, das Teilchen wird erhitzt 

und zerfällt schlußendlich. Der Absorptionsnachweis geschieht indirekt durch Messung 

der Zerfallsprodukte, welche mit hoher Selektivität and Empfindlichkeit nachgewiesen 

werden können. Das gemessene Infrarotspektrum enthält einen „Fingerabdruck“ der 

 xi



Vorwort 

molekularen Struktur und seine Zuordnung geschieht in der Regel durch Vergleich mit 

simulierten Spektren möglicher Strukturkandidaten.  

Die entwickelten Methoden wurden zur Untersuchung von zwei Substanzklassen 

eingesetzt. Im Rahmen des SFB-546 konnten erstmals die Strukturen kleiner 

Vanadiumoxidcluster experimentell bestimmt werden (Kapitel D.1). Dabei gelang es, 

völlig unerwartet, einen direkten Zusammenhang zwischen den Spektren der kleinen 

Käfigstrukturen (ca. 30 Atome) und denen einer Vanadiumoxid-Oberfläche 

aufzudecken. Im Rahmen des GK-788 wurden Infrarotspektren von Modellsystemen 

mit starken Wasserstoffbrückenbindungen erstmalig im gesamten spektralen Bereich 

der Schwingungen des Brückenprotons gemessen (Kapitel D.2). Besonders 

erwähnenswert ist die erstmalige experimentelle Charakterisierung dieser 

charakteristischen Schwingungsmoden im „Zundel-Kation“, dem protonierten 

Wasserdimer H5O2
+. Die Modellierung dieses Spektrums ist komplex und zeigt 

eindrucksvoll die Grenzen der gängigen theoretischen Methoden zur Beschreibung stark 

gekoppelter Schwingungsmoden auf.     

 Die hier beschriebenen wissenschaftlichen Arbeiten waren nur im Team 

möglich. Sie sind zum Teil Bestandteil der Doktor- und Diplomarbeiten von Mathias 

Brümmer, Sara Fontanella, Oliver Gause, Cristina Kaposta, Gabriele Santambrogio und 

Carlos Cibrián-Uhalte.  
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ABBREVIATIONS 

CW continuous wave 

DFG Deutsche Forschungsgemeinschaft (German Research Foundation) 

DFM difference frequency mixing 

FEL free electron laser 

FELIX free electron laser for infrared experiments at the FOM Institute Rijnhuizen 

FOM Fundamenteel Onderzoek der Materie (Foundation for Fundamental 

Research on Matter) 

FUB Freie Universität Berlin 

GK Graduiertenkolleg (research training group) 

IR infrared 

IVR intramolecular vibrational energy redistribution 

MATI mass analyzed threshold ionization 

MPD multiple photon dissociation 

OPA optical parametric amplifier 

OPO optical parametric oscillator 

PD photodissociation 

PES potential energy surface 

REMPI resonance enhanced multiple photon ionization 

RF radio frequency 

RRKM Rice–Ramsperger–Kassel–Marcus 

SFB Sonderforschungsbereich (collaborative research center) 

TEA transversely excited atmospheric pressure 

UV ultraviolet 

ZEKE zero electron kinetic energy 
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A INTRODUCTION 

The present thesis work deals primarily with the experimental characterization of the 

geometric and electronic structure of cluster ions in the gas phase. It was motivated by 

the absence of any generally applicable, sufficiently selective and sensitive method in 

this research field at the time. To introduce the reader to the subject matter the first 

chapter discusses the motivation for performing such experiments.  

The advantages of performing experiments on isolated particles under 

collisionless conditions are manifold and three important ones are named here. First, the 

combination of modern spectroscopic and spectrometric techniques generally allows for 

a significantly higher degree of control of the experimental parameters compared to 

experiments on condensed phase probes. Second, the characterization of the cluster 

properties in the absence of any perturbing interactions with their environment as a 

function of size is generally straight forward. In addition, the interaction of a particle 

with its environment, e.g., the solute-solvent interaction, can be studied in a sequential 

fashion by adding one solvent molecule at a time. Third, the properties of isolated gas 

phase clusters are simpler to calculate than those of the same species embedded in a 

complex environment. Consequently, higher level computational approaches can be 

applied leading to more accurate and reliable results. These results can then be used as 

benchmarks for testing models aimed at describing the more complex systems. 

Spectroscopic studies of isolated clusters and complexes in the gas phase 

continue to be of central importance to many areas of science today. Next to the 

“classical” research areas of atmospheric, interstellar, and plasma chemistry, a growing 

interest is directed towards other fields, for example, towards understanding and 

tailoring the size-dependent properties of nanoparticles or understanding complex 

biochemical processing like protein folding and transmembrane ion transport.  

A.1 Identifying Active Sites in Heterogeneous Catalysis  

The present thesis work evolved as part of the DFG-funded Dedicated Research Center 

SFB 546 „Structure, Dynamics und Reactivity of Transition Metal Oxide Aggregates“, 

which started its activity in July 1999, nearly concomitant with the beginning of this 

 1



A Introduction 

 2

thesis work. The central goal of the SFB 546 is to gain a detailed understanding of the 

relationship between structure and reactivity of transition metal oxide aggregates and 

focuses primarily on the characterization of vanadium oxides in the form of gas phase 

and deposited clusters, surfaces, thin films and their use as building blocks in 

nanostructured materials. While vanadium oxides are important as cathode materials in 

lithium batteries,[1] in bolometric detectors[2] and as ferromagnetic nanotubes,[3] it is 

their use in supported catalysts[4] that makes them most relevant to the SFB 546. 

Prominent examples are the use of vanadium oxide based catalysts in the synthesis of 

important chemicals like sulfuric acid, phthalic and maleic anhydride, and in the 

reduction of environmental pollution, e.g., the selective reduction of nitrogen oxides 

NOx in flue gas from power plants.  

The advantage of supported vanadium oxides lies in the variability in the 

geometric and electronic structure of surface vanadium oxides. Moreover, it is now well 

documented that the activity and selectivity of supported metal oxide catalysts are 

significantly affected by the properties of the support. Despite their industrial 

importance, most of the microscopic properties are not well understood, including the 

origin and mechanism of the metal oxide – support effect. The identification of the 

active sites in heterogeneous catalysis with current available surface science techniques 

remains challenging and thus gas phase studies may significantly contribute to 

unraveling the mechanistic details of the underlying catalytic processes. A promising 

approach involves performing reactivity measurements on size-selected vanadium oxide 

clusters in the gas phase under well controlled conditions. In order to extract a 

relationship between structure and reactivity from these experiments an experimental 

characterization of the cluster structure is essential. Thus the primary goal of the present 

thesis work was to develop a generally applicable experimental technique to identify the 

geometric and electronic structure of gas phase vanadium oxide clusters.    

A.2 Understanding Strong Hydrogen Bonding 

A second research topic that evolved during this thesis work was the study of strong 

hydrogen bonds as part of the DFG-funded Graduate School GK-788 „Hydrogen 

Bonding and Hydrogen Transfer". The hydrogen bond interaction is key to 

understanding the structure and properties of water, biomolecules, self-assembled 

nanostructures and molecular crystals. However, much confusion remains about its 
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electronic nature, a combination of van der Waals, electrostatic and covalent 

contributions, leading to a wide variety of hydrogen bonds with bond strengths ranging 

from 2 to 40 kcal/mol. In particular, our understanding of strong, low-barrier hydrogen 

bonds and their central role in enzyme catalysis[5], biomolecular recognition[6], proton 

transfer across biomembranes[7] and proton transport in aqueous media[8] remains 

sketchy. 

 

Figure A-1  Typical potential energy surface for a homoconjugated hydrogen bonded system A⋅⋅⋅H⋅⋅⋅A. 
As the hydrogen bond strength increases, both, the internuclear distance R between the heavy atoms A 
and the displacement  from the center of mass s, decrease. For strong hydrogen bonds the hydrogen 
transfer barrier vanishes. Adapted from Vener et al.[9]. 

Strong hydrogen bonds (A⋅⋅⋅H⋅⋅⋅B) are often classified based on their hydrogen 

bond energy; a typically cited lower limit is >15 kcal/mol.[10] Their most prominent 

physical properties are large NMR downfield chemical shifts and considerably red-

shifted hydrogen stretch frequencies. Moreover, the H-atom transfer barrier, a 

characteristic feature of weak hydrogen bonds A-H⋅⋅⋅B, is either absent or very small in 

these systems at their minimum energy geometry, as illustrated in Figure A-1. 

Consequently, the H-atom in homoconjugated (A=B) strong hydrogen bonds is equally 

shared by the two heavy atoms forming two identical strong hydrogen bonds. This 

symmetry is lost in heteroconjugated (A≠ B) systems, but the H-atom remains in a more 

centered position, i.e., the distance between the heavy atoms is smaller than in weaker 

hydrogen bonded systems.  
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The protonated water dimer (H2O⋅⋅⋅H⋅⋅⋅OH2)+ is, next to (F⋅⋅⋅H⋅⋅⋅F)¯, probably 

the most widely known model system containing strong hydrogen bonds. It plays a 

central role in explaining the anomalously high proton mobility in water (Grotthuss 

mechanism[11]). The higher than diffusion limited proton mobility is due to structural 

diffusion, i.e., only the positive charge, and not the much heavier proton, migrates over 

a large distance via hops along a network of fluctuating hydrogen bonds. This 

dynamical rearrangement corresponds, in principle, to the interconversion between two 

limiting structures, the structures of the Zundel[12] and the Eigen ion[13]. In the first, the 

excess proton is equally shared between two water molecules forming (H2O⋅⋅⋅H⋅⋅⋅OH2)+. 

In the latter, the excess proton is primarily bound to a single water molecule forming a 

hydronium ion H3O+, or more accurately, a solvated hydronium ion H3O+·(H2O)3. While 

these structures are metastable in solution, they can be isolated in the gas phase, where 

they can be studied in considerable more detail.  

The structure of these ions can be characterized by gas phase vibrational 

spectroscopy. However, the infrared spectrum of H5O2
+ had only been measured in the 

O-H stretching region of the terminal water molecules. The spectral signature of the 

shared proton modes lies much lower in energy and had not been observed in the gas 

phase previously. Thus, the second main goal of this thesis was to experimentally 

characterize the gas phase infrared spectroscopy of strong hydrogen bonds in general 

and that of the protonated water dimer in particular. The experimental data should then 

serve as a benchmark for performing higher level computations in order to develop 

improved methods that accurately describe the properties of strong hydrogen bonds.   



 

B VIBRATIONAL SPECTROSCOPY OF GAS PHASE IONS 

This chapter serves as an introduction to the vibrational spectroscopy of gas phase ions. 

It begins with a description of some general concepts and then leads into historical 

sketch of the experimental technique of infrared (IR) photodisssociation (PD) 

spectroscopy, which is used in this present work. As the chapter progresses the focus is 

narrowed and eventually restricted to IR studies of mass-selected ions. The last part 

qualitatively describes the now widely accepted mechanism of incoherent infrared 

multiple photon photodissociation (IRMPD). For a more in-depth description the 

interested reader is referred to the excellent book by Bagratashvili et al. “Multiple 

Photon Infrared Laser Photophysics and Photochemistry” and the articles in “Multiple-

Photon Excitation and Dissociation of Polyatomic Molecules” edited by Cantrell.[14]         

B.1 Infrared Photodissociation Spectroscopy 

Vibrational spectroscopy paired with quantum chemistry currently offers the most direct 

and generally applicable experimental approach to structural investigation of neutral and 

charged cluster in the gas phase.[15,16] Direct absorption measurements based on 

discharge modulation methods[17] can yield high resolution spectra of small and light 

molecular ions. Problems associated with high discharge temperatures can nowadays be 

overcome by using pulsed-slit supersonic expansions.[18] However, these types of 

experiments become increasingly difficult for larger and heavier molecular ions, 

particularly ion clusters, owing to spectral congestion, lower gas phase number densities 

and presence of other absorbing species. Therefore alternative techniques have been 

developed in which the absorption of photons can be measured indirectly (action 

spectroscopy), e.g., by way of resonance enhanced PD spectroscopy. PD techniques 

have the advantage that fragment ions can be detected background-free and with nearly 

100% detection efficiency. A high selectivity can be achieved through mass selection of 

parent and fragment ions using appropriate mass filters.  

An IR-PD spectrum is measured by irradiating ions with IR radiation and monitoring 

the yield of parent and/or fragment ions as a function of the irradiation wavelength. In 

order to induce fragmentation the parent ion AB+ (the same line of argumentation holds 
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for negative ions) is required to absorb sufficient energy to overcome the (lowest) 

dissociation threshold. Once a metastable ro-vibronic state is reached, intramolecular 

energy redistribution will eventually lead to dissociation, producing a charged and a 

neutral fragment: 

  (1)BAAB +⎯⎯ →⎯ +⋅+ νhn

Typical dissociation energies of covalently bound ions are at least 1 eV or higher, while 

their fundamental vibrational transitions are found well below this limit. Process (1) 

therefore requires the absorption of multiple IR photons. The coherent stepwise multiple 

photon excitation, where all photons are absorbed in one vibrational ladder, is 

unfavorable and becomes unrealistic for higher dissociation thresholds, because the 

laser runs out of resonance, due to the anharmonicity of vibrational potentials. The 

excitation process is better viewed as a sequential absorption of photons enhanced by 

rapid intramolecular vibrational energy redistribution at higher excitation (see Chapter 

B.3).[19] Only the first few photons are resonantly absorbed in the “discrete” regime. 

Higher excitation accesses the “quasi-continuum”, in which the density of states is 

sufficiently high that the vibrational energy is rapidly randomized among all vibrational 

modes of the molecular ion, effectively de-exciting the absorbing transition. The ion 

continues to absorb photons until it has enough energy to dissociate. The transition 

between the two regimes depends on the vibrational density of states and the strengths 

of the interactions between vibrational modes. For larger molecular systems this 

transitions occurs already after the absorption of a few photons or even a single photon 

and the IR-PD spectrum in this case often resembles the linear absorption spectrum.[20] 

For smaller systems with less internal degrees of freedom more photons are required 

and the relative intensities of the bands in the IR-PD spectrum may differ from those in 

the linear spectrum. However, if the laser fluence is kept at a moderate level, signal is 

only detected, if the laser wavelength is resonant with a fundamental transition, that is,   

 . (2) BA)1(AB)0(AB +⎯⎯ →⎯=⎯→⎯= +⋅++ νν hnh vv

At high laser fluence the probability of directly exciting overtones is enhanced, 

complicating the interpretation of the IR-PD spectrum.[21]  

A useful method to measure IR-PD spectra in the linear regime is the messenger 

atom technique[22]: 
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 . (3) RgAB*)Rg(ABRgAB +⎯→⎯⋅⎯→⎯⋅ +++ νh

By forming ion-rare gas atom (Rg) complexes the dissociation threshold of the system 

is lowered, generally below the photon energy and these predissociation spectra directly 

reflect the linear absorption spectrum. This technique has also been used to great effect 

in anion spectroscopy experiments.[23] The multiple photon dissociation approach 

remains attractive for systems, in which the perturbation of the messenger atom cannot 

be neglected or in instruments where rare gas attachment is difficult. 

B.2 Historical Development  

The development of the optical laser around 1960 concurrently by Gordon Gould and 

Theodore Maiman[24] started a new age in molecular spectroscopy, as this introduced 

the tool to finally observe and study many of the nonlinear effects of the interaction 

between intense radiation fields and matter that previously had been predicted. Several 

years later, in 1963, the carbon dioxide gas laser was invented by Kumar Patel at the 

Bell Laboratories. It was the first gas laser to produce high power radiation 

continuously. In 1966 Bordé et al. used the 10.6 µm radiation from such a continuous 

wave (CW) CO2 laser (< 150 W), which coincides with a vibration-rotation absorption 

line in ammonia, to irradiate gaseous NH3 and surprisingly observed the visible 

luminescence of its decomposition products.[25] The notion of bond-selective chemistry, 

i.e., to selectively control bond breaking and forming, was quickly dismissed, however, 

because it was realized that the main role in this experiment was played by molecular 

collisions, which transferred the vibrational energy from one molecule to another, 

effectively heating the ammonia gas to very high temperatures.  

TEA Carbon Dioxide Lasers 

That bright IR lasers can indeed directly (non-thermally) dissociate molecules was 

demonstrated by Isenor and Richardson[26] shortly after the development of transversely 

excited atmospheric pressure (TEA) CO2 lasers in 1970, which delivered orders of 

magnitude higher peak powers than the CW systems.[27] Similar to Bordé et al., they 

observed luminescence from electronically excited dissociation products, the α bands of 

NH2 and SiF, upon irradiation of gaseous ammonia and SiF4, respectively, with focused 

TEA-CO2 laser pulses (0.5⋅106 W). However, time-resolved experiments with 

nanosecond resolution proved that the luminescence occurred during the duration of the 
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200 ns laser pulse, ~100 ns before optical breakdown of the gas, and well before 

sufficient collisions could occur to induce thermal dissociation. This discovery of 

collisionless IR molecular multiple photon excitation and dissociation marked the birth 

of a new research field.  

The energetics of the process were quite astounding, requiring the absorption of 

approximately 40 photons per molecule to break the N-H bond in NH3. The direct 

radiative excitation of high vibrational levels with no collisions can, in principle, 

provide the observed dissociation rates but encounters an evident problem, that of 

vibrational anharmonicity. Anharmonic detuning of vibrations requires orders of 

magnitude higher powers (>1012 W/cm2) than used in these experiments. Important 

insight into the mechanism of collisonless IRMPD came from observations that the 

dissociation of molecules, like SiF4, BCl3, and SF6, upon irradiation with intense CO2 

laser pulses was isotope selective.[28] It was soon realized that this effect was of more 

general character and could be observed in other polyatomic molecules. In particular the 

enrichment of heavy isotopes, such as osmium from OsO4
[29], stimulated further 

research with the aim to produce 235U enriched uranium from UF6 for nuclear fuel 

reactors. The new era of IRMPD was born, leading to the rapid growth of disciplines 

like laser isotope separation and laser induced chemistry. The most striking 

observations during this time were that both the number of photons absorbed per 

molecule and the dissociation yield depend only weakly on the laser intensity in contrast 

to atomic multiphoton ionization, where rates proportional up to ~I15, had been reported. 

Interestingly, the laser fluence, i.e., the time integral over the intensity, and not the peak 

intensity determined the dissociation yield.  

All these observations lead to the notion of a vibrational quasi-continuum in 

which the density of states is sufficiently high that Fermi's "Golden Rule" becomes 

valid. Here the full Schrödinger equation reduces to a set of rate equations. To reach this 

vibrational quasi-continuum of states the first few photons need to be absorbed 

resonantly between discrete rovibrational states of the polyatomic molecule. The 

anharmonicity of the vibrational potential is compensated by a corresponding change in 

rotational quantum number (rotational compensation). This first step is highly selective 

and the origin of the observed isotope selectivity. Once the internal excitation reaches a 

level in which the rovibrational density of states is high enough, ~100 states/cm-1, these 

levels start forming a quasi-continuum of states far below the dissociation limit. 
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Absorption in this region allows the polyatomic molecule to reach the dissociation limit 

within the electronic ground state.  

Molecular Beams: Infrared Photodissociation of Mass Selected Ions 

The combination of the molecular beam technique with intense IR laser radiation in 

1976 by Y.T. Lee and coworkers[30] represented an important progress in the field, 

because it provided the most direct evidence (compared to the early gas cell 

experiments) that the laser-induced MPD process is indeed a collisionless unimolecular 

process. Detailed information on the identity of the fragments along with their angular 

and velocity distributions was gained from such experiments. A simple picture emerged 

from these studies. The multiple photon process excites the molecules through the 

quasi-continuum to and beyond the dissociation energy level. The level of excitation is 

eventually limited by molecular dissociation, which can be accurately described by the 

statistical theory of dissociation.[31]  

 
Figure B-1 Schematic diagram (left) of the 
apparatus used by Wing et al. to measure the 
first IR spectrum of a molecular ion. A 1 to 10 
keV ion beam is crossed by an IR laser beam at 
a small angle. By adjusting the accelerating 
potential an ion transition is Doppler shifted 
into resonance with a nearby laser line. The ions 
then pass through a gas target where they are 
partially neutralized by charge exchange. 
Resonant absorption changes the beam charge 
survival and, hence, the current into the 
Faraday cup. The trace of the (1,1)←(0,2) 
transition in HD+ is shown (right) revealing two 
hyperfine features. Figures adapted from Wing 
et al.[32].  
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The development of the vibrational spectroscopy of molecular ions during this 

time proceeded along two paths. These paths differed in the way the absorption of the 

IR photons was detected. A landmark in the vibrational spectroscopy of molecular ions 

was the first laboratory observation of the IR spectrum of an ion by Wing and 

coworkers in 1976.[32] The IR spectrum of HD+ was measure in the 1600-1900 cm-1 

region using a CO laser. The absorption of photons was detected indirectly by 

exploiting a variation in charge exchange cross sections (see Figure B-1). Subsequently, 

other elegant indirect methods were developed for visible and UV radiation by the 

Carrington and Lineberger groups based on photodissociation[33] and 

photodetachment[34] in fast ion beams, respectively. In parallel direct absorption 

techniques were developed by Schwarz[35], Oka[36], Dymanus[37] and Saykally.[38] These 

powerful methods were able to deliver vibration-rotation spectra with sub-Doppler 

resolution, but required extremely high ion densities (>1010 ions/cm3), prohibiting their 

application to a wide group of molecular and cluster ions. In order to achieve these high 

ion yields, the ions were typically prepared in plasma discharges, in which often 

multiple absorbing species were present and elevated internal temperatures of the ions 

were common. Subsequent improvements included the velocity modulation 

technique[38] as well as the combination of fast ion beams with direct absorption 

techniques. However, these direct methods remain limited to relatively small ions that 

can be rather cleanly produced with very high yields.                     

  

Figure B-2  Schematic diagram of the original ion trap apparatus developed at the University of 
California Berkeley.[39]  
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The indirect detection scheme proved to be of more general applicability. In 

particular the pioneering vibrational predissociation experiments by Y.T. Lee and 

coworkers at Berkeley, starting in 1985, on H3
+⋅(H2)x,[22,40] H3O+⋅(H2O)x⋅(H2)y,[39,41] 

NH4
+⋅(NH3)x,[42] and C2H7

+[43] marked the beginning of a new era in ion cluster 

vibrational spectroscopy. Their experimental approach (Figure B-2) involved initial 

mass selection, the use of an ion trap for IR irradiation and mass-selective detection of 

fragment ions, an approach still commonly used today and the basis for the experiments 

described in this thesis. Tunable IR radiation in the 2200-6500 cm-1 region was 

generated by various methods. Low resolution, higher intensity IR pulses were 

generated in a Nd:YAG pumped optical parametric oscillator (LiNbO3 crystal). 

Moderate resolution laser pulses were obtained by difference frequency mixing (in a 

LiNbO3 crystal) of the pulsed, near infrared dye laser output with the Nd:YAG 

fundamental. Higher resolution experiments were performed with a cw F-center laser. 

In cases where a single photon was insufficient to induce dissociation, either a second 

photon from the tunable source or an additional cw CO2 laser was used to provide the 

additional energy.     

Lisy and coworkers extended IR photodissociation studies to mass-selected 

metal ion – methanol complexes, first in the 9.6 µm range, later in the 3 µm range.[44] In 

the mid 90’s the groups of Maier and Okumura were among the first to record high-

resolution IR spectra for positive [16,45]  and negative [46] ion-molecule complexes in the 

3 µm range, followed by others (see for example the excellent reviews by Duncan; 

Bieske and Dopfer [15,16]).  

An alternate and completely different approach to the high resolution vibrational 

spectroscopy of positive ions developed in the 1980’s by the Schlag group is zero-

kinetic-electron-energy (ZEKE) photoelectron spectroscopy.[47] Recent advances in 

synchrotron technology have made the method accessible also to species with higher 

ionization energies and can in favourable cases yield rovibrational information on 

molecular cations.[48] The lack of explicit mass-selection in the ZEKE method is 

overcome in the closely related mass-analyzed-threshold-ionization or MATI 

spectroscopy, where the yield of positive ions is measured mass-selectively instead of 

the yield of slow photoelectrons.[49] However, the lack of mass-selection prior to 

photoionization makes studies on clusters and cluster ions, which are generally 

produced with large mass distributions, challenging.  
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Free Electron Lasers: Accessing the Fingerprint Region  

Until the middle of the 1990’s the vibrational spectroscopy of mass-selected cluster ions 

was restricted to the region below 5 µm, namely the region of O-H stretches, overtone 

and combination bands, as well as narrow parts of the spectrum around 6 and 10 µm, 

accessible using CO and CO2 laser radiation. This dramatically changed with the 

introduction of free electron lasers (FELs) operating in the IR to molecular spectroscopy 

by Meijer, von Helden and coworkers in 1996.[50] The FEL used in these experiments 

generated intense (typically 20 mJ per 5 µs macro pulse)  and continuously tuneable IR 

radiation from 5 to 250 µm (2000 to 40 cm-1).[51] This finally opened the door to study 

the vibrational spectroscopy of molecular and cluster ions in the fingerprint region of 

the electromagnetic spectrum. While their initial FEL experiments employed a two-

color IR/VUV double resonance technique to measure the IR absorption spectrum of 

para amino benzoic acid in the 700 to 1500 cm-1 range[50], it soon became apparent that 

the achievable macro pulse fluences were sufficient to perform single-color, IR 

resonance enhanced multiple photon ionization (IR-REMPI). The pioneering 

experiments on the gas phase vibrational spectroscopy of the fullerenes C60, C70 and C84 

demonstrated the unique sensitivity of this technique when combined with mass-

selective ion detection.[52] Ionization of C60 with IR photons requires the absorption of 

hundreds of photons; the more interesting is the observation that the IR-REMPI 

spectrum reveals surprisingly narrow bands related in position to those observed in the 

emission spectrum of hot C60, confirming that the efficient absorption of IR photons 

proceeds via a stepwise, incoherent absorption mechanism.[53] This work was followed 

by landmark experiments on aromatic hydrocarbons[54], neutral metal-carbide[55], as well 

as metal-oxide[56] clusters. More recent work includes experiments on metal-ligand 

complexes[57], pure metal clusters[58], amino acids[59] and the protein cytochrome-c[60]. 

 In the last couple of years several new groups have exploited the possibility to 

perform IR-PD experiments on mass selected cluster ions using FEL radiation. Our 

group was the first to couple a tandem-mass spectrometer including a temperature 

variable RF-ion to a FEL[61], ensuring that the “internal” temperature and identity of the 

signal carrier in mass-selected studies on cluster ions is well defined. In collaboration 

with the Neumark group at Berkeley we measured the first IR spectrum of a negative 

ion at a FEL (BrHBr¯)[62]. Thereafter, FT-ICR mass spectrometers were coupled 
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successfully to the FEL CLIO (Orsay, France) by Maitre and coworkers[63] and to 

FELIX by von Helden and coworkers[64].  

B.3 The Infrared Multiple Photon Dissociation Mechanism 

The mechanism of (collisionless) IRMPD can be conceptually divided into three 

(overlapping) regions (see Figure B-3).[65]  

(i) The polyatomic molecule is excited resonantly over discrete states into the 

quasi-continuum region.  

(ii) The molecule continues to absorb photons resonantly, but this energy is 

quickly randomized among all vibrational degrees of freedom.  

(iii) Once the internal energy reaches the dissociation limit the molecule 

dissociates according to the statistical model of unimolecular reactions. 

  

Figure B-3  Main features of the mechanism underlying IR multiple photon excitation and dissociation. 
Adapted from Makarov et al.[66]. 

Region (i) is characterized by the coherent interaction of the radiation field with 

the discrete energy levels within a vibrational ladder. This resonantly enhanced multiple 

photon process is governed by selection rules for photoabsorption, which represent the 

origin of the observed isotope selectivity. The overall cross section for excitation into 
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the quasi-continuum depends on the laser frequency, the initial vibrational and 

rotational temperature of the molecule and the laser peak intensity (in contrast to laser 

fluence). In the discrete region small anharmonic shifts of successive vibrational 

transitions within a single mode (“anharmonic bottleneck”) can be compensated by 

changes in rotational quantum number, anharmonic splitting of excited degenerate 

vibrational states and other effects. In the absence of such effects, in particular in a 

triatomic system, two- and three-photon vibrational transitions, and thus higher peak 

intensities, may be necessary to reach the quasi-continuum. Under collisionless 

conditions de-excitation of the vibrational levels can be neglected, because the time 

scale, on which the multiple photon photodissociation process proceeds (< 100 ns), is 

much shorter compared to the typical lifetimes derived from spontaneous emission rates 

in the IR(~102-103s-1). With increasing internal energy Ei the density of rovibrational 

states σ(Ei) increases very rapidly, roughly with Ei
N, where N is the number of 

vibrational degrees of freedom. Therefore only a few photons are needed to reach the 

quasi-continuum region, e.g., four photons in the case of SF6 as illustrated in Figure 

B-3. 

The energy deposition in the quasi-continuum region is mainly through stepwise 

incoherent one-photon transitions. The absorption properties of the quasi-continuum 

remain related to those of the discrete region. The absorption bands are generally red-

shifted, due to cross-anharmonicities, and lifetime broadened (see right side of Figure 

B-3). The latter is a direct consequence of the efficient intermode coupling in the quasi-

continuum especially at higher energies, which results in rapid IVR. Typical timescales 

for intramolecular relaxation of highly excited polyatomic molecules are 10-11-10-12 s, 

much faster than average dissociation lifetimes of several ns.[67] Thus photoabsorption 

in this region is always accompanied by randomization of the absorbed energy over the 

internal degrees of freedom and effective de-excitation of the absorbing transition, 

making it available for the absorption of another photon. Therefore, the absorption in 

the quasi-continuum region is, in contrast to the discrete region, dependent on the 

energy fluence (time-integrated intensity) and not on the peak intensity and is rate-

limiting for the entire photodissociation process. 

Once the internal energy of the molecule rises over the dissociation limit the 

(true) continuum of levels is reached and a dissociative channel opens up. The originally 

bound states become metastable now and can be described in terms of decaying 
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resonances due to coupling to the continuum states. The resonant excitation to higher 

levels is then always in competition with dissociation. As the dissociation rate is 

expected to increase rapidly with increasing internal energy, the up-excitation is quickly 

balanced by dissociation depleting the population. The distribution is thus different 

from a thermal distribution. The laser-excited population is narrower and asymmetric, 

because the high-energy tail is heavily depleted by dissociation.[68]. 

A simple phenomenological model[31,68] based on rate equations can be set up to 

describe the time-dependent excitation of the excited molecules to and beyond the 

dissociation limit. It rests on several assumptions: 

(i) The multiple photon excitation proceeds by stepwise incoherent one-photon 

transitions among a set of equally spaced energy levels.  

(ii) The degeneracy of each level is given by the corresponding molecular density 

of states.  

(iii) Spontaneous emission is neglected and the ratio between emission and 

absorption cross section is given by the ratio of the level degeneracies.  

(iv) The dissociation rates of molecules from levels above the dissociation 

threshold are given by RRKM theory.  

The rate equations can then be written as  
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, (4) 

where Nm is the normalized population in level m with energy m⋅hν, I(t) is the laser 

intensity, gm is the density of states of level m, σm is the cross section for absorption 

from level m to m+1, and km is the RRKM dissociation rate constant for level m. 

For a given molecule with σm and I(t) specified, the set of rate equations in Eq. 

(1) can be easily computed. The density of states gm in Eq. 1 is generally approximated 

by the vibrational density of states, which can be determined from the harmonic (or 

anharmonic) frequencies using the Beyer-Swinehart algorithm.[69] The absorption cross 

section and in particular its dependence on excitation energy is generally not 

experimentally known and is difficult to estimate from ab initio calculations. Generally, 

it is assumed that σm decreases exponentially with increasing m. The microscopic rate 

constant km is given by the ratio 
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corresponding to the sum of all vibrational and rotational quantum states available to the 

activated complex with vibrational energy in the range from 0 to E*-Ediss, divided by the 

density of states in the energized molecule at energy E*=m⋅hν. Based on this model 

several important and general conclusions can be drawn: 

(i) If the laser pulse duration is too short, no dissociation will be observed, 

independent of peak intensity.  

(ii) The dissociation rate constant increases more slowly with increasing energy 

as the degrees of freedom and the number of low-frequency modes are 

increased.  

(iii) The RRKM dissociation rate constant increases more rapidly with excess 

energy if the dissociation energy is lowered.  

(iv) Most of the excess energy should remain as internal energy in the emerging 

fragments, leading to secondary dissociation, if the fragments have strong 

absorption band coinciding with the laser frequency.  

(v) For heavier, more complex molecules, competing dissociation channels may 

open up, provided their dissociation energies are not too far above the lowest-

energy channel.  

 



 

C EXPERIMENTAL SETUP 

This chapter describes various aspects of the experimental setup and is divided into two 

parts. It begins with an overview of the tandem mass spectrometer, briefly covering the 

vacuum system, ion sources, RF ion guides and mass filters. The instrument was 

designed and constructed at the beginning of this thesis period and delivered its first 

mass-selected ion signal in June 2001, roughly 18 months after the first rough sketch 

was drawn up, and its first IRMPD spectrum of cooled and trapped ions in November 

2001. The IR experiments were performed at the free electron laser facility FELIX. FEL 

basics and FELIX details are briefly described in the second part of the chapter, which 

ends with a summary of currently available table-top mid-IR laser systems.     

C.1 The Tandem Mass Spectrometer 

The design of the new spectrometer  is based on a triple quadrupole instrument 

constructed by Wöste and coworkers in 1993 and modified thereafter.[70,71] The original 

setup was used to perform laser experiments on mass-selected, cooled metal cluster 

ions. The metal ions were produced in a sputtering source, collimated and compressed 

in phase space in a He-filled quadrupole ion guide and mass-selected in a quadrupole 

mass filter. Mass-selected ions were trapped in a 8 cm long RF octopole ion trap. The 

interaction products were mass-selectively detected using a second quadrupole mass-

filter followed by a channeltron detector. The instrument was constructed to produce 

high currents (~nA) of mass-selected cluster ions and is restricted to studying small 

metal and metal oxide ions.  

The goal of the new design was to build a more compact instrument, which 

would improve on the older design with respect to versatility in ion production, 

detection sensitivity and mass selectivity. Major improvements compared to the original 

version in the current “second generation” instrument are: 

(i) Modularly constructed source region,  

(ii) non-linear arrangement of the RF-devices, 

(iii) improved mass resolution (∆m=1 amu up to 1000 amu), 
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(iv) high transmission design of all RF-devices, 

(v) temperature adjustable (15 to 350 K) 16-pole ion trap with axial focusing ring, 

(vi) complete computer control of all electrostatic potentials, RF amplitudes, as 

well as other parameters, and 

(vii) compact and portable design. 

 
Figure C-1  Schematic 3D-view of the guided ion beam tandem mass spectrometer. 

A schematic of the instrument is shown in Figure C-1. The beam of ions formed 

in the ion source region is skimmed and fed into a RF-decapole ion guide. The decapole 

device can be filled with a buffer gas in order to collimate and compress the ion beam in 

phase space.[72] The ion beam is cleared from any remaining neutral particles in a 90° 

electrostatic quadrupole deflector and then enters the first quadrupole mass filter. Mass-

selected ions exit the mass filter, pass another 90° deflector and are focused into the ion 

trap using two Einzel lens arrangements. The ion trap consists of an entrance and exit 

lens, a 16-pole RF-ion guide, and an axial focusing ring. The complete assembly is 

connected to a closed-cycle He cryostat. The laser beam is applied coaxially to the ion 

trap. Ions extracted from the ion trap are focused by another two sets of Einzel lenses, 

pass a third 90° deflector and are finally mass-selectively detected using a second 

quadrupole mass filter combined with a conversion dynode channeltron detector. The 

complete instrument is housed in a tailor-made vacuum chamber equipped with ultra-

high vacuum flanges. 
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Figure C-2 Tandem mass 
spectrometer in the FUB lab 
without any cables connected. 
From left to right one can see 
the source chamber (A), bellow 
(B), high vacuum chamber (C), 
cryostat (D), detector region (E), 
and foreline pumps (F). 

 

Figure C-3 The tandem mass 
spectrometer in user station 9 

at the FELIX facility from a 
slightly different angle: source 

chamber (A), gate valve (B), 
cryostat (C), electronics racks 

(D+E), power meter and 
display (F+I) and FELIX 

beamline (H). 

 

Vacuum System 

The vacuum chamber (see Figure C-2) was constructed in the workshop of the Physics 

Department at the FUB and consists of two regions, the source and the high-vacuum 

region, separated by a ∅90 mm gate valve (Balzers). This allows venting the source 

region exclusively, which is usually done on a daily basis. The high-vacuum chamber is 

mounted on a Lintec rail system and can be displaced mechanically relative to the 

source chamber in the horizontal direction by a spindle / worm-gear / motor assembly. 

This mechanism allows moving the first ion guide past the gate valve into the source 

chamber in order to guide the ions as soon as possible. The source chamber is equipped 
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with a special adapter flange for the source modules and otherwise KF flanges. It is 

pumped by a 1600 l/s turbo molecular pump (Pfeiffer Vacuum TMH-1601) backed by a 

65 m3/h double-stage rotary pump (Pfeiffer Vacuum Duo 65), yielding a background 

pressures of <1⋅10-6 mbar. Typical operating pressures lie in the 10-4-10-2 mbar range. 

The high-vacuum chamber is completely equipped with CF flanges and is UHV 

compatible. It consists of three compact, stainless steel rectangular blocks (see Figure 

C-2), which are connected via CF flanges and can therefore be configured to either 

house the RF devices in a bent (presently used) or linear arrangement. A flexible bellow 

connects this chamber to the source region. The four differential regions Q0 (decapole 

ion guide), Q1 (first quadrupole mass filter), Q2 (ion trap region) and Q3 (second 

quadrupole mass filter and ion detector), are each pumped by a 520 l/s turbo molecular 

pump (Pfeiffer Vacuum TMU 521), which are backed by a second 65 m3/h rotary pump. 

The high-vacuum chamber houses the main part of the instrument shown in Figure C-1. 

The background pressure is <2⋅10-8 mbar (without baking). Typical operating pressures, 

when using buffer gases in the ion guide and trap regions Q0 and Q2, in the 

differentially-pumped regions are 9⋅10-5 mbar (Q0), 5⋅10-6 mbar (Q1), 5⋅10-6 mbar (Q2) 

and 1⋅10-7 mbar (Q3).    

Ion Sources 

Three ion sources are currently in use: 

(i) a 100 Hz rotating-rod laser vaporization source, 

(ii) a continuous ion spray source, and 

(iii) a continuous or pulsed expansion crossed 1 kV e--beam source. 

The laser vaporization source is a home-built, Smalley-type[73] rotating rod source that 

is useful to produce wide size distributions of pure metal and metal-containing cluster 

ions. Its details are described in the diploma thesis of G. Santambrogio[74] and only the 

salient features are summarized here. A nanosecond laser pulse, usually the second 

harmonic of a Q-switched Nd:YAG laser, impinges on a metallic target and the metal 

vapor produced by the early portion of the laser pulse forms a dense cloud near the 

metal surface. This cloud is quickly ionized and the resulting plasma is entrained in a 

buffer gas pulse and allowed to thermalize through collisions with the source walls in 

the expansion channel. Cluster formation occurs here through three-body-collisions. 
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Adding small amounts of a reactive gas to the buffer gas allows tailoring the cluster 

composition. The gas pulse then expands into the vacuum cooling mainly the rotational 

and translational degrees of freedom. The vibrational temperature of the ions is 

determined mainly by the temperature of the source chamber. The source has recently 

been upgraded and now operates at a repetition rate of up to 100 Hz (Big Sky Laser 

CFR-200, <12 ns, 20 mJ @ 532 nm and 100 Hz). 

Figure C-4 Picture of 
the source region with 
the ion spray source (A) 
installed. The ablation 
laser (B) and the 
feedthrough  for the 
electron gun (C) can also 
be seen. 

The ion-spray source (Figure C-4) was taken from a commercial SCIEX API III 

triple quadrupole mass spectrometer and adapted accordingly. It allows to introduce 

polar and thermally labile compounds into a mass spectrometer without fragmentation, 

thermal degradation and free of solvent molecules.[75] This method involves spraying a 

polar liquid containing preformed ions through a charged tip forming charged droplets 

and subsequent emission of the ions from the droplet into the gas phase. Depending on 

the way the droplets are formed one refers to ion-spray (pneumatic sprayer), electro-

spray (high electric field without gas jet) and thermo-spray (heated tip sprayer). Ion 

evaporation from the droplet is a complex sequential process, in which solvent 

evaporation leads to an increase of electrical charges on the droplet surface eventually 

leading to one or more Coulomb explosions, producing the bare ion.  

The crossed electron beam source[76] consists of a pulsed (or continuous) 

expansion, which is crossed by a continuous beam of 1 kV electrons from an e-gun 

(Figure C-5) and is an efficient source to produce molecular anions. Collisions with the 

fast electrons ionize the buffer gas producing many secondary electrons. These slow 

electrons can be temporarily captured by neutral molecules forming short-lived anions ( 
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resonances). These species are either stabilized by three body collisions or decay via 

electron emission or dissociative attachment forming a stable negative ion and neutral 

molecule. Stable anions are cooled in the supersonic expansion and may react further 

with other neutral molecules in the gas pulse. 

Figure C-5 Picture of the 1 
kV electron gun. The electron 
gun mount (A) is used to secure 
the e-gun inside the source 
chamber. The thorium-coated 
iridium filament (C) is held in 
position by two screws. A 
voltage can be applied to the 
anode (D) in order to extract 
electrons from the filament 
region (B) into the focusing and 
steering optics assembly, 
consisting of an Einzel lens (E) 
and two pair of deflectors (F).  

RF Ion Guide and Mass Filters 

A home-built RF decapole ion guide (5 mm stainless steel rod diameter) operated at 1.2 

MHz (Extrel QC150 power supply) is used to guide the ions from the source region into 

the high-vacuum chamber. The ion guide can be filled with a buffer gas (generally 

argon) and used as a phase-space compressor, i.e., through multiple collisions with the 

buffer gas atoms the initially broad ion velocity distribution is narrowed. The reduction 

of the velocity component perpendicular to the decapole axis leads to a collimation of 

the ion beam in the RF ion guide.     

Mass-selectivity is achieved by two quadrupole mass filters (ABB Extrel CMS 

Tri-Filter) with ¾ inch rods and running at 880 kHz, yielding a mass resolution m/∆m = 

1000. In addition to the high precision main quadrupole rods, the mass filters also have 

RF-only pre- and post-filters.  These are short stub rods before and after the main rods 

that help to collimate the ions coming into and exiting the main section rods and which 

increase the ion transmission through the mass filter by shielding the ions from the RF 

and DC fringing fields present at the end of the main rods. Ions exciting the second 

mass filter are detected using standard ion counting techniques. 
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Hexadecapole Ion Trap 

The principle of ion trapping in a gas-filled linear RF ion guide was first described by 

Dolnikowski et al.[77] Exactly as in the gas-free version (see also Figure B-2) the ions 

are confined in the two dimensions perpendicular to the guide axis by the RF field of 

appropriate amplitude. Confinement in the third dimension (parallel to the guide axis) is 

achieved by applying appropriate electrostatic potentials to the entrance and exit lens. 

While the lens potentials need to be pulsed in the gas-free version, the gas-filled ion trap 

can be filled continuously. This is done by choosing an ion energy, which allows the 

ions to barely pass the potential barrier at the ion trap entrance. The ions then traverse 

the ion trap, are reflected at the exit lens and return to the entrance lens region. At this 

point the ions have lost sufficient kinetic energy through many collisions with the buffer 

gas, generally helium, such that they cannot pass the potential barrier at the entrance 

lens anymore and are thus confined to the region within the ion guide. Another 

important advantage of the gas-filled version is that the trapped ions are collisionally 

thermalized to the ambient temperature, generally within less than a millisecond under 

typical operating conditions.       

 

Figure C-6 Picture of 
the ion trap (B) mounted 
on the cold head (F) in-
between the Einzel lens 
arrangements (A). The 
cold shield (C) is 
connected to the first 
stage (70 K) of the 
cryostat. The copper 
interface plate(E) is 
connected to the ion trap 
holder (D) and contains 
the heater cartridge. The 
protective grid (G) above 
the turbo molecular pump 
is also seen.   

The temperature-controllable 16-pole ion trap used in the present instrument was 

designed considering the basic principles of RF multipoles described in detail by 

Gerlich[78] and discussed with respect to the present ion trap by Santambrogio.[74] Its 

trapping properties were also modeled using the SIMION 6.0 program. The 

incorporation of a helium cryostat in the current design was copied from a similar ion 

trap designed by Hess[71]. The number of rods was chosen to be as large as possible 
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without introducing significant mechanical constraints, in order to optimize ion 

transmission, reduce ion heating and minimize the heat capacity of the ion trap.   

Figure C-7 Photograph of the ion 
trap housing (gold-coated copper 
cylinder) and the linear hexadecapole 
ion guide, consisting of sixteen 2mm 
diameter, 224 mm long stainless steel 
rods. The (teflon-coated) stainless steel 
cylindrical “focusing” electrode is 
seen on the right end of the rod 
assembly.  

The home-built 16-pole RF ion trap (see Figure C-7) consists of sixteen 2 mm 

diameter 224 mm long stainless steel rods held equidistantly on a 16 mm diameter 

circumference by two Macor rings at each end and two additional Vespel spacers. Like 

the ion guide it is operated at 1.2 MHz using an Extrel QC150 power supply. An 

additional cylindrical electrode was installed recently to generate a potential well along 

the axis of the ion trap in order to confine the (slow) ions to a narrower region inside the 

ion trap. The ion trap is housed in a gold-coated copper cylinder, which also holds the 

stainless steel entrance and exit lenses (6 or 10 mm aperture diameter). The ion trap is 

connected to the cold head of a two stage, closed-cycle helium refrigeration system 

based on the Gifford-McMahon thermodynamic cycle (CTI/Cryogenics, CT-8 cryo 

pump with SC8300 compressor unit). The cryo pump delivers 5 W at 20 K, and allows 

cooling the ion trap down to 15 K. The temperature is measured at two points, at the 

cold head and at the exit lens by Lake Shore DT-670B silicone diode sensors and read 

out using the Lake Shore 331S temperature controller. The temperature difference 

between the two measurement points is less than 1 K, assuring a nearly homogeneous 

temperature across the ion trap. The ion trap can be heated by a Lake Shore HTR-50 

heater cartridge (50 Ohms / 50 W), which is mounted into the copper interface plate 

between the ion trap holder and cold head. This allows continuously adjusting of the ion 

trap temperature between 15 K and 350 K. 

Two separate Teflon tubes allow admitting different gases to the ion trap region. 

One is generally used for the helium supply (Linde, He 6.0), the other for the admission 

of reactive gases. The gas flow is regulated by two MKS gas flow controllers with 

maximum flows of up to 10 and 50 sccm, respectively. The absolute pressure inside the 

helium trap is measured by a MKS baratron model 627B (0.1 to 1·10-5 mbar) using a 
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third teflon tube. The absolute pressure measurement (pm) is corrected for differences in 

temperature between the manometer (Tm) and the trap (Ttrap) using the relationship: 

 
m

trap
mtrap T

T
pp = . (6)            
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C.2 Infrared Light Sources 

Of central importance to the present work is the possibility to study the 

vibrational spectroscopy of gas phase ions in the mid-IR, or so-called fingerprint region, 

which extends roughly from 500 to 2000 cm-1. The low number densities attainable in 

the gas phase (< 108 ions/cm-3) in general prohibit direct absorption measurements and 

indirect techniques, generally referred to as action spectroscopy, need to be used. These 

techniques require intense and tunable IR light sources. Even though considerable 

progress has been made in the field of table-top IR lasers that are widely tunable in the 

mid-IR region (see final paragraph of this chapter), these systems still lack the pulse 

energies to induce multiple photon absorption processes. Therefore free electron lasers 

operating in the IR remain the only available sources to date to perform multiple photon 

absorption studies throughout the complete fingerprint region. 

The Free Electron Laser for Infrared Experiments (FELIX) 

A free electron laser (FEL) is a device which generates coherent radiation from a beam 

of relativistic electrons. The central part of an FEL is the undulator (Figure C-8), a 

periodically alternating static magnetic field. The peak emission wavelength λ depends 

on the undulator period L, the strength of the magnetic field, expressed by a 

dimensionless parameter K, and the electron energy: 

 )1(
2

2
2 KL

+∝
γ

λ . (1) 

γ = mc2/m0c2 is the relativistic factor and corresponds to the kinetic energy of the 

electrons along the axis of the FEL in units of the electron rest energy m0c2. In the 

moving electron frame the electrons see not only an oscillating magnetic field, but also 

an oscillating electric field in the perpendicular direction - in short, they see an 

electromagnetic wave with wavelength L/γ. Upon interaction with this wave the electron 

emits (first-harmonic) light of the same wavelength. The corresponding wavelength in 

the laboratory frame is subject to the Doppler effect. Thus, for MeV electrons the 

macroscopic undulator period (L ≈ 1cm) is shortened by the Lorentz contraction (1/γ) 

and the Doppler shift (1/2γ) into the µm wavelength region.  

The amount of power radiated spontaneously by a very energetic beam of 

electrons is not large. Indeed if the electrons were spaced uniformly along the beam, 
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there would be no power emitted at all due to destructive interference. Only the 

fluctuations in particle current lead to a net radiation, which scales linearly with n, the 

number of electrons. The spectrum of the spontaneous radiation is determined by the 

finite undulator length l = N·L, resulting in a finite transit time and a fractional width of 

the spontaneous or noise radiation of 1/N. 

 
Figure C-8 Schematic of the optical cavity of a free electron laser.     

The ponderomotive force acting between the axial electron velocity and the 

magnetic component of the electromagnetic wave is the origin of the stimulated 

emission of (highly coherent) photons. It couples the electron motion to the 

electromagnetic field and is phase dependent. Electrons that are in phase with the 

electromagnetic wave are retarded while the ones with opposite phase gain energy. 

Through this exchange of energy a longitudinal density modulation on the scale of the 

wavelength is created, the so called micro-bunching. More and more electrons begin to 

radiate in phase, which results in an increasingly coherent superposition of the radiation 

emitted from the micro-bunched electrons. The more intense the electromagnetic field 

gets, the more pronounced the longitudinal density modulation of the electron bunch 

and vice versa (gain mechanism). With complete micro-bunching, all electrons radiate 

almost in phase and this leads to a radiation power, which is proportional to N2 and thus 



C Experimental Setup 

an amplification of many orders of magnitude with respect to the spontaneous emission 

of the undulator.  

For IR, visible and UV FELs, light amplification can be reached in a multi-pass 

setup, i.e. by using an optical cavity with mirrors on both sides and the electrons passing 

the undulator as the gain medium in between. Saturation will occur when the field gets 

so strong and therefore the energy loss by the electrons along the undulator is so large, 

that at the end of the undulator the radiation that was red-shifted at the undulator 

entrance, appears blue-shifted to the electrons at the end of the undulator, where hence 

the energy will start to flow back to the electrons.  Exactly at resonance, the radiation 

produced by the density modulation is 90-degrees out of phase with the radiation 

driving the modulation, meaning that an oscillator will not start up under this condition. 

Slightly off-resonance, both amplitude and phase of the density modulation evolve 

along the undulator and a net energy transfer will occur: from electrons to the field for 

radiation that is somewhat red-shifted and vice versa for radiation that is blue-shifted. 

The temporal structure of the optical output pulse is determined by the incoming 

electron beam. The linear RF accelerators of FELIX typically generate 7 µs long pulse 

trains of 1 ps long electron bunches at a repetition rate of up to 10 Hz. The micropulse 

repetition rate is either 25 Mhz or 1 Ghz, the latter corresponding to 40 optical pulses 

circulating in the 6m long cavity. The micropulse duration of the optical pulses can be 

varied in-between 300 fs to several ps and their bandwidth is near-transform limited, 

ranging from less than 0.5% to several percent full width at half maximum of the central 

wavelength. 

The output wavelength of FELIX depends on the electron beam energy and the 

magnetic field strength. Generally, the wavelength is scanned by mechanically adjusting 

the distance of the undulator magnetic poles for fixed beam energy. A factor of three in 

wavelength can be covered using a single electron beam setting. Typically, macropulse 

energies at narrow bandwidth and 1 GHz micropulse repetition rate are 30 to 50 mJ. The 

IR radiation is guided via an evacuated transport system to a user station (roughly 30 m 

away).          

Table Top IR lasers: Recent Advances 

The generation of intense and tunable laser pulses in the mid IR region using table top 

lasers is an active research area. One promising approach is based on difference 
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frequency mixing in an AgGaSe2 crystal, pioneered by Raffy et al.[79] and considerably 

improved and first applied to gas phase spectroscopy by Gerhards and co-workers[80]. 

The three stage system consists of a tunable near IR laser (3650-4000 cm-1, bandwidth 

0.04 cm-1), whose output is amplified in an LiNbO3 based OPA. Signal and idler of the 

OPA process are then used for DFM in an AgGaSe2 crystal, leading to tuneable 

radiation from 2100 to 1400 cm-1 with a pulse energy of ~1 mJ at 1645 cm-1 and a 

bandwidth of 0.1 cm-1. Bosenberg and Guyer have used the same type of crystal, but a 

more complex OPO/OPA setup, to achieve similar specs.[81] Johnson and co-workers 

have recently used a Laser Vision KTP/KTA/AgGaSe2 optical parametric 

oscillator/amplifier system to measure IR spectra in the range from 600 to 1900 cm-

1.[82], convincingly demonstrating that the fingerprint region is now accessible for IR-

PD experiments of weakly bound species. 

An alternate continuously tunable, narrow bandwidth (0.4 cm-1) laboratory laser 

source for the mid-IR spectral range of 1250 to 2270 cm-1 has been developed by 

Vilesov and coworkers.[83] The device is based on the stimulated backward Raman 

scattering in solid para-hydrogen at 4 Kelvin. The crystal is pumped by a focused beam 

obtained from a commercial near-IR OPO. Output energies range from 1.7 mJ at 2270 

cm-1 to 120 µJ at 1250 cm-1. 
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G APPENDIX 

G.1 Other Publications  

 

The following two publications are part of my work done at the FUB, but did not fit in 

the framework of this thesis work. The first, "Bausteine des Wassers unter der 

Laserlupe", written together with Oliver Kühn from the Department of Chemistry at the 

FUB, is an article in German and published in the university science magazine fundiert. 

It describes our work on protonated water clusters and is aimed at a general, science-

interested audience. The second publication describes femtosecond experiments on 

silver clusters; work done together with Henry Hess and Thomas Leisner shortly after I 

came to Berlin in 1999. The paper introduces a new method to study the vibrational 

spectroscopy of mass-selected neutral clusters.       
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