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Basic linear eigenmode spectra for electrostatic Langmuir waves and drift-kinetic slab

ion temperature gradient (ITG) modes are examined in a series of scenarios. Col-

lisions are modeled via a Lenard-Bernstein collision operator which fundamentally

alters the linear spectrum even for infinitesimal collisionality [C. S. Ng, A. Bhat-

tacharjee, and F. Skiff, Phys. Rev. Lett. 83, 1974 (1999)]. A comparison between

different discretization schemes reveals that a Hermite representation is superior for

accurately resolving the spectra compared to a finite differences scheme using an

equidistant velocity grid. Additionally, it is shown analytically that any even power

of velocity space hyperdiffusion also produces a Case-Van Kampen spectrum which,

in the limit of zero hyperdiffusivity, matches the collisionless Landau solutions.
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I. INTRODUCTION

First predicted analytically1 and later observed experimentally2, collisionless Landau

damping is one of the most well known phenomena in plasma physics. The Landau so-

lutions, all of which are damped for electrostatic Langmuir waves, arise after a Laplace

transform with respect to time of the linearized governing equations and dominate the

solution for large times. The advantage of such an approach is that it naturally includes

the initial condition which is necessary when solving differential equations. However, Van

Kampen searched for solutions with a time dependence of exp(iωt) and discovered a con-

tinuum of singular solutions that are marginally stable3. It was demonstrated that the

interplay of these modes leads to a damping of all moments of the distribution function,

e.g., the electrostatic potential, given a smooth initial condition. An important conceptual

point in the collisionless case that resolves this apparent contradiction is that the Landau

approach applies to the electrostatic potential and not to the distribution function. Indeed,

only moments of the distribution function with respect to velocity are damped but not the

distribution function itself. Subsequent studies added collisions as a natural extension of the

mathematical model. Using a simplified collision term of a Fokker-Planck type, Lenard and

Bernstein found that the results of Landau do not change qualitatively in the presence of

collisions4, i.e., the Landau solutions change continuously with the collision frequency. Later

however, a similar investigation was conducted also for the Case-Van Kampen spectrum,

and it was found numerically5 as well as analytically6 that collisions alter the Van Kampen

spectrum completely; the continuum of marginally stable modes vanishes and instead the

spectrum consists of countably infinitely many eigenvalues that converge to the collisionless

Landau solutions when the collision frequency tends to zero, i.e., collisions represent a sin-

gular perturbation of the system.

In this work we reexamine, analytically and numerically, several examples of basic kinetic

eigenvalue problems, providing new insights into various aspects of the eigenmode spectra.

The cause for the qualitative change of the spectrum that comes with introducing collisions

is traced back to the second-order velocity derivative of the distribution function. In fact,

this term alone is sufficient for reproducing the observed results. This we verify numerically,

and additionally show analytically that any even power of velocity space hyperdiffusion

alters the spectrum in the same way, which is noteworthy considering that such terms are
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used extensively in computer simulations. Although the latter is done mainly for numer-

ical reasons, our analysis suggests that they capture more physical effects than might be

expected at first sight.

For the collisional slab drift-kinetic model with ion temperature and density gradients, we

shall focus our study on numerical approaches and compare different numerical schemes.

We find that a truncated Hermite representation of the distribution function is in many

ways superior to a finite differences approach on an equidistant velocity grid although the

latter finds a wide application in numerical simulations.

One of the main motivations for this work was also the correct interpretation of the Case-

Van Kampen-type spectral analyses, e.g., those done with Gene7, which has become an

important task considering the various applications of linear eigenvalue computations8–11.

The results of this study are also expected to provide insights into the nonlinear effect of

turbulence which is driven by the unstable linear eigenmodes studied here. Microturbulence

and the associated transport in fusion plasmas frequently retain signatures of the underlying

linear eigenmode spectra12–16. Moreover, it has been shown recently that the interaction

of unstable and stable eigenmodes at comparable scales facilitates turbulent saturation by

providing an energy sink at the same scales as the energy drive10,17–19. Thus, a careful study

of both the unstable and stable parts of the linear eigenmode spectra is expected to lay the

foundation for a deeper understanding of the saturation mechanisms which determine the

level of heat transport in fusion plasmas.

The reminder of this paper is organized as follows. In Sec. II, we reproduce some known

results, but in a mathematically more consistent way, by formulating the problem of plasma

oscillations in the language of operator theory. This will illustrate the origin of the Van

Kampen continuum and give a sufficient condition for its existence. Sec. III deals with

the numerical implementation of the collisionless and collisional cases. We study the ap-

plicability of two different numerical schemes: finite differences on an equidistant grid in

velocity space and a truncated Hermite representation. In Sec. IV we investigate analyt-

ically whether a diffusion term alone is sufficient to reproduce the qualitative change of

the Case-Van Kampen spectrum observed numerically. The computation is generalized to

an arbitrary even derivative with respect to velocity and conducted in a similar way as in

Ref. 6. It is also noted that the solution of the initial value problem via a Laplace transform

in time yields the same dispersion relation, i.e., collisional Case-Van Kampen and Landau
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solutions are the same when considering such dissipation terms. In Sec. V, the obtained

results are summarized.

II. MATHEMATICAL PROPERTIES OF THE LANGMUIR WAVE

MODEL

The starting point of our investigation is the model of one-dimensional collisionless elec-

trostatic Langmuir waves with immobile ions distributed homogeneously in space. The

dynamics are governed by the linearized Vlasov equation for the electron distribution func-

tion g(z, v, t) combined with the Poisson equation. Space and time quantities are normal-

ized to the Debye length, λD, and the electron plasma frequency, ωpe, defined as λD =
√
ε0kBT0/(n0e2) and ωpe =

√
n0e2/(meε0) respectively. The thermal velocity we set as

vth = λDωpe. Using these units, we redefine further g → gn0/vth, E → kBT0E/(eλD),

z → zλD, t → t/ωpe and v → vvth, where E denotes the electric field. The full distribution

function is split into an equilibrium part f0(v) and a small perturbation g1(z, v, t) that is to

be computed. Linearizing the Vlasov equation yields

∂g1
∂t

+ v
∂g1
∂z

− E(z, t)
∂f0
∂v

= 0 ;
∂E

∂z
= −

+∞∫

−∞

g1(z, v, t)dv . (1)

We shall also assume that the distribution is periodic in space with period L. Hence, it

suffices to consider only the interval z ∈ [0, L]. Such a treatment suggests the use of a

Fourier series representation in space defined by

f̂(k) :=
1

L

L∫

0

f(z)e−ikzdz ⇒ f(z) =
∑

k

f̂(k)eikz , (2)

where k takes discrete values given by k = n2π/L and n ∈ N0. In what follows we search

for functions of the form ĝ1(k, v, t) = f(k, v, ω)e−iωt where f(k, v, ω) is determined by the

equation

ωf(k, v, ω) = kvf(k, v, ω)− 1

k

∂f0
∂v

+∞∫

−∞

f(k, v′, ω)dv′ . (3)
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This system can be viewed as an eigenvalue equation with ω as an eigenvalue and the

right-hand side as a linear operator A in velocity space acting on f , i.e.,

(Af)(v) := kvf(v) + ψ(v)

+∞∫

−∞

f(v′)dv′ , (4)

where ψ(v) = −(1/k)(∂f0/∂v). For a proper eigenvalue equation one has to specify also

the domain of definition of the operator A. An important observation is that the first part

on the right-hand side of Eq. (4) is, up to the multiplicative factor k, the position operator

from quantum mechanics for which one usually uses the Schwartz space S as the functional

domain. We recall that S is the space of all C∞ functions which, as well as all their

derivatives, decrease faster than any polynomial for large absolute values of the argument.

In the explicit examples that shall be discussed in this paper, ψ(v) has the form of a Gauss

function multiplied by some polynomial, i.e., ψ(v) ∈ S and, therefore, the right-hand side

of Eq. (4) is well defined for all f ∈ S.

A : S ⊂ L2(R, (1 + x2)dx) −→ S ⊂ L2(R, (1 + x2)dx) , (5)

where L2(R, (1 + x2)dx) =: H is the functional space of all functions over the real numbers

that are square integrable with respect to the measure (1 + x2)dx. It is immediately clear

that H is a Hilbert space with respect to the scalar product

〈f, g〉H :=

+∞∫

−∞

f(v)(1 + v2)g(v)dv , (6)

where f stands for the complex conjugate of f . This turns A into a densely defined operator,

i.e., A is defined on a functional space that is dense in a Hilbert space. In order to establish

the connection to the physical problem one should elaborate on the physical relevance of

the functional space H. A reasonable condition is to demand that the particle density is

always finite, i.e.,
∫ +∞

−∞
g(z, v, t)dv < ∞ for all t ∈ R and z ∈ [0, L]. Since the one particle

distribution function is per definition non-negative and the smallness condition |g1| ≪ f0

applies for all v ∈ R, it follows also that g1(z, v, t) ∈ L1(R) with respect to v. Further,

the perturbation g1(z, v, t) should have no singularities as a function of z and v. From this

and the previous considerations follows immediately that f(k, v, ω) ∈ L1(R) with respect to

v. Since all velocity moments of the distribution function have to be finite, it holds that
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lim
v→±∞

vnf(k, v, ω) → 0 for all n ∈ N0, which together with the absence of singularities means

that f(k, v, ω) ∈ L2(R, dx), i.e., f(k, v, ω) ∈ L1(R, dx) ∩ L2(R, dx). The space H that we

used is dense in L1(R, dx) ∩ L2(R, dx). The operator A consists of two parts A0 and A1

defined as

(A0f)(v) := kvf(v), (A1f)(v) := ψ(v)

+∞∫

−∞

f(v′)dv′ . (7)

A0 is essentially the position operator known from quantum mechanics which is self-adjoint

on S. It is also well known that the position operator has only an essential spectrum that

consists of the whole real axis. An important point is that A1 is bounded on H, ‖A1‖H ≤
√
π‖ψ‖H <∞, which together with the fact that its range is finite dimensional implies that

A1 is compact on H. According to a theorem of Weyl (p. 113, Corollary 2 in Ref. 20) in this

case the essential spectrum of A is the same as that of A0, i.e., σess(A) = σess(A1). From

this follows that every real number belongs to the spectrum of A, which is the result of Van

Kampen3. However, the theorem of Weyl does not exclude the possibility that there exist

also complex values of ω that belong to the spectrum of A. One way to determine this is to

find the resolvent operator of A− ω. After a simple computation, one finds that it is given

by

RA(ω) =
1

kv − ω
− ψ(v)

kv − ω

1(
1 + p.v.

∫ +∞

−∞
ψ(v′)
kv′−ω

dv′
)p.v.

+∞∫

−∞

dv′′

kv′′ − ω
, (8)

where the first term should be understood as a multiplication operator and the second

one as an integral operator with p.v. denoting the principal value of the integral. (This

form of the resolvent operator has been given independently in Ref. 21 where a similar

problem is discussed. However, the model of magnetized plasma presented there deviates

considerably from the one studied here.) Having the above form, one can easily verify

that RA(ω)(A − ω) = (A − ω)RA(ω) = id on H, which can be viewed as the definition

of the resolvent operator, and that RA(ω) is bounded on H when both ℑ(ω) 6= 0 and

1 + p.v.
∫ +∞

−∞
ψ(v′)
kv−ω

dv 6= 0. (Here id and ℑ denote the identity operator and the imaginary

part of a complex number respectively.) It is clear that RA(ω) has poles at every real

number. This gives again the continuous spectrum discovered by Van Kampen. However,

RA(ω) has poles also for frequencies which satisfy the relation

1 + p.v.

+∞∫

−∞

ψ(v)

kv − ω0
dv = 0. (9)
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These solutions we shall call the discrete part of the Case-Van Kampen spectrum. We

note here that, in the drift-kinetic system discussed in Sec. III, the discrete part of the

collisionless Case-Van Kampen spectrum is connected to the unstable drift waves that arise in

the case with background gradients. Thus, the mathematical foundation for a broader class

of eigenmodes is already observed even in the simple electrostatic Langmuir system. For ψ(v)

a real valued function, the solutions of Eq. (9) are either real or appear in complex conjugate

pairs. Considering the definition of the Landau contour, one should note that all unstable

(ℑ(ω) > 0) Landau solutions coincide with the unstable Case-Van Kampen solutions. The

eigenfunctions f
(V )
ω of A have the form f

(V )
ω = − ψ(v)

kv−ω
+ kδ(kv − ω)

(
1 + p.v.

∫ +∞

−∞
ψ(v′)
kv′−ω

dv′
)

and are also given in Ref. 3. For ω real, f
(V )
ω (v) are distributions and belong neither to L2 nor

L1. Therefore, in strict mathematical terms, real frequencies belong to the spectrum of A

but are not eigenvalues. If ℑ(ω0) 6= 0, then f
(V )
ω0 ∈ H, i.e., the discrete part of the spectrum

of A that does not lie on the real axis consists of mathematical eigenvalues. Using the

explicit form of the eigenfunctions f
(V )
ω (v), one can verify that in contrast to the statement

in Ref. 22, eigenfunctions corresponding to different frequencies are not orthogonal with

respect to the scalar product

〈f, g〉f0 =
+∞∫

−∞

f(v)g(v)

f0(v)
dv (10)

but instead, for Langmuir waves we have

〈f (V )
ω1
, f (V )
ω2

〉f0 = − 1

k2
if ω1 6= ω2 . (11)

According to the classical paper of Case23, one should expect ‘a continuum of solutions for

all real ν such that not simultaneously η(νi) = 0 = λ(νi)’, where η(v) denotes our ψ(v),

ν = ω/k and λ(νi) is the left-hand side of Eq. (9). This, however, cannot be a condition for

the existence of the continuous part of the spectrum because, as the theorem of Weyl shows,

the addition of a compact operator A1 to the self-adjoint A0 does not change its continuous

spectrum. The operator A inherits the continuous part of its spectrum on the real axis

from A0 and since η(v) is present only in A1, no condition involving η(v) can influence the

existence of the continuum as long as ‖η(v)‖H < ∞ which is fulfilled for every physically

reasonable equilibrium distribution function. For real discrete νi, the condition given in

Ref. 23 reads η(νi) = λ(νi) = 0. However, as we see from Eq. (8), it is not necessary that
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η(νi) = 0. To summarize, as long as A1 is compact, there is a continuum of eigenvalues that

covers the whole real axis. The discrete set of complex solutions satisfies the condition given

by Eq. (9).

III. NUMERICAL SCHEMES FOR DISCRETIZED SYSTEMS

While one can extract some analytical results in the collisionless case, including collisions

into the model makes it mathematically much more difficult. For obtaining results in this

case, it is therefore necessary to approach the problem numerically which is the goal of

this section. We also study a different model where background temperature and density

gradients are taken into account. A numerical study, however, introduces the important

question of which is the most appropriate discretization scheme to use. Here we compare

the results obtained with a finite difference scheme on an equidistant velocity grid versus

those achieved via a Hermite representation of the distribution function and conclude that

the latter is in many aspects superior to the first.

A. Collisionless Langmuir waves

First, we consider an equidistant grid of N points on the velocity axis that covers the

interval [−vmax, vmax]. All functions of velocity turn into vectors in R
N and the operator

in Eq. (4) becomes a matrix, M , the eigenvalues of which represent the Case-Van Kampen

spectrum. The details of the numerical representation we use here are discussed in Ref. 24. In

the discretized system, one can easily solve for the time evolution of the distribution function,

~F (t), which is given by ~F (t) = e−iMt · ~F (t = 0) and for smooth initial conditions leads to

an oscillatory behavior of the perturbation in velocity space that gets more and more rapid

with time. This is the well-known linear phase mixing that results in an exponential decay

of all moments of the perturbation. Solving numerically for the eigenvalues of the matrix

M , one concludes that they all lie on the real axis but are not equidistant and accumulate

at the points corresponding to the real part of the two least damped Landau solutions.

This leads to the question if all Case-Van Kampen eigenmodes are equally important for

the numerical description of the system. The eigenvectors of M form a complete basis in
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R
N and can be used as such to decompose any initial condition ~F0. When a Maxwellian

initial condition is decomposed on the basis of linear eigenmodes, one observes that the

modes having frequencies clustered near the real part of the frequency of the least damped

Landau solutions possess the largest coefficients. However, if one constructs a reduced initial

condition composed of only this subset of modes, the corresponding initial value computation

does not reproduce the exponential decay associated with Landau damping. This suggests

that the interplay of all modes with non-negligible coefficients is essential for obtaining the

damping.

B. Collisionless slab ITG modes

As a natural next step, we extend our study to a drift-kinetic slab ion temperature

gradient (ITG) model25,26. Electrons are assumed to be adiabatic and only the ~E × ~B drift

is taken into account. We consider only electrostatic perturbations in a strong homogeneous

magnetic field in the z direction, ~B = B~ez , and presume a plasma in a local thermal

equilibrium where temperature and density vary in the x direction. The thermal ion velocity

is defined in this case as vth,i :=
√
kBTi(x0)/mi, where x0 stands for a reference position

along x, m is the particle mass and the subscript i stands for the ion particle species.

We consider only one ion species with the charge +e. The time scales in this model are

given by the gyro frequency ωg = eB/mi. One also defines the thermal ion gyroradius

ρi = vth,i/ωg. After integrating the drift-kinetic equation over v⊥, the resulting distribution

function g(~r, v||, t) =: f0i(x, v||)+ g1i(~r, v||, t) is normalized over n0i(x0)/vth,i and the electron

potential ϕ over kBTi(x0)/e. For the temperature and density we adopt T → T/T (x0) and

n0i → n0i/n0i(x0). The linearized equations describing the system in this case read

1

ρ∗

∂g1i
∂t

+ v||
∂g1i
∂z

− ∂ϕ

∂y

∂f0i
∂v||

− ∂ϕ

∂z

∂f0i
∂x

= 0 ; ϕ = τ
Te(x)

n0i(x)

+∞∫

−∞

g1i(~r, v||, t)dv|| , (12)

where ρ∗ = ρi/R, τ = Te(x0)/Ti(x0) and f0i and g1i denote the equilibrium and perturbed

ion distribution functions respectively. The second equation in Eq. (12) represents the

adiabatic response of the electrons and couples the electrostatic potential to the perturbed

ion distribution function. Note that x only appears as a parameter in Eq. (12) and the

equation is thus local in this direction. Without loss of generality one may thus reduce the
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study to the reference position x = x0 which is equivalent to setting kx = 0. In Eq. (12) we

have normalized x and y with respect to the microscopic scale ρi and z with respect to the

macroscopic scale R which characterizes the variation of temperature and density in the x

direction. For the temperature and density gradients we use the local approximation

1

Ti

dTi
dx

=: − 1

LT
= const ;

1

n0i

dn0i

dx
=: − 1

Ld
= const. (13)

LT and Ld we shall refer to as gradient lengths which are normalized over R. After a Fourier

transformation with respect to y and z, using the assumption that the perturbation of the

ion distribution function is proportional to e−iωt, one arrives at the eigenvalue equation

ω

ρ∗
f1i = k||v||f1i − τα(v||)f0i(v||)

+∞∫

−∞

f1i(x, ky, k||, v
′
||, ω)dv

′
|| , (14)

where α(v||) = ky/(2LT ) − ky/Ld − k||v|| − kyv
2
||/(2LT ), f0i(v||) = exp(−v2||/2)/

√
2π and

g1i(ky, k||, v||, t) =: f1i(ky, k||, v||, ω)e
−iωt. The discretization procedure is the same as for

Langmuir waves. The spectra that the corresponding matrix produces are shown in Fig. 1

where the blue asterisks and green crosses denote the continuous and the discrete part of the

Case-Van Kampen spectrum respectively. The latter is defined by Eq. (9). Because of the

numerical discretization scheme the asterisks are contained on a finite interval in the ω-plane

that corresponds to the interval [−vmax, vmax] in velocity space. Those discrete eigenvalues

that stand out from the continuum part are computed directly by the numerical eigenvalue

solver together with the blue asterisks. For the green crosses that are embedded into the

continuum we used approximate solutions of Eq. (9). For comparison, the collisionless

Landau solutions are also plotted (red circles). They solve the analytical dispersion relation

1+
1

τ
+

ky
2k2||ρ∗LT

ω+Z

(
ω√
2k||ρ∗

)
·
(

ky

2
√
2k3||ρ

2
∗LT

ω2 +
ω√
2k||ρ∗

+
ky√
2k||Ln

− ky

2
√
2k||LT

)
= 0

(15)

that arises after applying a Laplace transform with respect to time on Eq. (14). Z denotes

the plasma dispersion function as defined in Ref. 27.

It is evident that the Case-Van Kampen spectra of drift-kinetic slab ITG and Langmuir

waves display a great deal of similarity. In both cases one observes the kinetic modes on

the real axis that result from the first part of the linear operator. For some parameters

there are also (possibly complex) eigenvalues present that result from the second part of the
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FIG. 1. Evolution of the discrete collisionless Case-Van Kampen eigenmodes (green crosses) and

the collisionless Landau solutions (red circles) with respect to the temperature and density gradient

lengths. For large gradients the ion acoustic mode emerges which is almost marginally stable and

practically coincides with one of the discrete Case-Van Kampen eigenmodes. The unstable discrete

Case-Van Kampen modes match the unstable Landau solutions and the blue asterisks represent

the continuum part of the Van Kampen spectrum. ky = 0.3, k|| = 0.03 (color online)

resolvent operator in Eq. (8) and that we call the discrete Case-Van Kampen spectrum. To

this set belongs also the isolated mode on the right which is very close to one of the Landau

solutions. The latter is due to the fact that for |ℜ(ω)| ≫ |ℑ(ω)|, the plasma distribution

function equals nearly the principle value integral for the corresponding complex frequency.

We shall refer to this mode as an ion acoustic mode. This association is also mathematically

motivated. It is well known that ion sound waves due to density gradients have frequencies
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that are proportional to ky/(k||Ld). Using the drift-kinetic Landau dispersion relation, one

can derive a differential equation that governs the movement of the Landau solutions in

the complex frequency plane with respect to any of the parameters. For 1/LT = 0 it is

immediately seen that the frequency of solutions with negligible damping/growth rate also

scales as ky with the proportionality constant of 1/(k||Ld).

In Fig. 1, one can also follow the movement of the eigenvalues and the Landau solutions in

the complex plane resulting from varying the gradient lengths. Correspondingly, not only

the position but also the number of existing discrete eigenvalues changes. For one set of

parameters given by the condition k2y/k
2
|| = 4(1+ τ)L2

TLd/(τ
2(Ld−2LT )) one of the discrete

eigenvalues on the real axis coincides with one of the Landau solutions that by further

increment of the temperature gradient becomes the instability. For ky = 10k|| and Ld = 10

this is realized for LT = 2.5 and shown in Fig. 1(b). This condition also means that for

given gradient lengths, there are always ky and k|| values such that the ratio ky/k|| fulfills the

upper condition, and there is an undamped Landau solution with the same frequency as one

of the discrete Case-Van Kampen eigenvalues. In conclusion, despite the singular nature

of the collisionless Case-Van Kampen modes with real frequency, the discrete Case-Van

Kampen spectrum shows an interesting connection to that part of the Landau solutions

that has a clear physical interpretation, namely the instability and the drift wave.

It is noteworthy that the discrete Case-Van Kampen eigenvalues have the same dispersion

relation, Eq. (9), as the nonlinear undamped Bernstein-Greene-Kruskal modes when the

amplitude of the latter tends to zero28.

C. Comparison between different discretization schemes for the collisional

case

Up to now, we discussed only collisionless systems. One could argue that such a model is

a good approximation of hot fusion plasmas since the collision frequency in such plasmas is

small. However, it has been shown numerically5 and later proved analytically6 that for any

non-zero collision frequency, collisions are important even for a correct qualitative description

of the system (at least if collisions are modeled via the Lenard-Bernstein collision operator

first introduced in Ref. 4). In that case, the Case-Van Kampen spectrum becomes fully
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discrete and it is the same as the corresponding Landau solutions.

C. S. Ng et. al.5 use a Hermite representation in order to compute the Case-Van Kampen

spectrum. Our first goal is to investigate if the same result can be obtained by using

finite differences on an equidistant grid in velocity space which is the most common one

used in numerical studies, e.g., in Gene. Later, we will also determine which part of the

Lenard-Bernstein collision operator is responsible for the qualitative change of the Case-Van

Kampen spectrum. In this part we shall focus on the drift-kinetic slab ITG model, since it

is more relevant for our future work. However, the statements that we are going to make

about the usefulness of different discretization schemes apply in the same manner also to

Langmuir waves. Modifying Eq. (14) by a Lenard-Bernstein collision operator formulated

in the parallel velocity direction leads to

ω

ρ∗
f1i = k||v||f1i − τα(v||)f0i(v||)

+∞∫

−∞

f1i(..., v
′
||, ...)dv

′
|| + i

ν

ρ∗

(
f1i + v||

∂f1i
∂v||

+
∂2f1i
∂v2||

)
, (16)

where ν denotes the collision frequency normalized over the gyro-frequency ωg. Derivatives

are modeled numerically by centered finite difference schemes defined as

∂f1i
∂v||

→ 1

2∆v||
(X+1 −X−1) · ~F ;

∂2f1i
∂v2||

→ 1

∆v2||
(X+1 − 2I +X−1) · ~F , (17)

where X−1 = XT
+1 and the elements of the matrix X+1 are given by (X+1)i,j = δi+1,j. For the

Hermite representation, the expansion f1i(ky, k||, v||, ω) =
∑∞

n=0 an(ky, k||, ω)Hn(v||/
√
2)e−v

2
||
/2

is used where Hn(x) = (−1)n(2nn!
√
π)−1/2ex

2

dne−x
2

/dxn. With these definitions, the func-

tion Hn(v||/
√
2)e−v

2
||
/2 is an eigenfunction of the collision operator in Eq. (16) with the

eigenvalue −n, and the integral of f1i(ky, k||, v||, ω) over v|| reduces to
√
2 4
√
πa0(ky, k||, ω).

The eigenfrequencies ω in the Hermite representation are given by a recurrence relation for

the coefficients an that reads

ω

k||ρ∗
an =

τky√
2LTk||

δ2nan−2 +

(
√
n+

τky√
2k||

δ1n

)
an−1 +

(
τky
Ldk||

δ0n −
inν

k||ρ∗

)
an +

√
n+ 1an+1

(18)
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FIG. 2. Collisional Van Kampen spectrum (blue crosses) for two collision frequencies and different

discretization schemes; red circles: collisionless Landau solutions; black diamonds: corresponding

collisional Landau solutions; ky = 0.3, k|| = 0.03. The number of velocity grid points used equals

128 and is the same as the number of polynomials in the truncated Hermite scheme. (color online)

and is derived in the same way as the analogous recurrence relation in Ref. 5. The collisional

Landau solutions that arise in our slab ITG model are determined by the dispersion relation

1 +
1

τ
+

ky
2ρ∗k2||LT

ω + i
ky

2ρ∗k2||LT
ν + i exp

(
ρ2∗k

2
||

ν2

)
·
(

ν

ρ∗k||

)2ρ2∗k
2
||
/ν2−2iω/ν−1

×

× γ

(
ρ2∗k

2
||

ν2
− i

ω

ν
,
ρ2∗k

2
||

ν2

)
·
(

ky
2ρ2∗k

3
||LT

ω2 +
ω

ρ∗k||
+
ky
k||

(
1

Ld
− 1

2LT

)
+ i

ky
2ρ2∗k

3
||LT

νω

)
= 0 ,

(19)

where γ denotes the incomplete gamma function as defined in Ref. 29.

The upper part of the spectra that one obtains this way for different collision frequencies

14



is shown in Fig. 2 where the Case-Van Kampen modes (blue crosses) have been computed

numerically with different discretization schemes and the Landau modes are the solutions of

Eq. (15) (collisionless case, red circles) and Eq. (19) (collisional case, black diamonds). For

a view on the whole spectra one can consult Ref. 24 where also the question of numerical

convergence is discussed. Here, relatively large gradient lengths have been chosen such that

there are only damped solutions. By increasing the temperature gradient, the left one of

the two isolated modes becomes unstable and the right one moves further to the right while

its damping rate decreases. An increase of the density gradient makes the right mode prac-

tically marginally stable and increases its frequency even further such that it becomes the

ion acoustic mode. Performing the limit ν → 0, smaller structures in velocity space develop,

which requires that the resolution in velocity space increases in order that the spectrum

converges. In case of the finite difference approach, the form of the converged spectrum can

be obtained by increasing the number of points on the interval [−vmax, vmax] while keeping

the collision frequency fixed. With this discretization scheme, it is observed that for small

collision frequency only two of the Case-Van Kampen modes agree with the corresponding

Landau solutions. Even a velocity resolution of nearly 32, 000 points could not produce more

pairs of Case-Van Kampen modes which lie in the vicinity the Landau solutions. Another

issue concerning the finite difference scheme is the fact that it produces a large number of

numerical, i.e., non-physical, modes that have a rather small damping rate. For some values

of the parameters, a subset of those numerical modes can be less damped even than the least

damped Landau solutions. An initial value computation in this case shows, however, that

the electric field still decreases with the rate of the least damped Landau solution, i.e., the

interplay of those modes is such that they do not change the expected behavior of physical

quantities like the electric field or the electrostatic potential. This is also the main reason

for calling those modes non-physical.

In Ref. 24 we observed numerical recurrence in the initial value simulation for both colli-

sionless Langmuir waves and slab ITG modes. Recurrence also manifests itself clearly when

using a collision operator of a Krook-type. However, with the Lenard-Bernstein collision

operator the recurrence is eliminated, which represents another advantage since such a non-

physical phenomenon is undesirable for computer simulations.

Figures 2(b) and 2(d) display again the Case-Van Kampen spectrum for collisional slab ITG

modes, but this time obtained via the Hermite representation where the number of Hermite
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polynomials used equals the number of velocity points in Figures 2(a) and 2(c). The Hermite

representation was introduced already in Ref. 30 for the study of experimental measurements

of ion distribution functions which also motivated the theoretical studies that followed. In

contrast to matching backward and forward recurrence relations for every eigenvalue in the

case of small collision frequency as done by C. S. Ng et. al.5, we simply truncate the series at

some finite order. This leads to a simple matrix eigenvalue equation which is readily solved

numerically and yields good results for the less damped eigenmodes.

The comparison with the corresponding collisional Landau solutions shows a very good

agreement in the upper part of the complex ω-plane where there is a matching of many

Landau solutions with Case-Van Kampen eigenvalues. Non-physical modes exist in this

case only under the matched solutions which is not critical since these modes are strongly

damped. The level at which the matching stops and only the numerical modes are present

shifts upwards when collision frequency decreases and above a certain value of N (nearly

100) is practically not influenced by N any more. This implies that there exists a lower

limit on the collision frequency below which it is impossible to properly resolve the eigen-

value spectrum with standard numerical methods. Fig. 2 illustrates that, first, for a fixed

collision frequency, the Hermite representation produces more matchings of Landau modes

than the finite differences and, second, increasing ν leads to a much greater improvement in

the Hermite case than in the case of the finite difference scheme on an equidistant velocity

grid. Note also that for a certain set of parameters, some of the non-physical modes can

move so close to the real axis that there are no matchings any more and the whole Case-Van

Kampen spectrum consists of numerical modes some of which are less damped than the

least damped Landau solutions. An initial value computation in this case however still leads

to electric field and electrostatic potential that decay with the damping rate of the least

damped Landau solution and again no prominent numerical recurrence is observed.

The next step in our investigation is to determine which term in the collision operator is re-

sponsible for the qualitative change observed in the spectrum. As discussed more thoroughly

in Ref. 24, the unexpected change comes from the second derivative of f1i with respect to

the parallel velocity. By leaving only this part of the collision operator and removing the

other two, one obtains with the velocity discretization the same type of spectrum as shown

in Figures 2(a) and 2(c). The same applies also to any derivative of an even power of the

distribution function with respect to velocity. We shall elaborate on this and specify our
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statements in a more mathematical fashion in the next section. While the velocity discretiza-

tion appears to be rather robust regarding different collision operators, this is not the case

with the Hermite representation since its advantage in the case of the Lenard-Bernstein op-

erator, CL, is that the functions bn(v||) := Hn(v||/
√
2)e−v

2
||
/2 used as a functional basis are the

eigenfunctions of this operator, i.e., (CLbn)(v||) = −nbn(v||). A substitution of CL in this case

with a second derivative with respect to v|| alone yields entirely different and non-physical

results. This can be easily deduced from the equations since now the Hermite functions are

not eigenfunctions of the operator but instead ∂nbm/∂v
n
|| ∝

√
(m+ 1)...(m+ n)bm+n which

corresponds to a matrix the spectrum of which is σ = {0} and not {−n}n∈N0
as for CL.

Therefore, in the Hermite representation one should not use hyperdiffusion-like terms as a

simple dissipation source. A possible analogue would be −(−CL)n, n ∈ N, as suggested by

J. Parker31.

IV. ROLE OF HYPERDIFFUSION TERMS

Next, we investigate analytically the effect of hyperdiffusion-like terms in the linearized

system of equations in both the case of Langmuir waves and slab ITG modes. A similar

problem has been discussed in Ref. 6 where the analysis is done for the Lenard-Bernstein

collision operator which can be formulated in one dimension. In numerical computations,

one often makes use of a so-called hyperdiffusion term which is proportional to the 4th

derivative of the particle distribution function with respect to velocity. Such a term is also

called numerical dissipation and for this purpose one can use any even derivative of the

distribution function in velocity space32.

A. Langmuir waves

For a better understanding of the problem, we first consider one-dimensional electrostatic

Langmuir waves and use the same notation as in Refs. 5 and 6 according to which Ω :=

ω/(
√
2k), u := v/

√
2. This will facilitate comparison with the results obtained there. Thus,
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the linearized Boltzmann equation reads

ug(u)− Ωg(u)− η(u)

+∞∫

−∞

g(u′)du′ = iε

(
in
∂ng

∂un

)
, (20)

where η(u) = −αue−u2/√π with α = 1/k2 ∈ R+ and the term on the right-hand side

in the brackets produces dissipation for every even number n and ε is some small positive

parameter which we shall refer to as collision frequency. g(u) denotes here the same quantity

as f(k, v, ω) in Eq. (3) where for the ease of notation we have suppressed the arguments

k and ω. In order to solve this equation, we perform a Fourier transform with respect to

velocity,

G(p) :=
1√
2π

+∞∫

−∞

g(u)eipudu ⇒ g(u) =
1√
2π

+∞∫

−∞

G(p)e−ipudp. (21)

With this definition, Eq. (20) becomes

dG

dp
+ (εpn − iΩ)G(p) =

α

2
G(0)pe−p

2/4 . (22)

We have written the equation as an ordinary differential equation because there are only

derivatives with respect to p and the other variables can be regarded as parameters. The

solution of the above equation is

G(p) =
α

2
G(0) exp

(
− ε

n + 1
pn+1 + iΩp

) p∫

a

x exp

(
ε

n + 1
xn+1 − x2/4− iΩx

)
dx +

+ C exp

(
− ε

n + 1
pn+1 + iΩp

)
, (23)

where a and C are some constants. At this point, it might look surprising that the general

solution of an ordinary first-order differential equation depends on two constants instead

of only one. However, one should note that the two constants are not independent from

each other. We shall see that demanding that G(p) is absolutely integrable determines both

constants. This condition also assures that g(u) is a continuous function. Actually, our

analysis will show that G(p) is even a Schwartz function which automatically implies the

same for g(u). Since n is even, the second term in the solution diverges as exp(−pn+1)

when p→ −∞. Thus, C has to be zero in order that the inverse Fourier transform of G(p)

exists. This, however, is not a sufficient condition. It is also necessary that the first term in

Eq. (23) goes to zero rapidly enough when p → −∞. This can be achieved by demanding
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that a = −∞. This choice is unique because there is only one function that solves Eq. (22)

and does not belong to the kernel of the operator. With the above values for the constants

a and C G(p) goes to zero rapidly enough for p→ −∞ such that it is absolutely integrable

for large negative values of the argument. Next, we focus on the case p→ +∞. This limit is

slightly more problematic because the integral in Eq. (23) diverges when p→ +∞. On the

other hand, the absolute value of the prefactor in front of the integral goes rapidly to zero

when p increases. In order to clarify this limit, we estimate |G(p)| from above as follows:

|G(p)| = α

2
|G(0)| exp

(
− ε

n + 1
pn+1 − ℑ(Ω)p

)∣∣∣∣∣∣

p∫

−∞

x exp

(
ε

n + 1
xn+1 − x2

4
− iΩx

)
dx

∣∣∣∣∣∣
≤

≤ α

2
|G(0)| exp

(
− ε

n + 1
pn+1 − ℑ(Ω)p

) p∫

−∞

|x| exp
(

ε

n+ 1
xn+1 − x2

4
+ ℑ(Ω)x

)
dx =: f(p).

(24)

The function f(p) is positive definite and we are interested in its behavior for p → ∞. By

taking its derivative one finds that

df

dp
(p) = (−εpn −ℑ(Ω))f(p) + α

2
|G(0)| · |p|e−p2/4. (25)

Here, Ω is merely a parameter and can therefore be neglected in the prefactor in front of the

first term in Eq. (25) for large values of p, and the second term tends rapidly to zero when

its argument increases. This gives the relation

lim
p→∞

df

dp
(p) = −ε lim

p→∞
pnf(p). (26)

Since f(p) is positive definite, df(p)/dp < 0 for large p, i.e., f(p) decreases monotonically

with p when p→ +∞. In this case there are only two options for the behavior of f(p) at large

p: it can tend to some positive constant or to zero. First, assume that lim
p→∞

f(p) = const > 0.

Then the limit in Eq. (26) equals −∞ which contradicts to the assumption we made and

also to the fact that f(p) is positive definite. Therefore, f(p) must go to zero for p → ∞.

In order to satisfy the positive definiteness of f(p), also its derivative should go to zero for

large p which means that f(p) tends faster to zero than pn tends to infinity. Since f(p)

is an upper bound for |G(p)| and n ≥ 2, it is clear that for large values of the argument

|G(p)| should decrease fast enough such that it is integrable. The integrand in the first term

is also a continuous function. Since integration is a continuous operation, the integral is
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also continuous. Thus, |G(p)| is a continuous function which decreases rapidly enough for

p → ±∞ such that it can be integrated, i.e.,
∫ +∞

−∞
|G(p)|dp < ∞, which means that the

solution

G(p) =
α

2
G(0) exp

(
− ε

n+ 1
pn+1 + iΩp

) p∫

−∞

x exp

(
ε

n+ 1
xn+1 − x2

4
− iΩx

)
dx (27)

has a Fourier transform, i.e., the Fourier analysis is consistent.

The next step is to find the dispersion relation which arises from the self-consistency condi-

tion for p = 0. This yields

1− α

2

0∫

−∞

x exp

(
ε

n + 1
xn+1 − x2

4
− iΩx

)
dx = 0 . (28)

To the best of our knowledge, the above integral cannot be expressed in a closed form

by using only elementary functions or the well-known special functions and is, therefore,

rather inconvenient to work with. For this reason we make an expansion of the integrand

in Eq. (28). Since ε is proportional to the collision frequency, writing the exponential of

εxn+1/(n + 1) as a series will help us determine the asymptotic behavior of the dispersion

relation when the collision frequency tends to zero. At this point, one might be tempted

to exchange summation and integration since all the integrals that emerge this way exist.

However, such a term by term integration cannot be justified mathematically in this case.

Since we are interested only in the asymptotic behavior ε→ 0, we apply the method of Borel

summation, a simple description of which is given in Ref. 33 and the references therein. For

that reason exp(εxn+1/(n+ 1)) is represented as

exp

(
ε

n+ 1
xn+1

)
= 1 +

ε

n+ 1
xn+1 +

ε∫

0

x2(n+1)

(n+ 1)2
(ε− t) exp

(
t

n + 1
xn+1

)
dt

︸ ︷︷ ︸
=:R1

. (29)

Further calculations will be facilitated by the relation

0∫

−∞

xre−x
2/4−iΩxdx = ir

dr

dΩr

0∫

−∞

e−x
2/4−iΩxdx = −ir+1d

rZ(Ω)

dΩr
(30)

which applies to all r ∈ N0, where Z is the plasma dispersion function defined in Ref. 27.

The above expression can be easily verified by induction when one takes into account that
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Z(Ω) = i
√
πe−Ω2

(1+erf(iΩ)) and Z ′(Ω) = −2(1+ΩZ(Ω)). Now, we estimate the difference,

D, between the exact integral in Eq. (28) and its approximation achieved by taking only

the first two terms on the right-hand side of Eq. (29) into account. A straightforward

computation yields

D =

∣∣∣∣∣∣

0∫

−∞

e−x
2/4−iΩx x

2(n+1)

(n+ 1)2
x

ε∫

0

(ε− t)etx
n+1/(n+1) dt dx

∣∣∣∣∣∣
≤

≤
0∫

−∞

∣∣∣e−x2/4−iΩx
∣∣∣ x

2(n+1)

(n+ 1)2
|x|

ε∫

0

(ε− t)etx
n+1/(n+1) dt dx . (31)

For n even and x ∈ (−∞, 0] one can estimate the integral over t from above as

ε∫

0

(ε− t) exp

(
t

n + 1
xn+1

)
dt ≤

ε∫

0

(ε− t)dt =
1

2
ε2 . (32)

This leads to an upper bound for D given by

D ≤ ε2

2(n+ 1)2

0∫

−∞

|x|x2(n+1)e−x
2/4+ℑ(Ω)xdx =: ε2Cn(Ω) , (33)

where Cn(Ω) is a constant that depends on n and Ω but not on ε and is finite for every

finite Ω. Although Cn(Ω) → ∞ for ℑ(Ω) → −∞, setting a maximal damping rate above

which modes are of no physical importance gives us a global upper bound for Cn that is

independent of Ω in that part of the complex plane. Therefore, by replacing the integral in

Eq. (28) with −2(1+ΩZ(Ω))+ in+1 ε
n+1

dn+2

dΩn+2Z(Ω), one only introduces an error of the order

of ε2, i.e., the dispersion relation reads

1 + α+ αΩZ(Ω) + in+1 ε

n + 1
α
dn+1

dΩn+1
(ΩZ(Ω)) +O(ε2) = 0 . (34)

From the above expression it is clear that in the limit ε → 0, one recovers the well known

Landau dispersion relation for a collisionless plasma. For the sake of completeness we also

compute the first order contribution. Its exact form, however, depends on n. For a standard

hyperdiffusion term (n = 4) the dispersion relation up to first order in ε is

1 + α + αΩZ(Ω) + iα
ε

5

[(
−32Ω5 + 224Ω3 − 264Ω

)
+

+
(
−32Ω6 + 240Ω4 − 360Ω2 + 60

)
Z(Ω)

]
+O(ε2) = 0. (35)
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The analysis in this part regarded so far only the Case-Van Kampen spectrum, i.e., we

searched for solutions with a time dependence of e−iωt. On the other hand, one could solve

the initial value problem by using a Laplace transform with respect to time. For a Lenard-

Bernstein collision operator, this results in the same dispersion relation as the one derived in

Ref. 6. It is straightforward to analyze the linearized Vlasov equation with hyperdiffusion-

like terms using such a Laplace transform. In this case, we found the same dispersion relation

as in Eq. (28), i.e., the Case-Van Kampen spectrum coincides with the Landau solutions

also when the dissipation term is of the form −iε (−in∂ng/∂un), which is consistent with

the results of our numerical analysis.

B. Slab ITG modes

In the following, we study the effect of hyperdiffusion terms on slab ITG modes which is

slightly more complicated than for Langmuir waves, but the main idea remains the same.

The linearized Vlasov equation is given in Eq. (14). In order to make the notation more

convenient, we redefine the quantities there as follows:

Ω :=
ω√
2k||ρ∗

; κ :=
ky√
2k||

; u :=
v||√
2
; g(u) := f1,i(..., v||, ...) and g0(u) :=

√
2f0,i(v||), (36)

where after the local approximation for the gradients, the equilibrium ion distribution func-

tion is a function only of the parallel velocity and is given by e−v
2
||
/2/

√
2π. With this new

notation and after adding a hyperdiffusion-like term Eq. (14) becomes

Ωg = ug +
τ√
π

(
κ

LT
u2 + u+

κ

Ld
− κ

2LT

)
e−u

2

+∞∫

−∞

g(u′)du′ − iε

(
in
∂ng

∂un

)
. (37)

After Fourier transforming Eq. (37) with respect to u, one arrives at a first-order ordinary

differential equation which reads

dG

dp
(p) + (εpn − iΩ)G(p) = τG(0)

(
iκ

4LT
p2 +

1

2
p− iκ

Ld

)
e−p

2/4 (38)

and is of the same type as Eq. (22). The differential operator on the left-hand side of Eq. (38)

is the same as that in Eq. (22) and, therefore, has the same kernel. The only difference is the

right-hand side. However, this difference is only quantitative and not qualitative because

in both cases the right-hand side is a Schwartz function. The general solution of the above
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differential equation reads

G(p) = C exp

(
− ε

n + 1
pn+1 + iΩp

)
+ τG(0) exp

(
− ε

n + 1
pn+1 + iΩp

)
×

×
p∫

a

(
iκ

4LT
x2 +

1

2
x− iκ

Ld

)
exp

(
ε

n+ 1
xn+1 − x2

4
− iΩx

)
dx , (39)

where C and a are arbitrary constants that are fixed by demanding that G(p) should have

a Fourier transform. This leads to C = 0 and a = −∞ as for electrostatic Langmuir waves.

Derivation of the dispersion relation requires setting p = 0. The resulting integral is again

rather sophisticated and, to the best of our knowledge, cannot be expressed in a closed form

using elementary functions or the well-known special functions. Therefore, we proceed as

before and apply the method of Borel summation to the infinite series that the integrand

can be represented as. After completely analogous calculations one derives the dispersion

relation up to order ε which reads

1 +
1

τ
+

κ

LT
Ω+ Z(Ω)

(
κ

LT
Ω2 + Ω+

κ

Ln
− κ

2LT

)
+

+ in+1 ε

n+ 1

dn+1

dΩn+1

[
κ

LT
Ω + Z(Ω)

(
κ

LT
Ω2 + Ω +

κ

Ln
− κ

2LT

)]
+O(ε2) = 0 . (40)

By taking the limit ε→ 0, one arrives at the Landau dispersion relation for collisionless slab

ITG modes.

As a last point we note that solving the initial value problem via a Laplace transform in

time leads again to the same solutions as those composing the Case-Van Kampen spectrum.

In conclusion, velocity space hyperdiffusion effectively captures some important physical

properties of the genuine collision operator as also the Lenard-Bernstein operator does.

However, in contrast to the latter, hyperdiffusion in velocity space conserves not only particle

number, but it implies momentum (for n > 2 also energy) conservation, too.

V. SUMMARY

We have investigated the linearized problem of electrostatic plasma oscillations numer-

ically and analytically. In the collisionless case, we showed that formulating the problem

in the language of operator theory provides an elegant explanation of the continuous and

discrete parts of the Case-Van Kampen spectrum. Additionally a sufficient condition for
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the existence of the former was given. For the slab ITG modes, the discrete part of the

collisionless spectrum is related to possible instabilities and drift waves that arise in the

presence of background gradients. A numerical investigation of collisionless Langmuir waves

and slab ITG modes showed that Case-Van Kampen modes tend to gather above the least

damped Landau solutions but, nevertheless, all the modes are needed in order to reproduce

the effect of Landau damping.

The collisional system was treated first numerically using different discretization schemes. A

finite difference scheme on an equidistant velocity grid, which is quite common in numerical

studies, yielded a large number of non-physical modes with small damping rates. In extreme

cases, some of those artificial modes are less damped even than the least damped Landau

solutions which could potentially make the analysis more difficult if the latter are unknown.

Note that such numerical modes do not influence the temporal evolution of moments of the

distribution function, e.g., of the electrostatic potential. However, discretization via expan-

sion of the perturbation into a basis of Hermite polynomials multiplied by a Gauss function

leads to a spectrum with more identifiable Landau solutions. Moreover, all non-physical

modes present in this case are more strongly damped than the physical Landau solutions.

In contrast to the finite difference scheme, the Hermite representation produces spectra

wherein all modes with small damping rates have a straightforward physical interpretation.

This may prove beneficial for the analysis of numerical simulations of nonlinear models. In

this sense, a truncated Hermite representation is superior to a finite difference scheme on an

equidistant velocity space grid.

From our numerical analysis, it became apparent that the qualitative change of the eigen-

value spectrum for any infinitesimal collision frequency is due only to the second derivative

of the perturbation with respect to velocity. This we then investigated also analytically and

showed that any even power of velocity space hyperdiffusion leads to Case-Van Kampen

eigenvalues that match the collisionless Landau solutions when the hyperdiffusivity tends to

zero. Although such hyperdiffusion terms are used primarily for purely numerical reasons,

our analysis shows that they correctly reproduce important physical effects, e.g., Landau

damping.
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