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ABSTRACT

Using the ‘virtual casing’ principle the parallel MFBE_2001 code computes the magnetic
field of three-dimensional ideal MHD equilibria in a form suitable for tracing field lines and
guiding centres. This report gives a detailed description of theory, numerical methods and
use of MFBE_2001. Examples for tokamak, currentless stellarator and quasi-axisymmetric
stellarator configurations demonstrate its multi-purpose applicabilities.



1. INTRODUCTION

Originally, the MFBE (Magnetic Field Solver for Finite-Beta Equilibria) code [1] was
developed for computing magnetic fields in a form suitable for field line tracing inside and
outside the plasma boundary of three-dimensional ideal MHD equilibria of stellarators
without net toroidal current, e.g. Wendelstein 7-X (W7-X) [2]. That code version, which
takes advantage of the stellarator symmetry, uses the single-valued magnetic potential ®
computed by the free-boundary equilibrium code NEMEC [3] to determine the vacuum
field B, of the equilibrium

B, = B, + V&, (1)

with B, being the magnetic field produced by external coils. This relation only holds
in the case of vanishing net toroidal current. For equilibria with net toroidal current,
such as quasi-axisymmetric or tokamak equilibria, the magnetic field produced by this
current has to be added. A more elegant way to compute B, for equilibria with and
without net toroidal current is the ‘virtual casing’ principle [4]. The new MFBE code
named MFBE_2001 is based on this principle, and it has been extended to asymmetric
configurations.
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Fig. 1: Overview of the code system

MFBE_2001 is part of a code system illustrated in Fig. 1. The VACFIELD code computes
the magnetic field B, of external coil currents (e.g. toroidal coils, poloidal coils, modular
coils, ...) by means of Biot-Savart’s law. It needs as input the coil geometry and the
coil currents. Assuming nested flux surfaces, fixed or free-boundary three-dimensional



equilibria are computed with the VMEC/NEMEC code for given pressure and rotational
transform profiles or pressure and toroidal current profiles. The fixed-boundary VMEC
code [3, 5] needs the geometry of the plasma boundary, while an initial guess of this
boundary and the external magnetic field B, have to be provided for the free-boundary
NEMEC code [3]. Then MFBE_2001 calculates the corresponding magnetic field inside
and outside the plasma boundary in a form suitable for the GOURDON code which traces
field lines and guiding centres.

The main applications of this code system are:
Iterative procedure for determining the last closed magnetic surface (LCMS):

The VMEC/NEMEC code assumes nested flux surfaces, that is, it yields solutions with
closed flux surfaces even if islands or ergodic regions exist. In order to compute a free-
boundary equilibrium with a boundary that coincides with the last closed magnetic surface
of the corresponding magnetic field, the code system NEMEC+MFBE+GOURDON has
to be used. In the free-boundary NEMEC code the total toroidal flux serves as free
parameter to adjust the aspect ratio of an ideal MHD equilibrium for a given external
field B.. With NEMEC+MFBE+GOURDON this parameter is determined iteratively.
For this purpose, equilibria are computed with NEMEC for various values of the total
toroidal flux. The corresponding magnetic fields inside and outside the plasma boundary
are calculated with MFBE_2001 and their last closed magnetic surfaces are determined by
field line tracing using the GOURDON code. If the plasma boundary of the equilibrium
lies completely inside the LCMS, the toroidal flux is to small. Then the flux is increased
until the equilibrium plasma boundary coincides with the LCMS of the corresponding
magnetic field. For more details see Chapter 5 and Ref. [1].

Investigation of the magnetic field structure

Properties of the magnetic field are studied with the GOURDON code by field line tracing.
Interesting points are, for example, size and position of macroscopic islands outside the
plasma boundary [6] and the ergodization of the edge region [7, 8|.

Divertor studies

Tracing field lines and guiding centres, the deposition patterns of field lines and particles
on plasma-facing components (PFC’s), e.g. divertor and baffle plates, first wall, etc., are
determined and a rough estimate of the power load on these structures becomes possible
[9, 10, 11].



2. THEORY

2.1 EQUILIBRIUM COMPUTATION

The VMEC/NEMEC code has been extended from stellarator-symmetric equilibria to
asymmetric equilibria by S.P. Hirshman. Here some details of this upgraded code version
which are necessary for the understanding of MFBE 2001 are described.

The three-dimensional VMEC code [3, 5] is a fixed-boundary equilibrium code assuming
nested flux surfaces. Its basic goal is to minimize the total energy W, (magnetic plus
thermal) of a plasma confined in a toroidal domain V.

W, = <%Bf +p) v (2)

VMEC uses the left-handed curvilinear coordinates (s,#,() with the radial coordinate
s being the normalized toroidal flux, the poloidal coordinate # (0 < 6 < 27) and the
toroidal coordinate ¢ (0 < ¢ < 27). These coordinates are related with the cylindrical
coordinates (R, ¢, Z)

mp,Np
R= Y #5a(s)cos(mf — n¢Ny) + 75, (s)sin(mf — n¢N,)

m=0,n=—ny,

©=C (3)

my,np
Z= > Zy.(s)cos(mh —n¢Ny) + 25, | (s)sin(mh — n¢Ny)
m=0,n=—ny,
with {75, 1(5), Taan(5), 2mn(8), Zmn(s)} being the Fourier coefficients of a flux surface with
normalized toroidal flux s. N, is the number of periods, 0 < m < m, are the poloidal
mode numbers and —n;, < n < ny, are the toroidal mode numbers. The contravariant
components of the magnetic field are

B°=0

mp,np R R
B'= Y bl (s)cos(md — n¢Ny) + b2, (s)sin(mé — n¢N,,) (4)

m=0,n=—ny,

mp,Nnp R R
B¢= Y 055 (s)cos(mf — n¢Ny) + b5 (s)sin(mé — n¢Np)

m=0,n=—ny,



with the Fourier coefficients {l;frlc (s) b‘9S (s) b4C (s ),bfnsn( )}

VMEC yields the Fourier coefficients {7, ,(si), 75 0(5i); Zn(8i); Zn(si)} of a discrete
number of nested flux surfaces i with 1 < i < N and the Fourier coefficients {Isfﬁfn(sj),
ZA)fns (s1), B$5.(55), $2, (s5)} of the corresponding magnetic field on flux surfaces in between,

7 Ym,n ? Ym,n

that is, s; = (s1 + sl+1)/2 (for details see Fig. 2).

Fig. 2: Flux surfaces from the magnetic axis to the plasma boundary for a toroidal
cross-section in a cylindrical coordinate system (R, ¢, Z). The solid lines mark the flux
surfaces on which the Fourier coefficients {7, | (si), 75,,(5i), 25 (i), 2o n(81)} are given,

while the dashed lines belong to surfaces on which the Fourier coefficients of the magnetic
field are defined. The arrows represent the curvilinear basis vectors (r,;,r,9,1,¢).

The three-dimensional free-boundary NEMEC code [3] is a synthesis of the VMEC code
and the NESTOR vacuum code [12]. There, the shape of the plasma boundary is deter-
mined by the pressure balance

1B, _1B
5 TDP=
2 o 2 1o
with vanishing normal component of the magnetic field at the boundary.

B, n=(B.+V®) -n=0 (6)

(5)

Here B, is the magnetic field inside the plasma boundary, p is the plasma pressure and n is
the normal unit vector external-perpendicular to the plasma boundary. Note, considering
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equilibria with net toroidal current I, the corresponding magnetic field B; has to be added
in Eq. (6).

B, n=(B.+V®+B;) - n=0 (7)

NESTOR solves the Neumann boundary value problem yielding the single-valued mag-
netic potential ®. It computes the value B2/2u, at the plasma boundary which is the
only outside quantity required to determine the free-boundary equilibrium, while B, p
and I are determined by the VMEC code. The equilibrium vacuum field B, and the
corresponding free plasma boundary are obtained by iterating the position of the free
boundary with a constant toroidal flux enclosed.

2.2 THE ‘VIRTUAL-CASING’ PRINCIPLE

The magnetic field B of a MHD equilibrium is a superposition of the external magnetic
field B and the field of the plasma currents B;.

B =B. + B, (8)

Inside the plasma boundary B = B, is known from the solution of an equilibrium com-
putation, e.g. performed with the VMEC or NEMEC code. Outside this boundary it
is possible to determine B = B, by using the ‘virtual-casing’ principle [4]. It assumes
that the considered equilibrium configuration is surrounded by a closed superconducting
sheath S coinciding with the plasma boundary. Outside this sheath the magnetic field
will be zero. Then the only magnetic field sources are the plasma currents and the surface
current jgs induced in the superconductor.

. 1
Js = %ngn (9)

Here By is the equilibrium magnetic field on the surface S and n is the normal unit vector
external-perpendicular to this surface. This current creates B, in the internal region,

B. = ﬂ/ df'w (10)

4 Js r—r']3

with the positions r’ on the sheath S and r lying in the plasma region. In the external
region the current js creates a magnetic field which is equal in magnitude and opposite
in sign to the field produced by the current flowing in the plasma, that is,

JsX(r—r')
/fJ m— (11)

with r lying in the external region.

The definitions of the curvilinear coordinates (s,v,u) and the explicit formulation of the
equations used in MFBE_2001 are described in detail in the next section.



3. NUMERICAL DETAILS OF MFBE_2001

3.1 DEFINITION OF THE GRID

For tracing field lines or guiding centres the magnetic field has to be calculated many times.
The number of calculations of the magnetic field is considerably reduced by computing
it on a grid from which the required values are interpolated. This grid has to cover the
relevant region and it has to be sufficiently fine to guarantee results independent of its
discreteness. The grid box plotted in Fig. 3 is chosen as cylindrical box satisfying the first
requirement. The box is centred around the coordinates (Ry, Zy). The half side lengths
of the box are given by AR and AZ. Since Ry, Zy, AR and AZ do not vary in toroidal
direction, it has to be made sure that the box fits for all toroidal cross-sections in case
of three-dimensional configurations. To satisfy the second requirement the box has to be
divided into a sufficient number of grid points Ng, N, and N.

oV

Fig. 3: Toroidal cross-section of the grid box. The magnetic field is computed for N
grid points in radial direction, N, grid points in toroidal direction and N grid points in
Z direction.



3.2 CURVILINEAR COORDINATES

MFBE_2001 uses the curvilinear coordinate system (s, v, ) shown in Fig. 4 with s being
the normalized toroidal flux (0 < s <1, s = 0 corresponds to the magnetic axis and s = 1
to the plasma boundary), while v (toroidal) and u (poloidal) are angle-like variables
(0 <wv < N, 0<wu<1). These coordinates are related with the cylindrical coordinates
(R, ¢, 2)

mp,Np
R= Y 75 a(s)cos[2m(mu +nv)] + 75, | (s)sin[27(mu + nv)]
m=0,n=—ny,
2m
=N 12
o= (12)
mp,Np
Z= 3 Zya(s)cos[2m(mu +nv)] + 25 | (s)sin[27(mu + nv)]

m=0,n=—ny,

with {75, ,(5), T n(8), Za.n(8); Zmn(8)} being the Fourier coefficients of a flux surface with

normalized toroidal flux s. N, is the number of periods, 0 < m < m, are the poloidal
mode numbers and —n;, < n < ny are the toroidal mode numbers.

The corresponding covariant basis vectors are

L _or_om. 0z,
5T 95 0s BT 95
or OR 2 YA
,U:—:—A — ¢ e 1
ry =5 8veR+RNpe‘p+ 5y &7 (13)
T —@—a—Ré +8—Zé
T ou ou T ou ?
with
r:RéR—I—ZéZ (14)

and the Jacobian

VIZ 95 00 ou 2

Ny

0s Ou 0s Ou

2 2
or or or 1 (27) <3R 07 0ZOR ) (15)

(égr, €,,€z) are the basis vectors of the cylindrical coordinates.
The equilibrium magnetic field in terms of its contravariant components is defined by

L, Or Bu or

B, =B"— —
P 8v+ ou

(16)
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with

mMp,Np N R
B'= Y bS(s)cos[2m(mu + nv)] + 3%, (s)sin[27 (mu + nw)]
m=0,n=—ny,
myp,Np N R
B*= > by (s)cos[2m(mu + nv)] + bk’ (s)sin[27 (mu + nv)] (17)

m=0,n=—ny,

and {E’Ij;fn(s), B’I’I;fn(s), ZA)%’CH(S), l;“msn(s)} being the Fourier coefficients of a flux surface with
normalized toroidal flux s.

Fig. 4: Flux surfaces (dashed lines) on which the Fourier coefficients of the magnetic
field are given, plasma boundary (solid line), outer boundary (dashed-dotted line) and
frame of the grid box (thick solid line) for a toroidal cross-section. The arrows represent
the curvilinear basis vector (rg,r,,r,), while the numbers are indicies which characterize
the positions of the grid points with respect to the surfaces.

The VMEC/NEMEC code yields the Fourier coefficients of a number N; of discrete flux
surfaces and of the magnetic field on surfaces in between (see Section 2.1). Fourier co-
efficients for arbitrary s values are obtained by a linear interpolation of the coefficients
between two neigbouring flux surfaces. As an example the interpolation is given for 75, (s)

S — S5

Foan(s) = Fona(s) (1= 2220) o) (P20 (19)
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with As = sy — s;.

Comparison of the definitions of the curvilinear coordinates Eqs (3) and (4) used in
VMEC/NEMEC with the definitions Eqs (12) and (17) used in MFBE_2001 shows that
the following transformations of the Fourier coefficients are necessary.

~ ~ ~ ~
AC ~s 2C 28 v,C U8 Lu,C 7u,S
{rm,nﬂ Tm,n? ?m,ns “m,ns Ym,n’» %m,n> bm,n’ m,nJS MFBE_2001

70,¢c 1 70,8
bm,fna —b

N
9 m,—n
U VMEC/NEMEC

_ Jac ~S ~C ] NP 7¢,C P7(.s 1
- {Tm,—n’ Tm,—n’ Zm,—n’ Zm,—n’ %bm,*n’ 27’(’ bm,—n’ % (19)
MFBE_2001 computes the Fourier coefficients of the magnetic field on the plasma bound-
ary and on the magnetic axis by linear extrapolation from the neighbouring inner, re-
spectively, outer surfaces. The Fourier coefficients of the flux surfaces are computed
for surfaces lying in between (dashed lines in Fig. 2 and Fig. 4) by linear interpolation
(Eq. (18)) in order to get them for the same surfaces on which the Fourier coefficients of

the magnetic field are given. The surfaces are counted from the outside to the inside.

Since the grid box has a rectangular toroidal cross-section, it may include grid points that
are far away from the plasma boundary where the knowledge of the magnetic field is not
needed. Therefore, an outer boundary (dashed-dotted line in Fig. 4) is introduced which
is adopted to the geometry of the plasma boundary. The magnetic field on grid points
lying outside this boundary is not computed. This selection saves computational time.

For computing the magnetic field on a grid point it is necessary to know whether the point
lies outside or inside the plasma boundary. If it lies inside the boundary its curvilinear
coordinates have to be calculated. For this purpose, it has to be determined between
which surfaces the grid point is located. This is done by using the method of complex
integration

1 .
T 2
Cp 2 — 2 2mi 2 inside

with z = R+1iZ being a complex variable. For a grid point P(Ry, ¢o, Zy) the closed line C,
is defined by the cut of flux surface j with the corresponding toroidal plane characterized
by the toroidal angle ¢o. Only the imaginary part of the integral Eq.(20) has to be
computed. In curvilinear coordinates it is given by

_ (R — Ry) YA (Z — Zy) OR
Iml = chp <(R "R+ (Z—Z0)20u  (R—Ro?2+ (7 — Z)? %) du - (21)

with R = R(sj,vo,u), Z = Z(sj, vo,u) and vy = Npypo/27m. If the integral Eq. (21) yields
2mi for surface j and zero for surface j + 1 then the grid point lies between these two
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surfaces. By means of this method each grid point is characterized by an index j (see
Fig. 4).

For grid points lying inside the plasma boundary (j > 1) the curvilinear coordinates
(80,0, ug) have to be determined. While v, is simply given by the relation vy = N,po /27
the coordinates sy and 1y have to be computed by searching a zero of the two nonlinear
functions
mp,Np
Ry— Y, a(s)cos2m(mu + nvg)] + 7, ,(s)sin[2m (mu 4+ nvg)] = 0

m=0,n=—ny,

mp,Np

Zo— Y. Zna(s)cos[2m(mu + nvo)] + 25, , (s)sin[27 (mu + nvg)] = 0. (22)

m,n
m=0,n=—ny,

For this purpose, routine CO5PBE of the NAG library is used (see Section 4.2). Knowing
the curvilinear coordinates of the grid point, the magnetic field is computed using Eq. (16).

For j = 0 the grid point lies inside the outer boundary but outside the plasma boundary.
In this case the magnetic field is computed by using the ‘virtual casing’ principle Eq. (11).
With Bg = B, (s = 1) being the magnetic field on the plasma boundary, its normal vector

N &Xﬂ

n=_—_—= v " du (23)
or dr |’
a0 = ou
the surface element
or Or
= | = x— 24
df 5 X o dvdu (24)

and use of Eq. (9) we obtain for Eq. (11)

B (v, u) xN'(v,u)) x (r — r'(v,u))
It —r'(v,u)|? '

Ho (
B =42 /S dvdu (25)

For j = —1 the grid point lies outside the outer boundary and the magnetic field is not
computed, but set to zero (B = 0).

12



3.3 NON-EQUIDISTANT INTEGRATION MESH

In order to obtain a high numerical accuracy, in Eq. (25) the number of integration points
has to be adapted to the distance of the grid point from the plasma boundary. Since
this distance may be very small for some grid points, a non-equidistant integration mesh
is used. To this end, for each grid point P(Ry, ¢y, Zp) with index j=0 (see Fig. 4) its
minimum distance from the plasma surface and its projection (vg, ug) onto this surface is
determined. Here again the toroidal coordinate vg is simply given by vg = N"f“, while the

2
poloidal coordinate ug is determined by searching the minimum of the following function.

fu) = (R(s = 1,vg,u) — Ro)*>+ (Z(s = 1,vg,u) — Zy)? (26)

For this purpose, routine EO4BBE of the NAG library is used (see Section 4.2). It returns
the minimum f(ug) and the poloidal coordinate ug. From this value the minimum distance
is computed.

Armin = f(US) (27)

T1P(Ro.$0.20

A i
Vs /] s
(vs.ug

—_—
Y

Fig. 5: Projection (vs, ug) of the grid point P(Ry, g, Zy) onto the plasma surface S and
its minimum distance Armin, from this surface.

Around the point (vg,ug) the integration interval is set to

AU'min =Au . ; A/Umin = Aumin (28)

with Au = 1/N, being the equidistant integration mesh size in poloidal direction, the
average poloidal circumference U, = 2may (ap=minor radius) and the free parameter
cs which influences the numerical accuracy. It has to provide that Avpyi, and Aupi, are
much smaller than the distance of the grid point from the plasma surface. Further away
from this point the integration interval is increased step by step

A’Ui = 2(i_1)C4A’Umin, AU,i = 2(i_1)c4AU/min (29)

to an upper limit that corresponds to the equidistant grid size (Av, Au) with Av = 1/N,,
being the equidistant integration mesh size in toroidal direction. In Eq. (29) index i counts

13



the integration steps, while the free parameter ¢, determines the growth of the integration
interval. In Fig. 6 the non-equidistant integration mesh embedded in the equidistant one
is shown.

Fig. 6: Draft of the non-equidistant integration mesh embedded in the equidistant one.

The integration over the plasma surface Eq. (25) is splitted into equidistant parts and the
non-equidistant part as shown in Fig. 7. Then all parts are summed up.

_—
\%

Fig. 7: Equidistant parts (I-IV) and non-equidistant part V of the surface integral.

For grid point distances smaller than a very small fraction of the minor radius ay
ATmin S CaQy, (30)

the magnetic field is computed on the plasma boundary using Eq. (16). In Eq. (30) ¢, is
a free parameter which should be < 1-1073.

14



4. USE OF MFBE_2001

MFBE_2001 is written in FORTRAN 90 using free allocation of the field dimensions and
free format. Due to the parallelization two code versions are available. One code version
uses the native CRAY shmem communication library and runs on a CRAY T3E, while the
other uses the MPI communication library and runs on an IBM Regatta supercomputer.

The directory of MFBE_2001 has the following structure:

mfbe_2001
[
[
| e __ I
| I
|
I

src_t3e src_ibm
_____ l____ I
I I I

obj_t3e obj_ibm example

The source code is in subdirectory src, while the makefile and the object code are in sub-
directory obj. Subdirectory exe contains the executables and the subdirectory example.
The suffixes t3e and ibm mark the code versions.

4.1 SOURCE CODE

MFBE_2001 contains the following modules, includes, main routine and subroutines.

List of modules:
mod _konst.f90 constants and variables used in various subroutines

only src_t3e
mod_parallel.f90 quantities concerning the parallelization

only src_ibm

mod _cosinu.f90 fields used for the equidistant integration
mod _field.f90 magnetic field and curvilinear coordinates
mod_four.f90 Fourier coefficients

mod_integ.f90 fields used for the non-equidistant integration
mpp_functions.f90 establishes a MPP job environment

15



List of includes (only src_t3e):

cosinu.inc
field.inc
four.inc
integ.inc

Main routine:

mfbe.f90

List of subroutines:

axis.f90
bfield.f90

bplasbound.f90
collect.f90
compint.fo0
curvicoor.f90
equimesh.f90
equint.f90
fenc05pbe.f90
fcne04bbe.f90
fourier.f90

line.f90

nonequint.f90
partint.f90

point.f90

fields used for the equidistant integration
magnetic field and curvilinear coordinates
Fourier coefficients

fields used for the non-equidistant integration

main program

computation of R and Z coordinates of the magnetic axis
determination of the curvilinear coordinates,

determination of the minimum distances of grid points

from the plasma boundary,

computation of the magnetic field

computation of the field on the plasma surface (Eq. (16))
collection of the equidist. parts of the surface integral (Eq. (25))
complex integration (Eq. (21))

computation of the curvilinear coordinates (s,u) (Eq. (22))
computation of quantities on the equidistant integration mesh
computation of B; (Eq. (25)) with the equidist. integration mesh
subroutine for NAG routine CO5PBE

subroutine for NAG routine EO4BBE

reading, transformation (Eq. (19)) and interpolation (Eq. (18))
of the Fourier coefficients

computation of the closed line C, for the complex

integration (Eq. (21))

non-equidistant mesh and integration

equidistant integration (Eq. (25)) over parts of the plasma
surface

computation of R and Z coordinates (Eq. (12))

List of external functions (only src_t3e):

npid.f90
nprocs.f90

yields the processor number
yields the total number of processors

16



4.2 LIBRARY ROUTINES

MFBE_2001 uses the NAG library routines CO5PBE and E04BBE. Note, these routines
are named CO5PBF and E04BBF in the IBM version of the code.

CO05PBE

CO5PBE is a routine to find a zero of a system of N nonlinear functions in N variables.
Here it is used to determine the curvilinear coordinates sy and ug for given cylindrical
coordinates Ry and Zy (Eq. (22)). The NAG routine needs subroutine fcnc05pbe.f90.

E04BBE

In a given finite interval EO4BBE searches for a minimum of a continuous function of
a single variable, using function and first derivative values. The method is intended for
functions which have a continous first derivative. Here, the NAG routine is used to search
the minimum of function Eq. (26). It needs subroutine fcne04bbe.f90.

4.3 MAKEFILE

In the subdiretories obj_t3e and obj_ibm are the makefiles for the two code versions.
They create the executables MFBE_2001_T3E and MFBE_2001_1BM in subdirectory exe.

4.4 INPUT

MFBE_2001 uses MKS-units, that is, all input and output quantities are given in these
units. The code needs three input files.

INPUT 1: standard input

INPUT 1 contains names of non-standard input and output files as well as parameters
concerning the work of the code. The input quantities are read in program mfbe.f90 and
subroutine fourier.f90.

17



Example of a standard input file

in_equilibrium: ’/u/ers/mhd/mfbe_2001/exe/example_t3e/wout.12224’

format_type: ’ascii’
in_field: ’/u/ers/mhd/mfbe_2001/exe/example_t3e/field_vac_12224°
format_type: ’ascii’
out_field: ’/u/ers/mhd/mfbe_2001/exe/example_t3e/field_mfbe_12224’
format_type: ’ascii’
configuration: ’ASDEX Upgrade’

rOm alm

1.65 0.5
stop: ’out_boundary’
test: ’no’

nrtl nrt2 nztl nzt2 nphtl npht2

1 100 70 70 1 1

complex integration

jubmin  icompd epscom

2000 6 1.e-3
determination of the curvilinear coordinates

xtol_cO5pbe ifail_cObpbe seps dus nus icout

1.e-5 1 1.e-5 0.05 10 20
determination of the minimum distance
el_e04bbe e2_e04bbe db_eO4bbe maxcall_eO4bbe ifail_eO4bbe

1.e-8 1.e-8 0.30 20 1
equidistant grid for surface integration
jud jvd
320 960
non-equidistant grid for surface integration
nclu nclv  r2x r3x r4x
45 45 1.e-3 1.5 0.15

maximum difference between Bc and B
dbphimax dbrmax dbzmax
0.060 0.5 0.75
outer boundary
msSr NsSr mnsr
2 1 2
m n crce crs czs czc
0 O 1.6250E+00 0.0000E+00  0.0000E+00  0.0000E+00
1 0 2.5000E+00 0.0000E+00 -2.5000E+00 0.0000E+00

18



List of variables:

Non-standard input and output file names

in_equilibrium

format_type

in_field

format _type

out_field

format _type

Experiment

configuration
rOm
a0m

Mode

stop

test

character*80

character*80
binary

ascii
character*80

character*80
binary

ascii
character*80

character*80
binary
ascii

character*80
real
real

character*80
read_input
curvi_coor
in_boundary

min_distance
out_boundary
character*80
no

equilibrium
vacuum

name of the input file containing the
equilibrium quantities (INPUT 3)
type of the file format

name of the input file containing the vacuum
field produced by external coils (INPUT 2)
type of the file format

name of the output file containing the computed
magnetic field (OUTPUT 2)
type of the file format

name of the experiment, e.g. ASDEX Upgrade
major plasma radius
minor plasma radius

program stops after:

reading of the input data

computation of the curvilinear coordinates
computation of the magnetic field inside the
plasma boundary

computation of the minimum distances of grid
points from the plasma boundary
computation of the magnetic field outside the
plasma boundary

kind of use of the code

no test

test of the equilibrium field (Eq.(11))

test of the external vacuum field (Eq.(10))
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nrtl
nrt2
nztl
nzt2
nphtl
npht?2

integer
integer
integer
integer
integer
integer

lower grid point in R direction
upper grid point in R direction
lower grid point in Z direction
upper grid point in Z direction
lower grid point in ¢ direction
upper grid point in ¢ direction

Note, if the code is used in the test mode (test = equilibrium or vacuum), then the
computation of the magnetic field is limited to grid points lying in the boundaries defined
by nrtl, nrt2, nztl, nzt2, nphtl and npht2. Otherwise, the magnetic field is computed
for the complete grid defined in INPUT 2.

Complex integration (Eq.(21))

jubmin
icompd

epscom

integer
integer

real

minimum number of integration points
jubmin - 21°mPd — maximum number of
integration points

accuracy of the integration

Determination of the curvilinear coordinates (s,u) (Eq. (22))

xtol_c05pbe

ifail_cObpbe
seps

dus

nus

icout

real

integer
real
real
integer
integer

specifies the accuracy to which the solution of
CO5PBE is required. The recommended value
is the square root of the machine precision.
must be set to 0, -1, or 1

accuracy of the s coordinate

step size for the search of the u coordinate
number of initial v values

total number of attemps to determine s and

Determination of the minimum distance (Eq. (27))

el_e04bbe

e2_e(04bbe

db_e04bbe

maxcall_e04bbe
ifail_e04bbe

real
real
real

integer
integer

relative accuracy to which the position of the
minimum is required

absolute accuracy to which the position of the
minimum is required

2-db_e04bbe = width of the interval in which
the minimum is searched

maximum number of calls of fcneO4bbe.f90
must be set to 0 or 1
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Equidistant grid for the surface integration (Eq. (25))

jud

jvd

integer

integer

number of integration points in poloidal
direction

number of integration points per period
in toroidal direction

Non-equidistant grid for the surface integration (Eq. (25))

nclu

nclv

r2x

r3x

rdx

integer

integer

real
real

real

2 - nclu = number of equidistant grid points
in poloidal direction substituted by the
non-equidistant grid

2 - nclv = number of equidistant grid points
in toroidal direction substituted by the
non-equidistant grid

defines the min. distance (¢; in Eq. (30)) for
which B; is computed by integration (Eq. (25))
determines the minimum cell size of the
non-equidistant grid (cz in Eq. (28))
determines the increase of the cell size of the
non-equidistant grid (¢4 in Eq. (29))

Expected maximum difference between B, and B

dbphimax
dbrmax
dbzmax

Outer boundary (compare Fig.4)

Imsr
nsr
mnsr

real
real
real

integer
integer
integer
integer
integer
real
real
real
real

maximum value of |B, — B,
maximum value of |Bg — B. g
maximum value of |B; — B, »

max. pol. mode number: 0 < m < msr — 1
max. tor. mode number: —nsr < n < nsr
number of coefficients to be read

poloidal mode number

toroidal mode number
i~

’rm,n

aS

rm,n

S

Zm,n
2(3

m,n
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INPUT 2: external magnetic field

INPUT 2 is the output of the VACFIELD code. It is either an ascii file or a binary
file with double precision data of the external magnetic field B.. This input is read in
program mfbe.f90 and subroutine bfield.f90.

List of variables:

Dimensions of the vacuum field

enf real number of toroidal plans per period
enf=1 axisymmetric field
enr real number of grid points in R direction
enz real number of grid points in Z direction
ena real number of components of the magnetic field
enp real number of periods
enfd real number of toroidal plans for which the

magnetic field is computed
enfd = nint(enf)/2+ 1  stellarator-symmetric field
enfd = enf asymmetric field

Note, in order to avoid difficulties with different integer lengths on different computers,
these quantities are defined as real variables in read and write instructions. They are
transformed into integer variables inside the code.

Boundaries of the grid (compare Fig. 3)

r00 real R coordinate of the centre of the box
z00 real Z coordinate of the centre of the box
dr0 real half width of the box in R direction
dz0 real half width of the box in Z direction

Vacuum magnetic field produced by external coils

bb(1,k,1) real B, component
bb(2,k,1) real Bpr component
bb(3,k,1) real By component

with 1 <k <unr (R direction) and 1 <1< nz (Z direction). For more details see read
statements in subroutine bfield.f90.
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INPUT 3: equilibrium input

INPUT 3 is an output of the VMEC/NEMEC code. It is either an ascii file or a binary
file with double precision data of equilbrium quantities. This input is read in program
mfbe.f90 and subroutine fourier.f90.

List of variables:

Dimensions of the fields

gamma real adiabatic constant (not needed in MFBE_2001)
enfp real number of periods (has to agree with np)
ens real number of flux surfaces 1 <i < ens
empol real poloidal mode number 0 < m < empol — 1
enmax real toroidal mode number —enmax < n < enmax
emnmax real total mode number
eiasym real symmetry

eiasym = 0 stellarator-symmetric equilibrium

eiasym = 1 asymmetric equilibrium

Note, inside the code these variables are transformed into integer variables.

Fourier coefficients defining the flux surfaces and the equilibrium magnetic field

cre(m,n,i) real 7S a(si)
czs(m,n,i) real 73fn,_n(si)
crs(m,n,i) real ffn:_n(si)
czc(m,n,i) real Zmn,—n(51)
bsuc(m,n,j) real I;ﬂf_n(sj)
bsve(m,n,j) real b5 _n(s)
bsus(m,n,j) real Bf,;f_n(sj)
bsvs(m,n,j) real Bfﬁf_n(sj)

For more details see read statements in subroutine fourier.f90.

4.5 HOW TO RUN THE CODE

MFBE_2001 is a parallelized code. It computes the magnetic field on a two-dimensional
(axisymmetric) or a three-dimensional grid. If the configuration exhibits axisymmetry,
the magnetic field only has to be computed for one toroidal cross-section. Then the
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computation is parallelized in Z direction. For the three-dimensional problem the code
is parallelized in toroidal direction. It has to be made sure that either the number of
grid points in Z direction (two-dimensional case) or the number of grid points in toroidal
direction (three-dimensional case) is a multiple of the number of used processors. For a
good performance of the code the number of processors should be a power of two.

The subdirectory example contains example files for an axisymmetric configuration.
There the input, output and script files are given for interactive tests and batch jobs.

test

input_test INPUT 1: standard input

field_vac_12224 INPUT 2: magnetic field of external coils
wout.12224 INPUT 3: equilibrium input

mfbe_t3e.e script for an interactive run on a CRAY T3E
mfbe_ibm.e script for an interactive run on an IBM Regatta
output_test OUTPUT 1: standard output

batch job

input INPUT 1: standard input

field_vac_12224 INPUT 2: magnetic field of external coils
wout.12224 INPUT 3: equilibrium input

mfbe_t3e.] script for a batch job on a CRAY T3E
mfbe_ibm.j script for a batch job on an IBM Regatta
output OUTPUT 1: standard output

field_mfbe_ 12224 OUTPUT 2: computed magnetic field

The results of this example are discussed in detail in Chapter 5.1.

4.6 OUTPUT

The code produces two output files. All output quantities are given in MKS units.

OUTPUT 1: standard output

OUTPUT 1 contains all informations of INPUT 1 and possible warnings and error mes-
sages of the code.
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WARNINGS
WARNING 1: magnetic field of grid point (i,ir,iz) could not be calculated

(i,ir,iz) are the indices of the grid point in toroidal, radial and Z direction.

If for a grid point the difference between the computed field B and the external field B,
is larger than the expected maximum difference given in INPUT 1, then WARNING 2
occurs.

WARNING 2: (i,ir,iz) ibes(ir,iz) dbl db2 db3

Again, (i,ir,iz) are the indices of the grid point in toroidal, radial and Z direction, while
ibes(ir,iz) is the index which characterizes the position of the grid point with respect to
the nested flux surfaces (see Fig. 4). dbl, db2 and db3 are the absolut amounts of the
differences between the components of the two fields in toroidal, radial and Z direction.
If these amounts are unrealisticly high, an error has occured during the computation of
the magnetic field of this grid point.

If the NAG routine EO4BBE returns with ifail#0, WARNING 3 is written.
WARNING 3: (i,ir,iz) ifail umin fmin

Here ifail is the index of the error message of E0O4BBE (for details see NAG manual),
while umin and fmin correspond to uy and f(ug) of Eq.(27) which have been computed
by EO4BBE.

ERRORS

The program stops with an error message if an input or output file could not be opened.
It also stops computation if one of the following errors occurs.

PARALLELIZATION: toroidal direction

This error message occurs if the number of toroidal planes for which the magnetic field
has to be computed is not a multiple of the number of used processors (three-dimensional
case).

PARALLELIZATION: Z direction

25



This error message occurs if the number of grid points in Z direction is not a multiple of
the number of used processors (axisymmetric case).

If the code is used in the test mode additional information is written in the standard
output file.

Test mode ‘equilibrium’

equilibrium: 1 73 65 43 -2.0177 -0.0640 -0.3164 ssO =0.8863 uu0=0.9619
vacuum 1 73 65 43 -2.0167 0.0041 -0.1485
equilibrium: 1 74 65 36 -2.0001 -0.0611 -0.3171 ss0 =0.9511 uu0=0.9640
vacuum 1 74 65 36 -1.9993 0.0038 -0.1492
equilibrium: 1 75 65 28 -1.9827 -0.0581 -0.3165 ssO =0.8426 uu0=0.9660
vacuum 1 75 65 28 -1.9822 0.0036 -0.1500
equilibrium: 1 76 65 19 -1.9656 -0.0553 -0.3151 ssO =0.6681 uu0=0.9679
vacuum 1 76 65 19 -1.9654 0.0033 -0.1507
equilibrium: 1 77 65 9 -1.9490 -0.0522 -0.3111 ssO =0.6857 uu0=0.9697
vacuum : 177 656 9 -1.9488 0.0030 -0.1515
vacuum : 178 656 0 -1.9326 0.0027 -0.1522
equi. korr.: 1 78 65 0 -0.0017 0.0519 0.1535 dabst=0.0053 uus=0.9711
equi. vac. 1 78 65 0 -1.9309 -0.0492 -0.3057
vacuum 179 65 0 -1.9166 0.0024 -0.1529
equi. korr.: 1 79 65 0 -0.0014 0.0488 0.1474 dabst=0.0226 uus=0.9717
equi. vac. 179 66 0 -1.9152 -0.0464 -0.3003
vacuum 1 80 656 0 -1.9009 0.0021 -0.1536
equi. korr.: 1 80 65 0 -0.0012 0.0459 0.1417 dabst=0.0399 uus=0.9723
equi. vac. 1 80 656 0 -1.8997 -0.0438 -0.2953

There, the first three columns of integers are the indices of the grid point in toroidal,
radial and Z direction, while the forth column contains the index j which characterizes
the position of the grid point with respect to the nested flux surfaces. The three columns
of real numbers are the three components (toroidal, radial and Z direction) of one of the
following fields:

equilibrium: equilibrium magnetic field B, (Eq. (16))

vacuum: magnetic field of external coils B, (INPUT 2)

equi. korr.:  magnetic field created by the surface current jg, but oppsite in sign,
that is, —B; (Eq. (11))

equi. vac. :  vacuum magnetic field of the equilibrium (B in Eq. (8))

ss0 and uuO are the curvilinear coordinates(s,u) of the grid point, while dabst is its
minimum distance (Eq. (27)) from the plasma boundary. The projection of the grid
point onto the plasma surface is given by uus (poloidal coordinate).
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Test mode ‘vacuum’

vacuum : 173 65 43 -2.0167 0.0041 -0.1485

equi. korr.: 1 73 65 43 -2.0161 0.0041 -0.1486 dabst=0.0810 uus=0.9677
equi. vac. : 1 73 65 43 -0.0006 -0.0000 0.0001

vacuum : 174 65 36 -1.9993 0.0038 -0.1492

equi. korr.: 1 74 65 36 -1.9985 0.0039 -0.1493 dabst=0.0637 uus=0.9685
equi. vac. : 1 74 65 36 -0.0008 -0.0001 0.000

vacuum : 175 65 28 -1.9822 0.0036 -0.1500

equi. korr.: 1 75 65 28 -1.9812 0.0036 -0.1500 dabst=0.0465 uus=0.9692
equi. vac. : 1 75 65 28 -0.0010 -0.0001 0.0000

vacuum : 176 656 19 -1.9654 0.0033 -0.1507

equi. korr.: 1 76 65 19 -1.9641 0.0034 -0.1507 dabst=0.0292 uus=0.9698
equi. vac. : 1 76 65 19 -0.0012 -0.0001 0.0000

vacuum : 177 656 9 -1.9488 0.0030 -0.1515

equi. korr.: 1 77 65 9 -1.9473 0.0031 -0.1514 dabst=0.0120 uus=0.9705
equi. vac. : 1 77 65 9 -0.0015 -0.0001 -0.0000

vacuum : 178 656 0 -1.9326 0.0027 -0.1522

equi. korr.: 1 78 656 0 -0.0017 0.0519 0.1535 dabst=0.0053 uus=0.9711
equi. vac. : 1 78 66 0 -1.9309 -0.0492 -0.3057

vacuum : 17965 0 -1.9166 0.0024 -0.1529

equi. korr.: 1 79 656 0 -0.0014 0.0488 0.1474 dabst=0.0226 uus=0.9717
equi. vac. : 1 79 66 0 -1.9152 -0.0464 -0.3003

vacuum : 18065 0 -1.9009 0.0021 -0.1536

equi. korr.: 1 80 65 0 -0.0012 0.0459 0.1417 dabst=0.0399 uus=0.9723
equi. vac. : 1 80 65 0 -1.8997 -0.0438 -0.2953

This output is similar to the output of the test mode ‘equilibrium’. Only the definitions
of the magnetic field values of the lines ‘equi. korr’ and ‘equi. vac.” are different for grid
points lying inside the plasma boundary (5 > 1):

equi. korr.:  external magnetic field B, inside the plasma boundary (Eq. (10))
equi. vac. : differences between the components of B, (INPUT 2)
and B, (Eq. (10))

OUTPUT 2: computed magnetic field

The possible formats and the data structure of OUTPUT?2 are the same as of INPUT2
(see Chapter 4.4).
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5. EXAMPLES

Use and possible tests of the accuracy of VMEC/NEMEC+MFBE_2001+GOURDON
are discussed for a limiter-defined axisymmetric tokamak equilibrium (Sec. 5.1), a five-
periodic stellarator equilibrium without net toroidal current (Sec. 5.2) and a two-periodic
quasi-axisymmetric stellarator equilibrium (Sec. 5.3).

5.1 TOKAMAK

For axisymmetric configurations it is possible to compare VMEC/NEMEC+MFBE_2001
results with computations made with the axisymmetric equilibrium DIVA code [13]. The
two-dimensional free-boundary DIVA code computes limiter or separatrix-defined plasma
equilibria in the magnetic field of an external conductor system by solving the Grad-
Shafranov equation. As example a limiter-defined, not up-down symmetric equilibrium
of ASDEX Upgrade type (see Fig. 8) is considered with major radius Ry = 1.65 m,
inverse aspect ratio e = 0.333, beta poloidal f,, = 0.644% and total toroidal current
I =0.786 MA.

Flux Sprface Contlours
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Fig. 8: Flux surfaces of the axisymmetric limiter-defined equilibrium computed with
DIVA. The solid black line indicates the plasma boundary, while the grey structures
represent the divertor and limiter components. The star marks the position where the
plasma intersects a limiter plate.
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Recalculating the DIVA equilibrium with the fixed-boundary VMEC code as described
in Ref. [14], computing the magnetic field with MFBE_2001 and tracing field lines with
GOURDON the Poincaré plot shown in Fig. 9 is obtained. There, the surfaces of the
magnetic field are compared with surfaces of constant poloidal flux computed with DIVA.

R (m)

a.) b.)

Fig. 9: a.) Poincaré plot of the axisymmetric magnetic field computed with VMEC+
MFBE_2001+GOURDON (red and blue dots) and surfaces of constant poloidal flux cal-
culated with DIVA (green and black lines). The green line indicates the limiter-defined
plasma boundary. b.) Zoom of the upper right part.

Up to the plasma boundary the surfaces coincide very well. But also in the vacuum region
the magnetic field topology agrees with the DIVA solution (compare Fig. 8). There, the
closed magnetic surfaces up to the separatrix and the topology of the open field lines
could be reproduced.

Using Biot-Savart’s law, the VACFIELD code yields the magnetic field of the external con-
ductors. Inside the plasma boundary it is also possible to compute B, by using the ’virtual
casing’ principle (Eq.(10)). Fig. 10 shows the normalized differences of the external fields
(BYACFIELD _ BMFBE) /1 Bo| with |By| = 2.456 T being the amount of the external toroidal
magnetic field at the radial coordinate R = 1.65 m. The components B, Bg and B are
plotted as functions of the radial coordinate while the Z coordinate is kept constant. As
example a Z coordinate close to the magnetic axis is chosen. The plots demonstrate the
high accuracy of the VMEC+MFBE results obtained for this axisymmetric equilibrium.
The differences of the fields are negligible.
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Fig. 10: For a constant Z coordinate the components B,, Br and and By of the nor-
malized differences of the external fields are plotted as functions of the radial coordinate
R. The selected Z coordinate is close to the magnetic axis of the equilibrium.
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5.2 STELLARATOR WITHOUT NET TOROIDAL CURRENT

For a stellarator without net toroidal current the vacuum magnetic field produced by
the external conductor system already exhibits closed magnetic flux surfaces. Comparing
such a field computed with the VACFIELD code with the NEMEC+MFBE_2001 solution
obtained for the corresponding equilibrium with volume-averaged plasma beta (8) = 0
provides an excellent test of the numerical accuracy of the NEMEC+MFBE_2001 results
Ref. [1].

b.)

Fig. 11: Upper halves of Poincaré plots of a five-periodic W7-X configuration with
(B) = 0. At a symmetric bean-shaped cross-section the topology of the MFBE_2001
magnetic field (black dots) is compared a.) with the vacuum field produced by external
coils (red dots) and b.) with flux surfaces of the NEMEC equilibrium (green solid lines).
In b.) the red solid line marks the plasma boundary of the equilibrium.

Considering a five-periodic Wendelstein 7-X configuration with major radius Ry = 5.5 m,
aspect ratio A = 10 and a magnetic field strength of B, = 3 T on the magnetic axis, the
magnetic field structure of the MFBE_2001 solution is compared with the topology of the
vacuum field (Fig. 11a) and with flux surfaces of the NEMEC equilibrium (Fig. 11b). The
MFBE_2001 solution agrees very well with the vacuum field produced by external coils
and the NEMEC equilibrium ({3) = 0).

In Fig. 12 the rotational transform profiles obtained from the vacuum field, the NEMEC
equilibrium, and the MFBE_2001 magnetic field are plotted. NEMEC only yields values of
the rotaional transform up to the plasma boundary. The plateaux at « = 1.0 and : = 1.1
correspond to the macroscopic 5/5 and 11/10 islands (see Fig. 11a). The rotational
transform profiles agree excellently. Only close to the separatrix of the 5/5 islands the
rotational transform obtained from the MFBE magnetic field slightly deviates from the
vacuum field value, because X-Points are most sensitive to numerical inaccuracies.
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Fig. 12: Rotational transform of the vacuum field (red dots), the NEMEC solution
(green solid line) and the MFBE_2001 magnetic field (black stars) as function of the radial
coordinate R at the midplane of the beand-shaped cross-section in outward direction.

a.)

Fig. 13: Upper halves of Poincaré plots of the five-periodic W7-X configuration with
(B) = 2.5%. At a symmetric bean-shaped cross-section flux surfaces of NEMEC equilibria
(green solid lines) with a.) @y, = 1.854 Wb and b.) @y = 2.004 Wb are compared
with the corresponding MFBE_2001 magnetic field structures (black dots). In c.) the
full magnetic field structure of the equilibrium with &y, = 2.004 Wb is shown. There,
closed flux surfaces (black dots) inside the last closed magnetic surface (red dots) and
field lines of the edge region (green dots) are plotted.
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Figure 13 shows an example of iterative determination of the LCMS. Free-boundary equi-
libria with various values of total toroidal flux ®;,, are computed for the same stellarator
configuration as described above, but with (8) = 2.5%. Their last closed magnetic sur-
faces are determined and compared with the correponding plasma boundaries. In Fig. 13a
the plasma boundary (red line) and its corresponding LCMS (outermost surface, black
dots) are plotted for a too small toroidal flux (P = 1.854 Wb). Then the toroidal flux
is increased step by step until the LCMS approximately agrees with the plasma boundary.
This is the case for @y, = 2.004 Wb as shown in Fig. 13b. In Fig. 13c the full magnetic
field structure of the equilibrium with @, = 2.004 Wb is plotted. A comparison of
this plot with the vacuum magnetic field structure given in Fig. 11a shows the following
properties of the considered optimized Helias configuration. With increasing 3 the X and
O-points of the macroscopic islands approximately keep their positions, while the width
of the macroscopic islands increases and the edge region ergodizes.

0.002 T T T T 2e-07 T T T T 0.001
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Fig. 14: At the midplane (Z = 0) of a bean-shaped cross-section (¢ = 0) the normalized
differences of the external fields as functions of the radial coordinate R are plotted for the
components B, Br and Bz. The black line marks the vacuum case, while the coloured
lines represent the two equilibria (red: ®iora = 1.854 Wb, green: @ = 2.004 Wbh).

In Fig. 14 the normalized differences of the magnetic fields (BYACFIELD — BMFBE) /| B |
are plotted for the vacuum case and the two finite-3 cases shown in Fig. 13a and 13b.
Here, the differences are normalized to the magnetic field strength of the vacuum field
at the magnetic axis |B,| = 3 T. At the midplane of the symmetric bean-shaped cross-
section the components B,, Br and By are plotted as functions of the radial coordinate.
For these cases the differences of the fields are sufficiently small and of comparable size
(= 1-107%). Because of the stellarator symmetry the radial component of the magnetic
field Bg has to be zero for the considered ¢ and Z coordinates. As shown in Fig. 14 the
MFBE_2001 field fulfills this symmetry very well.
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5.3 QUASI-AXISYMMETRIC STELLARATOR

Quasi-axisymmetric stellarators are three-dimensional configurations which need a net
toroidal current in order to produce closed flux surfaces. Figure 15 shows the results
obtained for a two-periodic quasi-axisymmetric configuration with major radius Ry =
3.5 m, aspect ratio A = 0.455, total toroidal current I = —0.287 MA and volume-averaged
beta () = 2.88%.

a.)

Fig. 15: Upper halves of Poincaré plots of two-periodic, quasi-axisymmetric config-
urations with a.) Py = 2.202 Wb and b.) & = 2.102 Wb. At the bean-shaped
cross-section flux surfaces of the NEMEC equilibria (green solid lines), closed magnetic
surfaces and ergodic regions of the corresponding MFBE 2001 magnetic fields (black and
magenta dots) are plotted. The red solid lines mark the plasma boundaries of the NEMEC
equilibria, while the magenta dots show chains of 18 islands (v = 10/18).

Up to the 10/18 islands the flux surfaces (NEMEC) are in good agreement with the
magnetic surfaces (MFBE_2001+GOURDON). Outside of this region the field lines show
an ergodic behaviour. Nevertheless, for the smaller toroidal flux (® = 2.102 Wb, Fig. 15b)
a closed magnetic flux surface could be found outside the plasma boundary.
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Fig. 16: At the midplane (Z = 0) of a bean-shaped cross-section (¢ = 0) the normalized
differences of the external fields as functions of the radial coordinate R are plotted for the
components B, Bg and Bz. The results obtained for the two equilibria are represented
by solid (@gora1 = 2.202 Wh) and dashed (® = 2.102 Wb) curves.

In Fig. 16 the normalized differences of the magnetic fields (BYACFIELD _ BMFBE) /| B |
are plotted for the two cases shown in Fig. 15. Here, the differences are normalized
to the magnetic field strength of the finite-3 equilibrium at the magnetic axis |B,| =
0.99 T. Again the magnetic field computed with NEMEC+MFBE_2001 conserves the
stellarator symmetry, but apart from that the normalized differences are one magnitude
larger than the values obtained for the other two examples. It has been verified that
a further refinement of the integration grid does not improve the results. This means
that already the NEMEC plasma boundary is inaccurate. The results indicate that the
magnetic field structure of the equilibrium is very complicated. Probably it contains
islands like the 10/18 islands shown in Fig. 15 and perhaps there is also an ergodic region.
But islands and ergodic regions are out of the scope of NEMEC.
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