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AbstractA low-shear Helias (Helical Advanced Stellarator) con�guration is studied with respectto its usefulness for a Helias reactor. Its equilibrium properties and its MHD stabilityproperties, that is Mercier and resistive interchange criteria, local ballooning modes andglobal ideal MHD stability, are investigated using an extensive numerical code system.From the results a set of design values of the reactor plasma is derived.1



1.0 IntroductionHelias (Helical Advanced Stellarator) con�gurations are studied at the IPP Garch-ing with respect to their potential as a fusion reactor. In this report we investigate theequilibrium and stability properties of a Helias con�guration up to a volume-averaged�-value of h�i = 5%. For h�i= 1, 2, 3, 4 and 5% free-boundary equilibria are computed,and Mercier and resistive interchange criteria, local ballooning modes and global idealMHD stability are studied using an extensive numerical code system.The Helias reactor is characterized by a major radius of R0 = 22 m, a plasmaradius of a0 = 1.8 m and the vacuum magnetic �eld amounts to 4.75 T on the magneticaxis. In the plasma centre the rotational transform decreases with increasing plasma �,so that low rational values of the rotational transform may appear for higher �-values.In order to avoid the 5/6 resonance, a vacuum magnetic �eld with low shear has beendesigned. Its rotational transform value on the magnetic axis amounts to � = 0.875and it rises to � = 5/5 in the edge region. There, �ve macroscopic islands surround thelast closed magnetic surface (LCMS). The mirror �eld of the vacuum �eld amounts toapproximately 10%, which is needed to improve the � particle con�nement.This report is organized as follows. In Section 2 the code system is describedwhich has been used for these numerical computations. The vacuum magnetic �eld isthe subject of Section 3. There, the coil system is described in Section 3.1 and theproperties of the vacuum �eld are discussed in Section 3.2. Section 4 deals with theiterative computation of the �nite-� equilibria and the properties of the correspondingmagnetic �elds. The MHD stability properties of these equilibria are investigated inSection 5, where the Mercier and resistive interchange criteria (Section 5.1), the localballooning modes (Section 5.2) and the global ideal MHD stability properties (Section5.3) are studied. Finally, in Section 6 the results are summarized and a set of designvalues of the reactor plasma is derived.
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2.0 The code systemFor the following computations a code system is necessary which makes use ofwork stations, a T3E parallel computer and a SX5 vector computer. Figure 1 gives anoverview over this code system.
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FIG. 1: Overview of the code systemStarting from given coil currents the vacuum magnetic �eld is computed on a gridwith a fully parallelized code named GRID. This vacuum magnetic �eld serves as inputto the GOURDON, NEMEC and MFBE codes.The GOURDON code is used for �eld line tracing. In addition to Poincar�e plotsof the magnetic �eld, the GOURDON code yields the rotational transform and themagnetic well of the magnetic �eld. Furthermore, the LCMS is determined.3



The data of the coordinates along the �eld line forming the LCMS are used in theDESCUR code [1]. This code computes the Fourier representation of the LCMS whichserves as input to the NEMEC code.The 3D free-boundary equilibrium NEMEC code [2; 3] (NEMEC = VMEC +NESTOR [4]) computes three-dimensional free-boundary �nite-� Helias equilibria. Fora given mass pro�le it yields the Fourier coe�cients of the nested 
ux surfaces insideand on the plasma boundary, the Fourier coe�cients of the magnetic �eld on these 
uxsurfaces and the Fourier coe�cients of the potential � on the plasma boundary whichdetermines the magnetic �eld outside the plasma boundary. For these computations aSX5 computer is used.The MFBE code [5] calculates the magnetic �eld of the plasma equilibrium insideand outside the plasma boundary on a grid. This magnetic �eld serves as input to theGOURDON code, which is used to determine the LCMS of the �eld. If this LCMSdoes not coincide with the plasma boundary obtained by the NEMEC code, the toroidal
ux, which is a free parameter in the NEMEC code, is modi�ed, i.e. the toroidal 
uxis determined iteratively. The fully parallelized MFBE code works very fast on a T3Ecomputer.Investigations of Mercier and resistive interchange criteria and local ballooningmodes are made with the JMC code [6]. This code has also been parallelized and is nowused on a T3E computer.The global ideal MHD stability is studied by using the CAS3D code [7]. This isa 3D stability code for a nonlocal mode analysis based on the formulation of the MHDenergy functional in magnetic coordinates [8].
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3.0 The vacuum magnetic �eld3.1 The coil systemThe coil system consists of �ve �eld periods with ten modular coils per periodproducing a vacuum magnetic �eld of 4.75 T on the magnetic axis. In comparison to aprevious design [9] the geometry of the coils has been slightly changed in order to reducethe shear and to increase the magnetic mirror. Parameters of the HSR B coil system aresummed up in Table I, and Fig. 2 shows the winding packs of the coils for one period.TABLE I: Properties of the HSR B coil systemMajor radius 22 mNumber of coils 50Average coil radius 5 mMaximum �eld on coils 10 TCurrent density 29.5 MA/m2Windings per coil 288Current in winding 37.5 kAMagnetic energy 100 GJMass of one coil 200 tonsSC winding pack 41 tons
FIG. 2: HSR B coil system for one period. The cross-section of a winding pack amountsto 0.6 x 0.62 m. 5



3.2 Properties of the vacuum magnetic �eldThe vacuum magnetic �eld structure is plotted in Fig. 3. There, the Poincar�e plotsat the bean-shaped cross-section (' = 0o) and the triangular cross-section (' = 36o)are shown. The red dots mark the LCMS and the �ve macroscopic islands are given ingreen. There exist further closed surfaces (black dots) outside these islands, but in afuture reactor device divertor plates will intersect the macroscopic islands, so that thelast closed magnetic surface inside these islands will act as plasma boundary. Finally,the blue dots characterize the ergodized region.vacuum �eld

' = 0o ' = 36oFIG. 3: Poincar�e plots of the vacuum magnetic �eld. At the symmetric bean-shaped andtriangular cross-sections 
ux surfaces (black dots), a chain of �ve islands (green dots),the last closed magnetic surface (red dots) and ergodic �eld lines (blue dots) are plotted.The rotational transform pro�le and the magnetic well are plotted in Figs 4 and5. Because of the low shear the rotational transform pro�le is 
at in the plasma centre.It increases from � = 0:875 on the magnetic axis to � = 5=5 in the edge region. The6



magnetic well V 00 = (V 0LCMS � V 00)=V 00 (V 0LCMS = speci�c volume on the LCMS, V 00 =speci�c volume on the magnetic axis) amounts to 0.68%.
FIG. 4: Rotational transform pro�le of thevacuum magnetic �eld. FIG. 5: Magnetic well of the vacuummag-netic �eld.The Fourier representation of the magnetic �eld B in magnetic coordinates [8] isgiven by B =Xm;n Bm;n(s) cos[2�(m�� n�)];with s being the normalized 
ux label and �, � being the poloidal and toroidal variables.Figure 6 shows the Fourier coe�cients Bm;n versus ps. There, B0;0 describes the mainmagnetic �eld containing the deepening of the magnetic well, B1;0 represents the mirror�eld (� 10%), B0;1 the toroidal curvature and B1;1 the helical curvature.

FIG. 6: The Bm;n's are plotted versus ps.B0;0(s = 0) = 1 has been subtracted inplotting B0;0.7



4.0 Finite-� equilibriaThree-dimensional free-boundary equilibria and the corresponding magnetic �eldsare computed self-consistently for various �-values up to h�i = 5% by means of theNEMEC,MFBE and GOURDON codes [5]. In order to compute free-boundary equilibriaa mass pro�le m(s) has to be provided as input to the NEMEC code. For the followingcomputations a mass pro�le of the formm(s) = a0(1� 117 s+ 47s2);has been chosen. The constant a0 depends on the desired �-value. The adiabatic con-servation of the mass between neighbouring 
ux surfaces requires for the pressure pro�lep(s) [10] p(s) = m(s)(V 0(s))�
;with V 0(s) being the di�erential volume element and 
 (
 = 2) being the adiabatic index.With increasing � the pressure pro�le di�ers only slightly from the mass pro�le whichhas been assumed to be the same for all considered �-values. Figure 7 shows the masspro�le and the pressure pro�le for h�i = 5%.
FIG. 7: Mass pro�le (dashed curve) andpressure pro�le (solid curve) for h�i = 5%.FIG. 8: Poincar�e plots of the magnetic �elds for h�i = 2; 3; 4 and 5% (see pages 9 and10). At the symmetric bean-shaped (' = 0o) and triangular (' = 36o) cross-sections 
uxsurfaces (black dots), macroscopic islands (green dots), the last closed magnetic surface(red dots) and stochastic �eld lines (blue dots) are plotted.8
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Figure 8 shows the magnetic �elds for h�i = 2; 3; 4 and 5%. The edge regionergodizes for h�i � 2%. The width of the 5/5 islands increases with �, while thepositions of the X- and O-points of these macroscopic islands stay almost unchanged.This is a favourable behaviour with respect to divertor operation.Comparisons of the resulting �nite-� magnetic �elds with the corresponding vac-uum �eld yield informations about the variations of the Shafranov shift, the aspect ratio,the magnetic well and the �-pro�le with increasing plasma �. Table II contains the val-ues of the rotational transform on the magnetic axis, the Shafranov shift, the plasmavolume, the aspect ratio and the magnetic well in dependence on h�i.TABLE II: Rotational transform �0 on the magnetic axis, Shafranov shift �R=a0 (�R =mean shift of the magnetic axis, a0 = plasma radius), volume V enclosed by the LCMS,aspect ratio A and magnetic well V 00 for various h�i.h�i [%] �0 �R=a0 [%] V [m3] A V 00 [%]0 0.875 - 1828.4 10.60 0.681 0.867 6.3 1744.3 10.98 2.592 0.860 12.3 1681.6 11.20 4.373 0.849 18.1 1623.5 11.45 6.004 0.837 23.4 1570.5 11.68 7.615 0.820 28.9 1521.3 11.91 9.14One of the main results is the small Shafranov shift. It is in the expected range ofa Helias con�guration and ful�lls the requirement of a fusion reactor. From this point ofview a further optimization of Helias con�gurations is not necessary. Further, equilibriawith a su�cient plasma volume exist up to h�i = 5%.h�i = 0%h�i = 5% FIG. 9: Rotational transform pro�les �for h�i = 0 (upper curve), 1, 2, 3, 4 and5% (lower curve) versus ps with s beingthe normalized 
ux label. The rotationaltransform decreases with increasing �.11



Figure 9 illustrates the behaviour of the �-pro�le. The rotational transform de-creases with rising plasma pressure leading to the existence of low rational values(� = 5=6) in the plasma centre for h�i � 4:2%.h�i = 2% h�i = 3%
h�i = 4% h�i = 5%

FIG. 10: The Bm;n's are plotted versus ps for h�i = 2; 3; 4 and 5%. B0;0(s = 0) = 1 hasbeen subtracted in plotting B0;0.Figure 10 shows the Bm;n's as functions of ps for h�i = 2; 3; 4 and 5%. There,the component B0;0 shows the largest dependency on the plasma beta because of thedeepening of the magnetic well with increasing �. The variation with � decreases withincreasing mode number. The weak �-dependency is a consequence of the small changein geometry of the 
ux-surfaces as � is increased (see Fig. 8), which itself is due to thesmall P�rsch-Schl�uter current density of this optimized HSR con�guration.12



5.0 MHD stability properties5.1 Mercier and resistive interchange criteriaLocal MHD stability properties of the �nite-� equilibria are studied with respect tothe Mercier [11] and resistive interchange [12] criteria by means of the JMC code [6; 13].h�i = 2% h�i = 3%
h�i = 4% h�i = 5%

1011
10111516 56FIG. 11: Mercier (+) and resistive interchange (�) versus ps for h�i = 2; 3; 4 and 5%.Figure 11 shows the Mercier and resistive interchange criteria for h�i = 2; 3; 4 and5%. Since the magnetic coordinates have been computed for m=0,1,...,23 poloidal andn=-24,...,0,...,24 toroidal Fourier coe�cients, higher resonances like m/n=15/16 couldbe resolved. While the high resonances (m/n=10/11, m/n=15/16) are located around asingle 
ux surface, a �nite region of instability prevails around ps = 0:5 for h�i = 5%.There, the low resonance m/n=5/6 occurs.13



5.2 Local ballooning modesFor various mode numbers the ballooning modes have been computed for h�i =1; 2; 3; 4 and 5%. The ballooning stability behaviour is characterized by the solutionof the one-dimensional ballooning equation [13; 6] on �eld lines with rational rotationaltransform value. If the solution passes through zero the equilibrium is locally ballooningunstable. Here, the ballooning equation has been solved up to the point where the �eldline becomes closed in toroidal direction. The asymptotic behaviour of the solution hasnot been investigated.78 89 910 10111415 17182324 67 78 89 910 10111112 1213 1415171867 78 89 91010111415 78 67 56 89
h�i = 2% h�i = 3%
h�i = 4% h�i = 5%FIG. 12: Local ballooning solutions along rational, i.e. toroidally closed, normalized�eld lines for h�i = 2; 3; 4 and 5%. The numbers give the rotational transform values ofthe �eld lines.In Fig. 12 the solution of the local ballooning equation is plotted for various modenumbers and h�i = 2; 3; 4 and 5%. For h�i � 4% the equilibria are stable with respectto local ballooning modes, while for h�i = 5% the equilibrium is unstable.14



5.3 Global ideal MHD stability propertiesThe equilibrium with h�i = 4% has been investigated with respect to the globalMHD stability by using the CAS3D code [7] in its �xed-boundary version CAS3D2 whichuses the incompressibility constraint on the MHD displacement vector. In order to assessthe stability of a single equilibrium here a 1-parametric sequence of stability calculationshas been generated by arti�cially varying the amount of the main stabilizing term, suchthat for vanishing sequence parameter the stabilizing terms are considerably reduced andthat for sequence parameter unity the full MHD energy functional is obtained. Variousperturbation Fourier tables have been used, especially including both mode familiespresent in a 5-periodic device. The computation parameters have been chosen to becomparable to those used for the investigation of the W7-X stability [14] (64 radial gridpoints, 115 perturbation Fourier harmonics, N=2 mode family).
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FIG. 13: Result of a global ideal MHD stability study of the h�i = 4% equilibrium:CAS3D2 eigenvalues versus an arti�cially introduced factor which was applied to themain stabilizing term in the MHD energy functional, so that for sequence parameterunity the full MHD energy functional is obtained. The stability limit is reached atapproximately 0.7 in the sequence parameter.As an example Fig. 13 shows CAS3D2 eigenvalues as obtained in such series ofcalculations for N=2 mode family perturbations. The results show that in this sequencea stability limit is obtained for a value of the sequence parameter of approximately 0.7.Similar results have been obtained for the N=1 mode family, so that it may be concludedthat this equilibrium is stable with a good safety margin.For a sequence parameter smaller than 0.7 instability prevails. By way of exampleFig. 14 shows the perturbed pressure distribution for sequence parameter 0.6 at thebean-shaped cross-section. This case is dominated by the m=9, n=-8 harmonic. Note15



that for the incompressible perturbations which are used here the perturbed pressure isproportional to the scalar normal component of the displacement vector.

Fig. 14: Perturbed pressure for the essentially m=9, n=-8 perturbation for the stableh�i = 4% HSR equilibrium. Note, that this perturbation is unstable only because of anarti�cially lowered stabilizing contribution to the MHD energy functional. Computationparameters: 64 radial grid points, 115 perturbation Fourier harmonics, N=2 mode family,sequence parameter 0.6.
16



6.0 SummaryThe results of the computations can be summed up in the following statements:� Equilibria with su�cient plasma volume exist up to h�i = 5%.� The edge region ergodizes for h�i � 2%.� The width of the 5/5 islands increases with �, while the positions of their X- andO-points are almost unchanged ! favourable behaviour with respect to divertoroperation.� The Shafranov shift is su�ciently small under reactor conditions.� The rotational transform decreases with rising plasma pressure ! � = 5=6 appearsaround h�i = 4:2% (see Fig. 15). FIG. 15: Rotational trans-form on the magnetic axis ver-sus the volume-averaged �-value. The stars mark the�-values for which equilibriahave been computed. Thehorizontal curve indicates � =5=6, while the diamond marksthe �-value for which the rota-tional transform on the mag-netic axis reaches � = 5=6.� Mercier and resistive interchange criteria and local ballooning modes show stabilityup to h�i = 4%.� For h�i = 4% global ideal MHD stability studies show stability with a good safetymargin.� For h�i = 5% Mercier and resistive interchange criteria show instability aroundthe 5/6 resonance, and the local ballooning modes are even unstable at all plasmaradii, e.g. at � = 5/6, 6/7, 7/8 and 8/9.As has been shown in Fig. 15 the rotational transform in the plasma centre decreaseswith rising plasma pressure, so that the �rst low rational value arises in the plasma17



centre for h�i � 4:2%. Using the NEMEC code for computing the plasma equilibriumno information about island sizes can be obtained, because the code assumes nested
ux surfaces. Therefore, the equilibrium solution for h�i = 5% containing the 5/6resonance has to be considered as an approximation. In order to compute equilibria withislands other codes are needed, e.g. the PIES code [15 � 17]. Furthermore, up to nowit could not be shown that local ballooning modes give a strong stability limit for low-positive-shear stellarators [18]. Because of these uncertainties the choice of h�i = 4:2%as MHD stability limit is quite conservative, but, nevertheless, ful�lls the requirementsof a HELIAS reactor.Equilibrium and stability properties of the Helias reactor solely depend on the �pro�le while con�nement and fusion power output depend on the details of the tempera-ture and density pro�les. Peaked � pro�les are more favourable for optimizing the fusionpower output. A parameter set which is compatible with a stability limit of h�i = 4:2%is given in Table III.TABLE III: Design values of the reactor plasma.Magnetic �eld 4.75 TPeak temperature T (0) 14 keVPeak density n(0) 2:4 � 1020 m�3Average beta h�i 4.2 %Peak beta �(0) 10.3 %Fusion power 2.9 GWCon�nement time 2.1 sThis example is not unique, however it demonstrates that this MHD stability limitis compatible with the requirements of an attractive Helias reactor. In summary, thepresent analysis of MHD equilibria and stability shows that the reduction of the Shafra-nov shift and the stability limits are su�ciently optimized for the purpose of a Heliasreactor.
18
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