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Abstract

The asymmetry of the primary 14 MeV neutron flux in a fusion
reactor of toroidal shape has not yet been investigated. It
was feared that this phenomenon could possibly be one more
factor limiting the mean wall loading .
The treatment of this problem on the base of various appro-
ximation models vields significant differences in the results,
It is therefore not possible to decide which of these models
is the most reliable one,

In consequence an exact solution was evaluated which is des-
cribed in this report. On the premises of the plasma being

a volumetric, homogeneous, and isotropic neutron source of
tcroidal snape, an evaluation of the primary neutron flux
striking the first wall was performed. The first step in
this calculation is the determination of the anqular distri-
bution, which can be obtained by either an iterative or an
exact method. By numerically integrating this distribution
the total flux is calculated as dependent on the position

of a point at the small wall perimeter,

- Results are presented for a Tokamak- and a Stellarator-type
geometry. They indicate that there is no reason to claim a
reduction of the mean wall loading due to this effect. More-
over it is concluded that an approximation model using a
circular line source along the torus centre line is suffi-

ciently fitting the results gained by the exact procedure.
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Neutron Flux Asymmetry in Toroidal Geometries

Introduction

First fusion reactor concepts [1] are characterized by assum-
ing a mean wall loading of about looo W/cm2 or even higher,
These values have been obtained essentially on the basis of
economic considerations.

At the last "Working Sessions on Fusion Reactor Technology”
held at Oak Ridge one year ago it was stated that this assump-
tion probably has to be revised in view of the extremely high
radiation damage to the wall material associated with such
wall loadings [2] . Meanwhile a similar tendency is arising
from investigations on the cooling side where the difficulties
of pumping liquid metals in the presence of strong magnetic
fields seem likewise to put a limit on the mean wall loading
which is lower than previously assumed [3, 4] .

Besides these two reasons there could exist a third one which
is investigated in this report. In a fusion reactor of toroi-
dal shape the distribution of the 14 MeV neutron flux emerging
from the plasma will not be uniform along the small perimeter
of the torus. In the most general case there will be at any
position of the perimeter "hot spots", which have to be the
base for the design of a safely and reliably operating reactor.
The greater this neutron flux asymmetry, the lower must be
accordingly the mean wall loading of such a reactor.



2. Approximate Considerations

It is possible to do some approximations and evaluations, the
results of which reveal the necessity of performing more exact
investigations.,

2.3l Cylindricai Approximation

The first approximation which is commonly used to date is to
neglect this asymmetry completely. This is synonymous with

the assumption that the neutron source is not a toroidal but

a cylindrical one. In this case it doesn't matter whether the
neutron source is volumetric or linearized and whether the neu-
tron emission is istropic or not. The only suppositions in-
volved are that the source density as well as the isotropic
characteristics'if at all vary only with the radius.

2.2 Disk Source Approximation

In a second approximation the toroidal plasma is considered
to be composed of a series of cylindrical disks, the first
wall, however, is taken to be toroidal (see Fig. 1).
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Fig., 1l: Disk Source Approximation




Each one of these disks emits neutrons isotropically. For
this reason the neutron intensity, being situated in the
plane of the disk source itself, is equal in all directions.
However, because of the assumption of a toroidal wall, the
area upon which this intensity acts is different for diffe-
rent angles of 8. Obviously, the smallest area is situated

at the inner side of the torus (8 = -900), the greatest at
the outer side (8 = +90°). As a consequence the neutron flux
as a function of B8 will have a maximum at 8 = -900, a mini-
mum at B8 = +90°. As the most interesting result, the absolute
value of this maximum in relation to the mean value will de-
pend on the similarity parameter of the torus characterized
by the wall aspect ratio AW = R/rw.

Just as the first approximation, this model is independent

of the ratio between plasma and wall radius characterized

by v = Iy 4 T The suppositions concerning source density and
isotropic characteristics are likewise the same. Therefore, it
is sufficient to consider a single disk. It must be mentioned,
however, that this model has a weak point that is easy to see.
If the investigation would be extended to more than one disk
the inconsistency of the assumptions becomes evident. Since
the wall is considered to be toroidal and the disk source cy-
lindrical, either the second disk would have an eccentric po-
sition in respect to the torus center line if it is directly
stacked on the first one (see Fig. 2a), or it would overlap the
first one if its orientation follows the toroidal curvature
(see Fig. 2b). Therefore , incorrect results are unvoidable,

A better approximation would be achieved by assuming the disks
to be not cylindrical but conical (see Fig. 2c¢). In this case,
however, the mathematical expense exceeds the scope of an

approximation.




.'

Fly.:2a Fig. 2b

Fig. 2: Inconsistancy of the Disk Source Model

2.3 Line Source Approximation

A third way to approximate the problem is to consider the
neutron sources being concentrated along the center line of
the torus (see Fig. 3). In this case a relatively simple
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Fig. 3: Line Source Approximation



mathematical solution can be derived for the variation of

the neutron flux with the angle B, which characterizes the
position of the point of impact at the wall. The mathematical
procedure is to integrate all points along the circular line
source up to an angle @max
that the straight line connecting source point and point of

impact is just a tangent to the inner side of the wall,

» Which is defined in such a way

The integration can be performed exactly. The only problem

is the evaluation of Ynax @S dependent on 8. As shown in

Fig. 3 it is easy to determine qmax for the two limiting cases,
B = -90° and B8 = +90°, 2 rather good approximation is then to
assume a linear variation with B8 over the range limited by
these two values,

This model is based upon the assumption of an isotropic neu-
tron radiation. A possibly existing radial density profile
doesn't play any part because it must be integrated for the
purpose of evaluating the line source strength. It is obvious
that this approximation will be the better the smaller the
plasma radius is in comparison with the wall radius. For grea-
ter ratios of y = rP/rw it will be the better the greater the
density ratio is between the center and the surface of the
plasma.

2.4 Comparison of Approximation Models

Fig. 4 shows the results of the asymmetry variation over 8
evaluated on the basis of the three approximation models des-
cribed above. The example shown is valid for a plasma aspect

ratio A = R/rp = 4.0 and for ay = rp/rw = 0.8.

The picture demonstrates that the disk source approximation
yields the most significant variation of the asymmetry factor
a@!with a peak of 40 % above the mean neutron flux at the in-
ner side of the torus. If this dependency should prove correct,

neutron flux asymmetry could really be one reason more, be-
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3.

sides radiation damage and cooling problems, for a strong
reduction of the mean wall loading. As indicated above, this
model, however, is not very reliable.

In ccomparison, the line source approximation yields an essen-
tially smaller dependency with a peak flux of only about 6 %
above the mean value. An interesting fact is that the maximum
is situated not at the innermost side of the torus but is
shifted somewhat to the top. If this approximation should
prove to be the better one, there should be no reason why not
to choose the cylindrical approximation. This means to neglect
the asymmetry completely and therefore to introduce a safety
factor. Whether or not such a procedure is responsible is the
aim of the following investigations. As the picture shows,
there is still one feature whi¢h throws doubt on the quality
of this approximation. Theoretically, the asymmetry curve
must have a zero slope at 8 = -90° and 8 = +90°, This is be-
cause the problem is symmetrical with respect to the equato-
rial plane of the torus. The evaluated curve, however, does

not satisfy this condition.

Exact Solution of the Problem

3.1 Procedure of the Solution

In principle it should be sufficient to aim at a solution
based upon the disk source model by assuming the disks to be
of conical shape. In this investigation, however, another
procedure is used because, by its application, further inter-
esting results can be expected.

The toroidal plasma is considered to be a volumetric neu-
tron source of homogeneous source density, each point of
which emits neutrons isotropically. The wall which is like-

wise of toroidal shape is assumed to be an ideal neutron ab-




sorber, This means that backscattering of any neutrons strik-
ing the wall is neglected.

For a certain point of impact at the wall, the intensity is
evaluated to which this point is exposed from a special direc-
tion., The direction itself is defined in relation to the normal
line to the wall surface at the point considered. This is done
for all possible directions from which neutrons out of the
plasma are able to reach this point without being shielded by
any other range of the wall. The result of this procedure is
the angular distribution of the 14-MeV neutron flux at the
inner side of the wall depending on the position at the small
wall perimeter. To find the total flux density, this angular
distribution is integrated. By evaluating the mean value over
the total perimeter range and relating to it the discrete
values belonging to each special position, the variation of
the asymmetry factor is gained.

In contrast to the disk source model, this procedure yields
valuable information about the angular distribution of neu-
tron flux which might be a good premise for more distinct
blanket neutronics calculations,

3.2 Basie Egquations

The neutron flux @ in a distance a from an isotropically
radiating point source is defined

S

b= —5—

= (1)
4\l a
with SO characterizing the point source strength in s-l.
The meaning of this equation is that all neutrons produced
in the source point have to penetrate uniformly the surface
of a sphere with the radius a, the centre of which is the
source itself,



If the toroidal plasma is assumed to be built up of a lot
of point sources, the differential flux d® at a location
A at the wall can be determined by

ad 9—'% (2)
a

4
In this equation g 1is the volumetric source strength in
-35-1. The total flux in A has then to be calculated as
the integral over the entire plasma volume which is not
shielded by any other range of the wall except that of the
point A. The performance of this integration essentially
depends on the definition of the differential volume ele-
ment dV which for its part is fixed by way of the inte-
gration applied.

At this stage it is valuable to take a look at Bigs 5

Here the entire toroidal arrangement to be investigated is
shown. It is useful to define a Cartesian coordinate system
XYZ in addition to the toroidal coordinate system necessary
in determining the real position of any point considered,
This vertical coordinate system is specified in such a way
that the points of impact at the wall perimeter are situated
in the XZ-plane.

As indicated above, the first aim of the investigation is

to find the angular distribution of the neutron flux in

the point A at the wall. To do this it is necessary to
define the way in which the angular variation is doné. As
can be seen from Fig, 5 two angles called Y and 5 are used
to specify the direction of a beam from the source point P
to the point A. The distance between these two points is
called a. The basis direction Y = § =0 is defined as the
normal in respect to the wall surface which is the direction
given by the position of A and the centre of the small to-
rus cycle in the plane XZ. The angle Y is then defined as the
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angle appearing if the plane ABCD is turned to the plane
ABPQ, the turning taking place around an axis tangential to
the wall surface in the point A, The formerly basic direc-
tion AD is then moved to the direction AQ. If inside this
new plane the beam is inclined to the direction AP the
angle 8 appears.,

Using this notation the volume element needed can be written

dv =a * 946 + a ° cosS-BX-ga

av az-costS-ES‘ Bxaa (3)

By introducing this equation in equ. (2) the neutron flux de-
pendent on the direction in any point at the wall is given by

i
P = _q fcosg.aa (4)
33‘35 4 a‘l

In this way the equation is valid if the volumetric source
density g is constant,

The problem is now reduced to an integration with respect to
the distance a between the limits a; and aj . These limits
of integration now have to be defined as those points where
the beam of the direction (r,é) crosses the surface of the vo-
lumetric neutron source,or the plasma.

From Fig. 6 it can be concluded that there are three cases
possible which have to be distinguished by calculating the

cross—-points:

Depending on the position of the point A and the direction
(F,S ) investigated there can exist 2, 3, or 4 points where
the beam crosses or just touches the source, To find these
points is the most difficult problem of the study. It will be
treated in the next chapters.,
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Fig. 6: Number of Crosspoints for three Different Cases

If all points are known, the angular dependent flux is gained
by the following equations based upon equ. (4):

2 cross=points : 5735 - A% (a2 - al) cos §
d2
3 cross-points : 8}36=:%ﬁ (a3 - a;) cos} (5]

4 cross=-points al)+(a4 - a3ﬂ cos
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3.3 Finding the cross-points

To gain the angular distribution of the neutron flux at any
point on the wall, the distance a must be evaluated which a
beam covers when penetrating the toroidal plasma in a speci-
fied direction (y,S) starting from the point on the wall. This
problem can be solved in two different ways.

The first way is an iterative method, the advantage of which
is that a lot of mathematical expense can be avoided. The
second way is an exact solution with the advantage of a grea-

ter precision and shorter computer-time needed,
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Both methods start from the same basic equations indicating
the relations between toroidal and Cartesian coordinates.

With the notation specified in Fig. 5 the following identities
are valid for the point A at the wall:

u
=
1]

R + rw sin B

0 (6)

g
H
L}

Zl = rw cos B

The source point P 1is fixed by

Xy = (R + r sindk) cos\y
Yo, = (R + r sind) * siny (7)
22 = r °* cost

The differences in the three coordinates are expressed in terms

of the beam characteristics due to Fig. 7:

Ax = x; = X, = a (cos§ * cos) * sinf8 + sin§ * cosB)
Ay = Y, Y, = a (cos § * siny) (8)
Az = z, -2, =a (cos § ° cos ) * cosp - sin§ * sinp)

3.3.1 Iterative Solution

Based on the equations specified above, the iterative solution

works in the following way.

In a first step the starting parameters for the iteration
process are stated:
1. Definition of the point of impact at the wall using
the toroidal coordinates R, Lgr and 8.

2., Transformation of these coordinates to Cartesian

coordinates by means of egus. (6).

3. Definition of the beam direction by choice of the
angles p* and § .




- Fili -

Fig. 7: Definition of the Differences in Cartesian Coordinates

At this stage the iteration process which is performed by vary-
ing the distance a 1is beginning. For the first value of a
the distance between wall and plasma is chosen. Any further ite-

ration step is executed by enlarging the distance by the same
value,

Having fixed the distance a in this way the differences in
the three Cartesian coordinates are calculated using equs. (8).
With the ccordinates of the wall point and these differences
the new coordinates Xor You and z, which determine the end of
the beam are evaluated. Now the Cartesian coordinates of this
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point are converted to toroidal coordinates. Using these re-
sults it is now decided where this point is situated. There
are five possibilities of location:

l. P is located inside the plasma,

a)

. is located at the plasma surface,
3. P is located inside the wvacuum space

between plasma and wall,
4, P is located directly at the wall,

5. P is located outside the wall,

The iteration process operates by continuously lengthening

the distance a as long as the location code is unchanged.

If a change appears the iteration mode is changed, too. Now
the step width is halved. This is done as long as the location
is , within an initial precision, exactly at the plasma sur-
face or at the wall. From this point the iteration is con-
tinued using the increment of a initially defined. The ite-
ration process is ended if the first point is found to be lo-
cated outside the wall.

In this way all cross-points of the beam with the plasma sur-
face belonging to a fixed point at the wall and a special direc-
tion can be determined. The results can then be used in equs. (5)
to evaluate the differential neutron flux emerging from a spe-
cified direction.

This method is a relatively simple one and therefore works
rather reliably. The choice of the initial step width which is
the difference between wall and plasma radii is a compromise
between the requests of short computer time on one hand and a’
good precision om the other., Since the evaluation time of any
iteration process is necessarily long, concessions must be made
to the precision., This is valid in the case of this method, too.

In particular, inaccuracies are to be expected if the plasma
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aspect ratio A is small. Furthermore they increase remarkably
with increasing difference between plasma and wall radius. This
is the reason why efforts have been made to obtain an exact so-
lution to the problem.

3.3.2 Exact Solution

The exact solution of the problem is aimed at finding the
distance a as a function of the major torus radius R, of. the
wall radius L of the angular position B8 of the point of im-
pact, and of a given direction specified by the two angles p
and § , to be investigated, for all cases in which the variable

source radius r equals the plasma radius rp.
To do this the differences in the three Cartesian coordinates
must first be defined in terms of the toroidal coordinates.

This is done using the equs. (6) and (7):

Ax

(R + rwsinB) - (R + r sinx) ° cosy
Ay = - (R + r sin® ) * sin¥ (9)

Az = r., cosB - r cos

If equs. (8) are now set equal equas. (9) three new equations
are obtained describing a:

(R + rwsinB) - (R + r sinx) * cosy

a =
cosé-cosr * sinB + sindscosB
= = (R + ¢ sinx) - siny (lo)
cos § - siny
r cosB - r coso
a = Ak

cos *cos scosB - sin  sinB

These three equations contain the unknown variables & and ¥ .
The task is now to eliminate these quantities and thereby
to reduce the set of equations (lo) to a single one.



- 15 .=

We shall skip a detailed description of this cumbersome pro-
cess and have a look at the result. As indicated by Fig. 6

a maximum of 4 solutions for the distance a has to be ex-
pected. Consequently the equation for a has to be one of

the 4th order:

la + G2a2 + G3a3 + G4a4 =0 (11)

G0+G
The coefficients G; are functions only of R, r,» T, B, , and§.
Before these functions are specified some useful abbreviations
should be introduced.

There are at first two parameters characterizing the simili-
tude of a toroidal arrangement which make the results inde-

pendent of the major radius R. These two quantities are the
plasma aspect ratio A

A= 5— (12)
p
and the value vy
r
y= B (13)
w

which is the ratio between plasma and wall radius. The pro-
duct of both values is called the wall aspect ratio Aw:

r
A, = N . ;E = A,y (14)
Y¢ ° rp w

In the following we shall use the reciprocal quantities of
A and AW:

(15)

Pl Pl

(16)

E

Furthermore it is also adventageous to relate the distance a
to the major torus radius calling the dimensionless distance 4 :

(17)

Ol
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If we do that we have to write equ. (ll) in this way

A
'Zo G, - R'at =0 (18)
|=

From the coefficient functions G, it can be seen that they !

can be represented by
G, =R © 9y (19)
Since R will never equal zero,

R # O (20)

equ. (18) can be changed to

A
Zgidi =g, % gld + gzd2 + g_.:‘d3 + <;,r4d4l = 0 (21)
i=0 )

As the last abbreviations fl' f2 and f3 which are obtained

from equs. (8) are introduced:

£, = cos 6§ cosy * sinB + sin§ -+ cos8
£, = cos§ * siny (22)
£, = cos § * cosy * cosB - sin$ * sinB

Using (15), (16), and (22) the coefficient functions 94 for
the case r = rp yield:

L= l:wz - 2p2:l + 4[w2 - pz] [1 +w sina:l + pt (23)

g, = -4 , {(fl « Binpg + £, . COBRB) ., w[:wz - p2 + 2(1 + w sinﬁﬂ +

Q
il

3
+ £ (WP - pz)} (24)

2

2 + f3 ) (w

- 2 2 2
g9, = 4(fl + f3 ) + 2(f1 + £

2

2 _ 02,

+ 4(f, sinB + f, cosf) 2, we. + 4w[(3f12+f22+ f32) sinp +
+ 2 flf3cosﬁ (25)
e 2ap 2 2
g, = ~4(£, %48, 24,2 l>f1+ (£,5in8 + £,c088) . w:l (26)
g, = (f12+ f22 + f32)2 (27)



With the equation (21) we have now the base for obtaining
four cross=-points of the beam with the plasma surface specified
by its starting point and its direction. The solution of
this equation is left to a computer program which determines
the roots of a polynomial of arbitrary order.

In general these roots will be of a complex type. Therefore,
the next task is to select from the solutions obtained by the
program those which are of interest in solving the problem.
These solutions have to meet the following conditions:

l. They must be real.
If complex solutions occur, there are less
than four cross-points,

2. They must be positive.
If negative solutions occur cross=points are
found which are situated in the opposite direc-
tion to the one specified by yand § . This can
occur if negative angles of B8 are considered,

3. They must be smaller than the smallest distance
of a cross-point at the wall except zero.

The first two of these conditions can be taken into account
by direct scanning of the solutions the program makes avail-
able. To evaluate the third condition, the cross-points of the
beam with the wall must first be calculated,

This calculation is in principle the same as the one for the
plasma cross-points, the difference being that the variable
radius r equals the wall radius T, instead of the plasma
radius rp. These values can also be obtained by applying
equ. (21). Other coefficient functions of gy however, must
be specified:
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g, = O (28)
g, = -8 w (fl sinB + f3 cosB) (1 + w sinB) (29)
g, =4 (£,2 + £ + 4(£, sing + ficos8)? w? +

2 2 2
+ 4w [(3 fg7atsfylioncEyf) cainBok 2 flf3cosB](3o)

The functions 93 and g, are the same as in the former
case. This procedure yields a maximum of four solution, too,
one of which according to equ. (28) equals zero. This solution
is identical with the point of impact itself and must there-
fore be excluded from the treatment of condition 3,

3.4 Programming the Solutions

Both methods, the interative one and the exact one, have been
programmed in FORTRAN IV language for the IBM 360/91 compu-
ter of the IPP,

The main program called WALLFLUX performs all input and out-
put operations as well as the program control. The cross-
points are made available by use of special subroutines.
WALLFLUX further processes the subroutine values perfor-
ming especially the twofold numerical integration with re=
spect to the angles Y and § in calculating the total neutron
flux in a point of the position B8 . The evaluation of the
average values and the asymmetry factors which are defined
by the ratio of the discrete values @(8) and the mean values
Om is likewise done by this program. Iterative or exact
method can be used by choice,

If the iterative method is chosen the subroutine DISTIT which
is competent for doing the iteration process is involved.
Another subroutine called SRCPNT is used additionally for
evaluating the coordinates of the points considered and for
deciding on their positions.
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If the exact method is to be used, a subroutine called DTSTEX

performs all the work necessary. The subroutine SORT sorts the
pclynomial roots by size,

Except for some fundamental functions, the system makes use

only of the subroutine POLRT for solving the polynomial with-
in DISTEX, and the subroutine QSF for performing the numerical
integration by Simpson's Rule. Both subroutines are supplied
by the IBM Scientific Subroutine Package.

The total program system has a storage requirement of less
than 120 K. The evaluation by the exact method of one direc-
tion with respect to one point at the wall takes about 3 - 4
milliseconds. By application of the iterative method the com-
puting time is a factor of about 3 higher.

Results

From the geometrical point of view two types of toroidal ar-
ranements which essentially differ in the range of the plasma
aspect ratio A are of predominant interest in fusion research.
One is the Stellarator type with A =15 % 20, the second is the
Tokamak type with A =3 + 5,

It is evident that the neutron flux asymmetry is the more signi-
ficant the greater is the deviation from the cylindrical shape.
Therefore, in the case of the Tokamak type aspect ratios, the
most remarkable results are to be expected. For this reason

the main effort of this investigation is devoted to values
typical for this machine, A few results, however, are also

presented for Stellarator aspect ratios,

4,1 Angular Distributions

Figs., & - 12 show the angular distributions of the 14 MeV
neutron flux for a Tokamak (a) and a Stellarator (b) type
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reactor at various positions B8 on the vacuum wall. Common

assumptions for both cases are

1. the same major torus radius R and

2. the same value for y , which is, according to the last
reactor design studies, taken to be y = 0.8,

It is easy to perceive that only in the cases of 8 = t 90o
(Figs. 8 and 12) the differential flux profiles are symme-
trical with respect to the angle § = O, At any other position
of B, the profiles are shifted to angles $>0 due to the to-
roidal buckling.

The aspect ratios chosen for the demonstration of the angu-
lar distribution are Ap = 4 for the Tokamak case and AS = 16
for the Stellarator. A simple calculation shows that the mean
neutron flux in the Stellarator g and in the Tokamak §, are

related to each other by

=

(&)
o

=

{31}

:ae_'!
!
o

An assumption implicitly set hereby is that the plasma para-
meters and hence the neutron source density are in both cases
the same. The values gained by integrating the angular dis-
tribution prove this statement with rather good precision.

As can be seen from Figs. 8 to 12 the same relation is valid
for the differential flux striking the wall in normal direc-
tion () = 0; §= 0), and even holds for the entire plane

(y = 0;8#0) in which the points of impact are assumed to

be located. Equ. (31) is, however, not able to describe this
relation for any other inclination ) # 0.

A comparison of the results of Stellarator and Tokamak
arrangements permits the conclusion that the angular distri-
bution becomes less uniform the more the aspect ratio is in-

creased., This is expressed by increasing ratios of the peak
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fluxes with respect to the normal flux. For example, at

8 = 90° (see Fig. 12) this ratio is in the order of 4 for

the Tokamak but about 7 for the Stellarator. Moreover, these
peaks occur at greater angles of yin a Stellarator (= 62° at
B = 900) than in a Tokamak device (I‘= 38° at B = 900).

If the angular distributions as shown in Figs. 8 to 12 are in-
tegrated the first time with respect to the angle 5, a depen-
dency on the angle | remains as shown in Fig. 13, Here the in-
fluence of the different bucklings of both toroidal arrangements
becomes obvious. Up to an angle of about y* = 40° the flux in the
Stellarator remains nearly constant, whereas in the Tokamak in
the same range the first peak for B = + 90° occurs. The ratio

of this peak flux and that emerging from the normal plane r=20
is, with a value of about 2 still higher in the Stellarator
than in the Tokamak with about 1.75.

4.2 Flux Asymmetry Factors

A second integration of the angular distribution, which is done
with respect to the angle ), yields the total neutron flux @
dependent on the angular position B8 of the point of impact

at the wall., With regard to the computer time needed the step-
width of B was chosen bigger with AB = 15° as opposed to the
stepwidths in )y and § which were setAy =Ad= 2° or 1°.

By eqﬁating the average value ¢m of all flux values dependent
on B8 and relating to it the discrete values {(8), the asymme-

try factors were evaluated:

AD = 100" i%ﬂl = 1} (32)
m
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Figs. 14 to 16 show the variation of A} with the angular
position B for the three aspect ratios of A = 3, 4, and 5
with the ratio of plasma and wall radii y as parameters.

As was stated above the asymmetry becomes less significant the
more the aspect ratio is increased. The figures likewise show
that it also decreases as the value of y 1is increased. That
is not surprising.

What is surprising are the facts that the maximum value of

A@ l.) is not as high as previously supposed and 2,) is

not positioned at the innermost side of the torus ( B = 90° ) »
but that it is somewhat shifted to the top as indicated by the
line source approximation. This shift increases with increasing
aspect ratio and increasing ratio of plasma and wall radii.

As far as the maximum value is concerned in a practical case,
it is only 3 % for an aspect ratio of A = 4 and a y = 0.8,
where the disk source model yields a value of about 40 % and
the line source model one of about 6 %, The angular position
of this peak is located in the range of B~-15° as opposed to
the disk source model with 8
with B8=-55°,

—90° and the line source model

Indeed, the peak flux values are not revealed as restricting
factors on the mean wall loading even in the case of a Toka-
mal device with its characteristic low aspect ratio. Just to
get some idea of the order of magnitude in the Stellarator
case, two calculations were run with aspect ratios of A = 8
and A = 16 leaving the ratio of plasma and wall radius at the
value of y = 0.8 Fig., 17 shows the result in comparison with
the typical Tokamak aspect ratio of A = 4, At A = 16 the peak
is only about 1.2 % and is situated near the top of the torus.
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Fig. 17: Neutron flux asymmetry for higher aspect ratios




4,3 Approximate Equation for the Peak Flux

If the peak fluxes Aémax are taken from Figs, 14 to 16 and
plotted against y with A as the parameter in double-loga-
rithmic scale it can be seen that these peaks are nearly located
along a straight line. It should therefore be possible to give

a relatively simple equation for this dependency. By doing

this it turns out that a still better approximation can be ob-
tained if the coefficients evaluated in an exact way are roun-

ded off. By this procedure the following equation is obtained:
AD . = 5+ e2:5(Ll.8=y) (4] (33)

This equation well fits the results in the entire range of
interest for a Tokamak reactor. It is proved inside the scope
of this investigation which means inside the ranges of A = 3 = 5

and y =:0.5 + 0.9,

A similar fitting can be done for the values of the position
of the peak flux, Bmax' Since these positions cannot be loca-
ted as well as the maximum values itself, this approximate
equation does not yield as precise results as equ. (33):

o
Brax = 5°(A + 1o - y) - 75 [°] (34)
Fig. 18 shows the dependence of A@max due to equ. (33) for the
aspect ratios A = 3, 4, and 5 as the solid lines, Additionally,
the wvalues calculated by the exact method are drawn in. The
agreement is rather good.

The same is done in Fig. 19 for the positions of Bmax based on

equ. (34). Also in this case the agreement is satisfactory.
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4.4 Comparison with the Line Source Approximation

Comparing the results obtained by means of the exact solution
with the approximate models introduced in chapter 2, it turns
out that the line source model obviously gives the relatively
best approximation., Due to the characteristics of the line
source, this approximation will be better the less the real
plasma column deviatesS in its shape from an ideal line source,
in other words the lower is the ratio of plasma and wall
radius vy. It therefore was investigated whether the line
source approximation really is an asymptotic case of the

exact solution if y is more and more decreased.

Before doing this the line source approximation given in
chapter 2 must be modified. It was stated there that a com-
pletely precise determination of the flux emerging from a
circular line source failed because it was not possible to
define the limits of integration wmax as a function of B8
in a simple mathematical procedure. Therefore, it was pre-
ferrable to assume a linear variation of wmax with 8, It is
evident that this approximation cannot be an asymptotic
solution in the sense indicated above.

To find the exact dependency of Tmax on B, at least in a
special case, a seperate program was run., This program is
an iterative program, too, which makes use of the criterion
that, in case Wmax is reached, the straight line connecting
the point of impact with the source point is just touching

the toroidal wall at its inner side,

Fig. 20 shows the result of this calculation for the parame-
ters typical for a Tokamak reactor: A = 4, y = 0.8, It can
be seen from this figure that the assumption of a linear
variation is indeed only a rough approximation.
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Using these more precise results the line source approximation
was recalculated. It turned out that the peak flux in this
case is only about 5% above the mean one as opposed to
slightly above 6% gained on the basis of a linear variation
of ‘?max with B8 , It is self-evident that the line source
model does not depend on the plasma aspect ratio A but on
the wall aspect ratio AW' which is the product of A and vy.
To perform the comparison between this model and the exact
solution the wall aspect ratio Aw must therefore be held
constant., That means: in the same degree vy 1is decreased to
meet the line source conditions asymptotically, the plasma
aspect ratio A must be increased. Starting from the para-
meter set (A =4, y = 0.8) which corresponds to a wall aspect
ratio of AW = 3,2 three further calculations were run using
the parameters (A = 6.4, vy = 0.5), (A =8, y = 0.4), and

(A =16, vy = 0.2).

The results are shown in Fig. 21. Here the differences

between the exact and the approximate line source model be-
come obvious. Furthermore it can be seen that the accomodation
of the exact solution becomes better and better if y is more
and more decreased. The deviations between these two solutions
are especially neglectible at angular positions B'>Bmax‘ At
the inner torus side, however, the accomodation is found to

be worse.

Conclusions

The asymmetry of the primary neutron flux in a toroidal fusion
reactor has turned out not to be a restricting factor on the
mean wall loading. This is the most valuable information re-
sulting from this investigation. Preliminary reactor design
studies as they are performed in the present stage can unscru-=
pulously make use of the assumption that the 14 MeV neutron
flux does not vary over the entire surface of the toroidal wall.
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This is true in every case where Stellarator reactors with
their characteristic high aspect ratios are considered. With-
in an accuracy of less than ¥ 10% this is even valid for To-
kamak reactor designs as long as the ratio of plasma and wall
radius does not fall below a value of y = 0.6.

If at any time more detailed reactor studies come into the
scope of fusion research there it will be to reflect upon the
necessity having exact knowledge about the flux variation along
the small perimeter of the torus or whether it would be satis-
factory to supply a safety factor which takes care of the flux
asymmetry. In the case of Stellarator reactors this safety fac-
tor will be of an order which surely will be exceeded by other
safety factors which might be necessary. In the case of Toka-
mak reactors this safety factor may be derived from the equa-

tion which approximates the results of the exact evaluation.

If, nevertheless, exact values should be needed, the method
described in this report will be able to make this knowledge
available,

The procedure of the calculations is arranged in such a

way that it will be easy to take into account a locally
varying neutron source density. Such a refinement could
possibly be needed if the influence of a radial profile of the
ion density in the plasma should prove to be an important
effect. With regard to the small values of the asymmetry
factors on the one hand and to the rather good qualitative
agreement between the exact solution and the line source

model on the other hand this refinement should, however,

yield only slightly differing results.

A more significant effect can be expected from the
elimination of other simplifying assumptions. It is, for
instance, most probable that the distribution of the

neutrons emerging from the fusion reactions is not an isotropic




one because of the directed ion movement within the magnetic
confinement. Another open problem is the question whether

the neutrons on their way to the wall will undergo any inter-
actions with other particles or even the magnetic field.
Taking into account such effects will surely require a much
more complicated program system than it was presented in this
report.

Finally it must be mentioned that the real wall loading results
from a superposition of the 14-MeV neutrons arriving from the
plasma and those backscattered from the blanket having a charac-
teristic energy distribution. The present investigation

deals only with the first part of this total neutron flux.

The contribution of the blanket neutrons to the total flux
exceeds the primary one up to one order of magnitude. System
studies performed to date make use of the assumption that the
backscattered neutron flux scales up with the primary one

the scaling factor being gained by blanket neutronics calcu-
lations performed primarily in two-dimensional geometry. If
such calculations could be extended to the third dimension
taking into account the toroidal buckling a further asymmetry
effect could possibly be detected. In the present situation

it is not foreseeable whether the angular distribution of

the primary flux presented here will have any effect when

being taken for a boundary condition in running neutronics codes.
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