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Chapter 1

Motivation

The title of the work seems such a technical and specific subject. Hopefully,
after reading this chapter the reader will be able to appreciate how clustering
can be important in systems where nematic active particles are swimming in
low Reynolds fluids.

Active Particles are basically anything that can move by means of self
propulsion: bacteria are active particles; animals, including humans, are ac-
tive particles; even cars and planes can be seen as active particles. In biological
systems, usually the term is used to describe particles that propel themselves
using ATP (adenosine triphosphate), the biological energy currency used in the
cellular metabolism, to engage any kind of structure mainly made of proteins
such as muscles or flagella. When the ATP is broken down into ADP + P
the muscle or flagella contract, and movement is possible. There are several
different types of active particles[1]. Among active particles, swimmers are the
most studied since they are a simple and very general way to describe particles
interacting with a fluid. Swimmers are insects, birds, fishes or bacteria. In our
case, the last category is the one we are most interested in. Swimmers move in
a different variety of ways and are classified mainly according do their moving
mechanisms:

We have pullers which tend to use their flagella or cilia (or whatever organ)
to pull the weight of the particle forward (think of someone who is climbing a
mountain).

We have then pushers which do the opposite; they use their organs to push
themselves forward. This category is the one closer to our personal experi-
ence because fishes usually are pushers and birds are too. We are interested
in studying a specific type of pushers: the ones that adapted to move in fluids
where viscosity prevails on inertia, that is, fluids with low Reynolds numbers.
In particular, we want to study bacteria that move through a run and tumble
mechanism. The preferred example we will often use in this work is one of the
most studied model microorganism: the Escherichia coli (E. coli).

Nematic Particles were initially intended as, very inanimate liquid crystals.
Liquid crystals are rod-like molecules that are widely used in everyday tech-
nology (e.g. LCDs, that is, Liquid Crystal Displays). The elongated shape of
these molecules gives them anisotropic interaction, that is, the potential energy



between two such molecules depends on the mutual orientation and not just the
distance between the centres of mass. Macroscopically, these substances exhibit
thermodynamic phases intermediate between the liquid and crystalline symme-
try, hence their name. As the temperature decreases, the system goes through
a first symmetry breaking; there is a transition from an isotropic state, where
molecular orientations are all disordered, to a state where one global, average
orientation for the liquid crystals emerges. This is called the nematic director
and the phase nematic. Importantly, molecules have head-tail symmetry, that
is, the interaction is invariant upon transformation #; — —u;, where ; is the
unit vector that describes the orientation of particle . Upon further cooling
other symmetry breaking occurs, for example, in the smectic phase there is a
one dimensional ordering of the molecular centres of mass. The molecules forms
layers. Within these two dimensional layers the system is still liquid, however,
in the third dimension it is solid-like. It turns out that not only liquid crystals
behave this way, many living creatures possess similar interactions and similar
phase transitions[2]. For this reason, in last few decades, nematic models have
been widely applied in the study of:

o bacteria(E. Coli )
e algae(Chlamydomonas[1])

e human cells (Granulocytes[3], Fibroblasts[4], Osteoblasts[4], Adipocytes[4],
Melanocytes[4]).

And even though the shape of these particles seems far from isotropic, our
work will show that under a given set of conditions isotropic behaviour can be
found in clusters.

Turbulence is a delicate matter. We know that the majority of the phenom-
ena in nature are turbulent, but we know really little about turbulence itself.
Examples of turbulence can be extreme, like a whirlpool; or more subtle, like
the smoke rising from a cigarette. Even the blood in our vessels is a good exam-
ple of turbulent fluid flow. Very useful results have been found when studying
birds[5], fishes[6], and locusts[7] as active particles in turbulent environment.

We will focus on micro-scale organisms. Usually when a microorganism
swims in a viscous fluid, it generates a flow that interacts with the near parti-
cles[8]. In the case of high density of particles, the phenomena can even originate
spectacular sights such as bacterial turbulence. Bacterial turbulence is a good
example of a large scale turbulent phenomenon generated by the mutual inter-
action between bacteria. In this case, it is possible to observe large scale of
intermittent swirls and jets that manifest themselves once a certain concentra-
tion of swimmers is reached[9, 10, 11, 12, 13, 14, 15, 16].

Examples of such high densities need not to be sought very far for they
can be found even in humans. Think of the millions of spermatozoa that swim
towards egg cells for fertilisation[17].

Clustering is a way to say that many particles occupy a very little volume.
Clusters can have very different collective properties from the ones the single
particles that compose them possess. In nature, clustering is a phenomenon
that becomes extremely relevant in the case of a small number of particles,



especially in the case of reproduction. The wood mouse spermatozoa, for exam-
ple, are individually able to swim faster when in a clustered state[18], opossum
spermatozoa pair themselves so that they can swim more efficiently in very vis-
cous fluids[19] and fishfly spermatozoa cluster in dense bundles to gain similar
advantages[20].

Our work focuses on systems populated by nematic active particles that move
with a run and tumble mechanism. The particles we model move at a constant
speed (they move in a low Reynolds fluid). We study the clustering of these
particles and show that the turbulence strongly facilitates aggregated states.
For clustering purposes, the turbulence helps the particles reduce the effects of
thermal noise, this suggests that the adjusting of the inter-particle interaction
could be an effective mechanism used by the organisms to cluster themselves
and gain biological advantage.

The reason we are so excited about this research is that the majority of theoret-
ical and numerical investigation in the world of liquid crystals were done in two
or quasi-two dimensional settings. Thanks to the efficient code and the machines
available at the Max Planck Institut Fiir Dynamik und Selbstorganisation, it is
now possible to explore new computational frontiers.



Chapter 2

Introduction

This chapter focuses on introducing the reader to the field of research of our
work. The first section offers a very quick comparison and an explanation on
where our model fits in the current research paradigm; the second section is a
quick recap of the important notions of turbulent fluid mechanics; the third and
last section goes deep into the theoretical details of our model; the implemen-
tation details are left to the next chapter.

2.1 Previous Systems

Since Viesek proposed a model for bird flocking, in 1995[5], the field of study
of the active particles has been full of discoveries. In 2013, Stocker et al. [21]
published a paper called ” Turbulence drives microscale patches of motile phyto-
plankton” a study that shows how turbulence facilitates clustering of spherical
active particles; this prompted us to study the clustering of the nematic particle
counterparts. Follows a quick comparison of the models that are similar to the
one used in this work.

Stocker’s System studies spherical particles that are affected by gravity
(heavy bottomed). Particles are interacting with one another only through
the turbulent field which, as we remind, is generated by the mutual interaction
of the particles. Turbulence is calculated solving the Navier-Stokes equations
with the finite element software COMSOL Multiphysics. The main results are
that the active particles cluster, but dead cells do not. This also suggests that
the particles need to be active to cluster in a turbulence driven manner.

The Mazza-Breier System is the model that was used as a starting point
for our model. The particles are nematic and swim at a constant speed (low
Reynolds numbers). The particle-particle interaction is given by the Lebwohl-
Lasher potential (later defined) and there is no direct turbulence involved.

Our Model implements the same Lebwohl-Lasher potential of the Mazza-
Breier model to calculate the geometrical interactions of the particles and uses
the turbulence to model the interactions that are of a hydrodynamic type. The
equations of motion we used in the molecular dynamics simulations can be found



in last section of this chapter. A few examples of how our implementation helps
us achieve uncommon speed are given by the Kraichnan method, used instead
of solving Navier Stokes equations, and the use of a Monotonic Logic Grid to
quickly calculate neighbour interactions. Implementation details will be covered
in the next section.

2.2 Fluid Mechanics

A full treatise on turbulent fluid dynamics is far from the aim of this section.
This section introduces only the main physical quantities that are relevant for
our work and is adapted from Kundu’s "Fluid Mechanics” [22].

2.2.1 Some Definitions

First of all, it is important to introduce some concepts of general fluid dynam-
ics; they are required to understand the turbulence in the system. It is however
important to say that our model does not simulate directly the fluid; the hy-
potheses we make on the fluid only affect the interactions between particles.
For what pertains our model, the turbulent flow we look at is incompressible,
stationary, homogeneous, isotropic and normal multivariate.

Incompressible Flow A flow is called incompressible if the fluid does not
change it’s density in response to pressure changes. That is, the material deriva-
tive of the density is equal to zero. Equation (2.1) shows the infamous conti-
nuity equation in three dimensions; a property that directly descends from the
continuity equation is that incompressible flows are also divergent-less, that is,
V.-i=0.

dp(Z,t) = N

D LG (o, 0y, 1)) = 0 (2.1)
where p(Z,t) as the density of the fluid, in a point in & in space and at a given
time ¢; and u is the velocity field evaluated in the same conditions as p.

In physics, incompressibility is a very common hypothesis, in fact, liquids
are almost always incompressible and so are gasses with flow velocities less
than ~ 100 ™ ( or less than Mach 0.3 ). This definition is so important for us
because, in the Kraichnan method we use to compute turbulent velocity fields,
incompressibility of the fluid is an hypothesis. Constant density flows, a subset
of incompressible flows, can also have their Navier-Stokes equations conveniently
rewritten in a way that gravity can be ignored (more of this can be found at
page 135 of the Kundu).



Navier-Stokes Momentum Equation The Navier-Stokes equations have
the role of Newton’s equations in fluid mechanics; they are however highly
non-linear and this is the main reason for which solving Navier-Stokes equation
is so difficult and it is why, for three dimensional models, we have no analytical
solution yet.

Equation (2.2) shows the Navier-Stokes system of differential equations for
an incompressible flow.

Du . _
P = (10§ = Vp) + pV7i (2.2)
where p is the fluid density; 7Dt is the total derivative defined as %’: =

% + - 6F; P’ is the pressure; ¢ is the gravitational acceleration; p is the
viscosity of the fluid.

The term at the left hand side of the equation is the total derivative of the
velocity field (times a density): the first term is simply the variation in time,
the second term is more interesting because it has the form of « - ﬁu; it is the
advective flow term of the velocity field and it represents the changes that the
velocity has when the particles of the fluid move in space. Let’s look at the right
hand side: the first two terms are the internal (pressure) and external (gravity)
forces acting on the fluid, the third term is the viscous term and represents the
diffusion of the velocity.

Our Equations of Motion In our model, gravity will be neglected, so the
first term of the right hand side of the equation will be ignored.

In our equations of motion we will also exploit the fact that an incompressible
flow’s laplacian can be written as it’s curl (see equation (2.3) ).

(1V20); = —p(V x &), (2.3)

where j is the selected component; and & is the vorticity of the flow de-
fined as (& =V X Tpyurp)-

Dynamics of the Fluid The reason the Navier-Stokes momentum equa-
tions (2.2) and the continuity equation (2.1) are so important in fluid mechanics
is that, if combined with suitable boundary conditions, these 4 equations with
5 variables ( p, P, and u; with j = 1,2,3 ) are able to completely describe the
dynamics of our fluid.



Reynolds Number is a dimensionless number that helps to predict similar

flow situations in different flow conditions.

Low Reynolds numbers are associated with laminar flow: a flow where viscous

forces are dominant and the motion of the fluid is constant and smooth.

High Reynolds numbers are associated with turbulent flows: flows dominated by

inertial forces that produce chaotic eddies, vortices and other flow instabilities.
Re — inertial forces _ puL _ 177L (2.4)

viscous forces I v

where @ is the mean velocity of the object relative to the fluid; L is the
characteristic length of the system; p is the dynamic viscosity of the fluid; v is
the kinematic viscosity v = %; and p is the density of the fluid.

Scaling Often in fluid mechanics we encounter dimensionless parameters such
as the Reynolds, the Richardson, or the Froude numbers (and many more can
be defined). In turbulence, the Reynolds number helps us recognise classes of
similar problems, that is, given a geometry for the problem (boundary condi-
tions), if the number is lower than a critical value, we expect a laminar flow, else
we expect to observe turbulence. The full power of describing the system with
dimensionless numbers can be appreciated when the Navier-Stokes equation is
cast to its dimensionless form. As we recall, with the continuity equation and
the boundary conditions, we can completely describe the dynamics of the fluid
in our system; in the dimensionless case, however we can also describe a whole
class of dynamically similar systems, that is, systems that have the same dimen-
sionless parameters and a scale-similar geometry; we only need to map the first
flow into the second by multiplication of a single scale ratio. More information
about this can be found at pages 143 — 150 of the Kundu[22].

D’

o = -V + v g (2.5)

pLu’

where v/ = %; P = p%; g = g’a%; % = %%; V' = LV, L is the characteristic

p —
length of the problem; 4 is the mean velocity relative to the fluid; p is the fluid

density.

Equation (2.5) shows the adimensional casting of the Navier-Stokes equation
for incompressible fluids. We notice that the coefficient of the viscous term (the

second on the right hand side) is the inverse of the Reynolds number é = pZE'

2.2.2 Turbulence

Turbulence is a wide studied yet not fully understood subject. Ome of the
most important physicists of the past century, Richard P. Feynman said that
turbulence is ”the most important unsolved problem of classical physics”.

The aim of this subsection is to explain the main results of research in
turbulent fluid mechanics through a chronological exposition and then to define
the useful quantities for a theoretical understanding of this work.



History of Turbulence The first work on turbulence was done by Osborne
Reynolds in 1883. Doing experiments with pipe flows, he showed that when the
dimensionless number Re = % exceeds a critical value the system becomes tur-
bulent. Then, he found that he could use this number to classify systems that
have similar types viscous flows. Reynolds also introduced the way of writing
a turbulent flow in mean component plus a fluctuating value; to the day the
decomposition is called Reynolds Decomposition and its use is still widespread.
The next great contributor is G. I. Taylor. In his work in 1921 he introduced
the idea of correlation function, he then went on to show how the turbulent
diffusion a particle from a source point initially increases with time linearly,
then for large times, it increases with the square root of the time, just like
a random walk[23]. During 1935-1936, Taylor also introduced the concepts of
homogeneous and isotropic turbulence and of a turbulence spectrum. In 1915,
Taylor introduced the idea of mixing length, the length that a particle needs
to travel before giving up all of its original momentum and behaving like the
surrounding fluid[24] (the mixing length is conceptually similar to the mean free
path in thermodynamics).

Usually the mixing length is credited to Ludwig Prandtl who, during the 1920s,
together with his student Von Karman, developed semi empirical theories of
turbulence of which the most important result is that the average turbulent
velocity profile near a solid wall is logarithmic.

In 1922, the British meteorologist Lewis Richardson wrote the first book on
numerical weather prediction. In the book it was proposed that the turbulent
kinetic energy is transferred from large to small eddies, until dissipated by vis-
cous flow[25]. This spectral cascade idea is central in the present understanding
we have of turbulence. Richardson is also credited for the proposal of his four-
third law. The law states that the effective diffusion coefficient of a patch of
turbulence is proportional to l%, where [ is the length scale of the patch.
Later, Kolmogorov hypothesised that the statistics of small scale eddies are
isotropic and depend only on the following two parameters: the kinematic viscos-
ity, v and the average rate of kinetic energy dissipation, €. From dimensional ar-
guments he derived that the smallest possible scale has the size of n = (”—;)i [26].
He also proposed that at the scales between [ and 7 there must exist an inertial
subrange with eddies that only depend on the parameter €. Thanks to this idea,
in 1941[27], Kolmogorov and Obukhov independently found that the spectrum
in the inertial subrange must be proportional to €3k~3 where k is the wave
number associated with the length scale of the eddy. This poses one of the most
important results in turbulence and agrees with experimental results found at
high Reynolds numbers.



Definition Although elusive by nature, the definition of the turbulent flow
displays the following characteristics:

1. Fluctuations: turbulence always exhibits fluctuations in velocity, pressure
and temperature that tend to be irregular, chaotic and unpredictable.

2. Nonlinearity: turbulence is a solution for Navier-Stokes equations which
are a non-linear set of differential equations.

3. Vorticity: eddies are the building blocks of a turbulent flow. We under-
stand that as the Reynolds numbers increase, the eddies sizes increase as
well.

4. Dissipation: eddies evolve into smaller-scaled versions of themselves in a
non-linear way so that eventually the fluid viscosity dissipates the eddies
altogether. Energy needs to be constantly supplied to sustain turbulence.

5. Diffusivity: fluctuations facilitate mixing of different species, momentums,
or even heat.

A simple, although imperfect, definition of turbulence is: ”a dissipative flow
state characterised by non-linear fluctuating three dimensional vorticity”.

Turbulence Energy Cascade Studying where the energy goes can often
bring insights on the phenomena; turbulence is no different: we will show that
thanks to the Reynolds decomposition, it is possible to write two sets of equa-
tions for the kinetic energy. One for the mean flow and one for the turbulent
velocity fluctuations. Thanks to the comparison of these two it will be easy to
understand how the energy of our system is partitioned.

In turbulence, due to the fluctuating nature of the phenomenon it is useful
to define quantities as following:

P=D+p (2.7)
p=p+0 (2.8)
T=T+T (2.9)

u; is the mean velocity of the i-th component; u; is the turbulent fluctuation;
D is the mean pressure; p is turbulent fluctuation of pressure; p is the mean
density; p’ is turbulent fluctuation of density; T is the mean temperature; 7" is
turbulent fluctuation of temperature;

The mean quantities in equations (2.6),(2.7), (2.8), and (2.9) are regarded
as expected values whereas the mean of the fluctuation is to be considered equal
to zero.

This type of notation is called Reynolds decomposition and it is often used
to write the Navier-Stokes equations in an averaged form, Reynolds averaging
Navier-Stokes equations, for short, RANS equations.
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We are interested in studying how the energy moves between the mean and
the fluctuating kinetic energies. We can write an energy balance (or budget)
equation for the mean flow:

ou; g _
) _ WL 8y 7 — (s )TT7) — 208 18y + Tl — 2 S
ot +uj6‘xj oz, % +2v1;.8; j— (ujuj ;) —2vS; jS; j+u uJaxj pOPU3
(2.10)

where E is the mean kinetic energy for the mean flow; ﬁj = %(

OE _ OF 0 (_@

oy _ 3“7)
ox; ox;
is the mean strain rate-tensor;

Let us see what each term of this equation means.
The left hand side of the equation shows the total derivative of the energy. The
right side is where things become interesting.
The first three terms are called transport terms because they only move energy
in space and do not generate or dissipate any. This can be seen by integrat-
ing the terms over the volume of our system and using the divergence theorem
(Gauss theorem) to transform the volume integral into a surface integral; if
u; = 0 on the boundary the flux is zero. The first divergence term is the trans-
port due to pressure, the second due to viscous stresses and the third is due to
Reynolds stresses.
The fourth term at the right is the viscous dissipation term: it is the product
between the mean flow’s viscous stress and the mean strain rate. The fifth term
is the shear production term, it represents the energy that the mean flow loses
to the fluctuating velocity field. These two terms are tightly coupled, they rep-
resent the energy transferred between the two energy balance equations. These
two terms are written with an opposite sign in the kinetic energy balance for
the fluctuating velocity.
We will not spend too many words on the sixth and last term; it represents the
work done by gravity but, as anticipated earlier, our system does not take in
account gravity.

We can also write the balance equation for the fluctuating velocity field:

oe 0e _ 0 Tup
ot K or; 8xj( Po
(2.11)

where € is the kinetic energy for the fluctuating velocity field; SL ;= %(

1 o, —-—
+2vu; 8] — iufu]) —2vS] ;S] ;Ui a—zz —gaiisT'.
j

E)zj 811

ou; B’LLJ' )

is the mean strain rate-tensor;

In analogy with the other energy balance equation, the terms on the left
hand side of the equation are the total derivative of the fluctuating kinetic en-
ergy and the first three terms on the right hand side are the transport terms.

The fourth term is the viscous dissipation of turbulent kinetic energy. At
very high Reynolds numbers this term is not negligible as opposed to the analo-
gous term found in the other energy balance equation; for this reason turbulence
is a dissipative phenomenon.

The fifth term is the shear production term. As anticipated before, it represents

11



the energy that is gained from the mean flow.

The sixth term is the buoyant production (or destruction, if negative) term; it
gives birth to interesting physics, but we won’t discuss it because our system is
not affected by gravity.

The shear production term is what drives the energy exchange between the
mean flow and the fluctuating velocity field. For it to be active, the turbulence
must be anisotropic. The system we study has isotropic turbulence, that is,
the fluctuating energy balance reduces itself to equation (2.12) where only the
transport terms survive.

de _ 0Oe 9 . (ujp) 11—
- = —(— — —ulu; 2.12
ot + U 6Ij axj( 00 2”1“’]) ( )

The same considerations apply to the mean flow equations 2.10.
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2.3 Our System

This section describes the theory behind our model. The aim is set to show the
mechanisms that affect the motion of the particles and to conclude the chapter
with the starting point for molecular dynamics simulations: the equations of
motion.

2.3.1 Our Active Particles

Particles come in a variety of sizes, and shapes. In the case of biological active
particles these characteristics are not even required to be fixed: there can be
genetic variance between members of the same species and, at the same time, the
same particle could change its shape or speed. We are interested in modelling
the collective behaviour of bacteria like the E. Coli, that is, nematic active
particles that swim thanks to a run and tumble motion in low Reynold number
fluids.

Run and Tumble As mentioned in the introduction, there are various types
of swimmers. We can mainly distinguish them between pushers and pullers.

Birds and fishes need to deal constantly with fluids where inertial forces
prevail, that is the reason why they adapted their motile organs this way.

Bacteria that populate viscous fluids need to use different propulsion mech-
anisms, that is how they evolved to have flagella that allow them to run and
tumble.

The mechanism is simple: the particles initially propel themselves in a run
phase, then they change orientation randomly in a tumble phase (see figure 2.1.
The two steps are iterated continually. In this model, constant particle speed is
used to recreate a low Reynolds fluid.

(a) Run phase e
(c) Trajectory example after

(b) tumble phase a few cycles

Figure 2.1: Run and tumble motion
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Swim/Run Tumble

(Counter-Clockwise) (Clockwise)

Figure 2.2: E. Coli run and tumble example

The E. Coli, for example has developed a very ingenious way of using its
flagella: a counter-clockwise rotation causes the flagella to make the bacterium
run, then a clockwise motion makes the bacterium tumble( see figure 2.2) .

Nematic Shape In the introduction, we saw that nature has quite a few ex-
amples where shape was selected for anisotropy. Nematic, or rod-like shapes
are a perfect example of this type of natural selection. The shape is a very
important characteristic of a particle because it affects the interaction between
the environment (neighbours, boundraries), sets the ratio between volume and
surface area, etc. Particles with this kind of elongated shape minimise their
energy thanks to particle alignment rather than adjusting the distance between
centres of mass. To model the nematic shape of the particles, we use an inter-
action potential called the Lebwohl-Lasher potential, defined as:

1 o
U= N Zj:(é- &;)? (2.13)
where N,, is the number of neighbouring particles; € is the current particle
direction; €; are the neighbouring particles’ directions.

Particles have head-tail symmetry, that is, the interaction is invariant upon
transformation u; — —1;, where u; is the unit vector that describes the orien-
tation of particle 3.

Equation (2.13) reminds the Ising model’s potential energy with one differ-
ence: the scalar product between the orientations is squared therefore energy
will be minimised, as can be clearly seen in figure 2.3, by both parallel and
anti-parallel alignments.

14



0 - &
(a) Two nematic particles interacting (b) .ahgnment of two nematic particles; 6 is
minimised.

Figure 2.3: Nematic alignment

2.3.2 Nematic Order Parameter

Symmetries are a very powerful tool in physics. There are many examples where
symmetries help us simplify the problem like for example in the case of the
eigenvalue problem for the hydrogen atom. Other times, symmetries and gen-
eral arguments help us understand the collectiv behaviour of the system. Liquid
Crystals, for example, exhibit thermodynamic phases that are intermediate be-
tween the liquid and crystalline symmetry. As the temperature decreases, the
system goes through a first symmetry breaking; there is a transition from an
isotropic state, where molecular orientations are all disordered, to a state where
one global, average orientation for the liquid crystals emerges. This is called the
nematic director and the phase nematic. Upon further cooling, other symmetry
breaking occurs, for example, in the smectic phase there is a one dimensional
ordering of the molecular centres of mass. The molecules form layers. Within
these two dimensional layers the system is still liquid, however, in the third
dimension it is solid-like.

For each phase, there is an order parameter associated with it; a few ex-
amples are: nematic, smectic and ferromagnetic phases with the corresponding
order parameters.

Our interest is to study how clustering affects the orientations of nematic
particles, we will therefore focus on the nematic order parameter alone.

The nematic order parameter, also known as Maier-Saupe order parameter,
is a quantity that describes the degree of alignment of the particles to an axis;
the exact axis is unknown because the parameter is a scalar quantity. It is
defined as the maximum eigenvalue of the following second order tensor:

1 it —
S=o% ;(zm a; — 1) (2.14)

where: N is the total number of particles in the system; #; is the orientation
of the ith particle; sum over the indices is implied (Einstein notation).

15



1.0

0.5

Order Parameter

0.0
Temperature
Figure 2.4: Nematic-Isotropic phase transition

Figure 2.4 shows a simple plot of the global nematic order parameter as a
function of the temperature (in our system, the thermal noise 7). The transition
is continuous until a critical temperature is reached; there a symmetry breaking
occurs and all the particles in the system become isotropically aligned.

16



S = 0 represents an isotropic system whereas a system with S ~ 1 is a system
that clearly has a preference in orientation.

(a) Example of S = 0, isotropic system  (b) Example of S ~ 1, nematic system

Figure 2.5: Nematic and isotropic phases

Figure 2.5 shows the difference between an isotropic system and a homoge-
neous one. Both examples display the last snapshot of two simulations we ran
where, for clarity, only 200 particles out of 27000 are randomly selected and
printed. The arrows are printed at the particles positions and the arrows show
the particle alignment; the length of the arrow is not proportional to the speed
of the particles. In figure 2.5a it is easy to see that the arrows do not have any
preferred direction, the system is therefore isotropic. In figure 2.5b the arrows
all point from right to left or from left to right. They are therefore nematically
aligned.

17



2.3.3 Clustering

As seen in the introductory chapter, clustering is an advantageous collective
state that microorganisms like spermatozoa often exploit. Clusters can be char-
acterised in many ways. Our main concern in this work is to distinguish and
quantify clustered systems from homogeneous ones.

To measure the rate of clustering in the whole system, we define the patch
enhancement factor Q[21] as

(2.15)

where f is fraction of the particles with highest concentration; C(f) is the
mean concentration at a given f; Cp,p(f) is the mean concentration at a given
f for the non-motile counterpart of our system; C, is the mean concentration
of the overall system, in our case this will always be C, = 1.

This factor tells us that the f particles are Q times more concentrated than
usual (e.g. Q(0.1) = 12 tells us that 10% of the particles are 12 times more
concentrated than the density of the homogeneous system).

x10° n=1e-2
45 \
—&— K = 0E+0
4 K=1E-4
K = 1E-2
35t ]
—6— Kk =1E+1
3t ]
25} .

Qfactor

10

Figure 2.6: Q(f) plots; semilog axes

Figure 2.6 shows a few Q(f) curves to give a gist of the behaviour of the
function.
7 is the thermal noise used defined in the Lebwohl-Lasher potential (see equa-
tion (2.13)); & is the intensity of the turbulent field and will be defined more
accurately in the explanation of Kraichnan’s method. Thanks to figure 2.7 (it
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shows the same curves with loglog axes), we can safely say that the curves ap-
proach zero and the fluctuations are due to floating point precision. Therefore
our patch enhancement factor is well defined.

n=1E-2

Qfactor
=
o

10°F | ——k =0E+0 A g
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-15 N N N

107 10° 107 10" 10°
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Figure 2.7: Q(f) plots; log log axes

Another way to characterise a cluster is to study its radius. We borrow from
the study of molecules the common practice of using the radius of gyration.
The radius of gyration is defined in the following way:

N

R? = ¥ > (% — Fom)? (2.16)
k=1

where N is the number of total particles in the cluster; k is the index of the
particles in the given cluster; r¢)s is the mean position of the particles.

The gyradius is the root mean square of the particle positions in the cluster.
It’s a scalar quantity and it is always non-negative.
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(a) Example of @ = 1, homogeneous sys-
tem

(b) Example of @ ~ 100 , clustered system

Figure 2.8: comparison of homogeneou s and clustered systems
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2.3.4 Equations of Motion
d¥

E = |U0|€+ 17tu7"b (217)
dé ou 1, .
E:—W%‘Fi(wxé‘)-i-?? (2.18)

where vy is the constant velocity of each particle; vy, is the velocity of
the turbulent flow; € is the orientation unit vector; U is the Lebwohl-Lasher
potential (2.13); v is the relaxation constant; & is the vorticity of the field & =
V x Ugurp; 77 18 the thermal noise factor.

In writing equation (2.18) we took in account the fact that the fluid the particles

are swimming in is incompressible and there are no gravitational interactions.
We also made use of equation (2.3).
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Chapter 3

Implementation

This chapter’s aim is to describe the methodologies used to study the system
described in the previous chapter. Since simulations were the major part of our
work, the chapter will focus on the technicalities.

3.1 The Tools

There was the need to use a few different tools:

Simulation Code We use molecular dynamics simulations with periodic bound-
ary conditions. Simulations, as opposed to the majority of the ones seen in
literature, are in three dimensions.

The code is written in C. The reasons we are able to run such performance
intensive simulations is because we use a very efficient neighbour list called MLG
(Monotonic Logic Grid) to speed up the calculation of mutual interactions be-
tween particles. The main idea of the MLG is that neighbours in the simulations
are also neighbours in memory making extremely fast to access the neighbour
informations. To keep the MLG ordered, it is necessary to sort the grid every
timestep. The algorithm we used to sort the particles is the C standard library
quicksort,.

NOTE: a possible substantial speed up can be reached if the algorithm is
parallelised. A way to do so is using Hilbert Curves to span the box space.

To calculate the turbulent velocity field, Kraichnan’s method was used. The
motion of the particles is implemented by integrating the differential equations:
(2.18) and (2.17). Using the Lagrangian lambda method, we impose constraints
on the differential equations so that it’s easier to integrate them with a velocity
Verlet algorithm.

Since the running time was still slow, parallelisation was required to cut the
running time even further.
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Table 3.1: Example of a simulation input file

Definition Abbreviation Value
Number of iterations iter num 100000
Number of particles in each direction N,NyN, 30 30 30
Size of the simulation box L.L,L, 30 30 30
Interaction range € 1
Restart simulation switch starting -
Particle speed o 0.5
Thermal noise i 0.01...1
Time step size At 0.1
Relaxation constant ¥ 1
Turbulence intensity, number of modes Kk, NF 1074... 10, 32
Output frequencies Apos, AS 5000, 500

The simulation code outputs the following data every t,,s timesteps:

spatial configuration of the particles

particle orientations

turbulent velocity field at the particles’ positions

angle between the particle orientations and the field vectors

nematic order parameter

Clustering Script The script is written in C. This routine goes through
the particle configurations outputted by the simulation codes and generates
a list of neighbours. The cut-off range used is the same that determines the
nematic interaction. Once every cluster has a member list, it is possible to
calculate quantities such as the number of particles in each cluster or the radius
of gyration of each cluster.

Matlab and Minor Scripts Shell scripting was mainly used to automate
tedious tasks whereas Matlab was the main tool used for plotting.

In particular, the built-in Voronoi function was very useful to calculate the
patch enhancement factors, (). During the test phase, Matlab was also used to
output videos and various three dimensional snapshots of the system.
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3.2 Monotonic Logic Grid (MLG)

The monotonic logic grid is one of the main reasons our simulations are so fast.
A monotonic logic grid is a data structure where particles are required to obey
the following rules:

for a three dimensional particle:

x(i,5, k) <z(i+1,4,k) i=1,..,.N,—1 (3.1)
y(i, 4, k) < y(i,j +1,k) J=1.,Ny, -1 (3.2)
2(i,7,k) < 2(i, 5,k + 1) k=1,.,N,—1 (3.3)

where:
N, is the number of particles on the x axis
N, is the number of particles on the y axis
N, is the number of particles on the z axis

Constraints (3.1), (3.2) and (3.3) make sure that the particles that are neigh-
bours in the simulation are actually neighbours in the memory. The speed ac-
cess of memory is therefore dramatically increased compared to an unordered
structure. This considerably speeds up the code when nematic interaction is
calculated. MLGs are a very useful method anywhere there is a neighbouring
particle interaction mediated by a cut-off range.

They are widespread in molecular dynamics simulations, but they also find
interesting applications in some other less common cases; a good example is the
tracking of air traffic[28].

Sorting Algorithms After each timestep calculation it is necessary to sort
the particles in the memory along each axis so that the structure remains un-
changed. Any sorting algorithms can be easily chosen. Popular choices include:
bubblesort, where sorting is done comparing the selected particle with the fol-
lowing particle on that axis; or shellsort, where the comparison is done with the
particles offset by half the number of the particles. Bubblesort is efficient in pre-
sorted situations whereas shellsort is more effective with random data sets[28].
Shellsort is usually preferred to quicksort when the worst case is relevant.

Stochastic Grid Regularisation Algorithm MLGs are not unique. Very
often constructed MLGs do not form an orthogonal grid. For this reason, it
is useful complement the MLG with a Stochastic Grid Regularization algo-
rithm(SGR). The SGR works by perturbating the position of a selected particle
and using the new configuration to calculate the old MLG. This method is
particularly useful when the grid tangles itself and a small perturbation can
”straighten” the grid.
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A 2D Example The following example is taken from ”The Monotonic La-
grangian Grid for Rapid Air-Traffic Evaluation” [28].

Figure 3.1: ”An example of a two-dimensional MLG. The figure shows a 2-D
MLG (5x5) containing the x- and ylocations of 25 labeled nodes. The solid
black (horizontal) lines show the x-links and the dotted blue (vertical) lines
show the y-links. The table shows the regular grid indices of the nodes shown
in the figure. That is, node-15 is indexed at i = 1, j =1; node-6 is indexed at i
=2,j =1, etc.” (source: ”The Monotonic Lagrangian Grid for Rapid Air-Traffic
Evaluation”)

9 8 17 3 1
16 10 12 18 21
13 11 2 25 14
23 19 5 7 4

1 15 6 22 24 20
J/T 1 2 3 4 5

DN L = Ot

Table 3.2: ”shows the regular grid indices of the nodes shown in the figure.
That is, node-15 is indexed at i = 1, j =1; node-6 is indexed at i =2, j = 1, etc.”
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Figure 3.1 shows how the particles are in the simulation whereas the Table 3.2
shows how the particles are indexed in memory. The red numbers in are an
arbitrary number used to label particles.

If we were to calculate the neighbour interaction with, say, the particle num-
ber 25, knowing that its indices in memory are I = 4,J = 3, we would imme-
diately know that the indices I = 3,4,5 and J = 2,3,4 are the ones we are
interested in for our calculations.

Our implementation We implemented the MLG neighbouring list in C us-
ing quicksort from C standard library. We do not use the SGR algorithm. As
the neighbour-list is created, the interactions are calculated using the Lebwohl-
Lasher interaction (2.13).

3.3 Periodic Boundary Conditions

Periodic boundary conditions are a very important assumption in our model.
They model the assumption of studying a small packet of an infinite system
where the net flux of matter is zero. Periodic boundary conditions can come
in various flavours and they can even be exploited to deform the shape of the
simulation box. The most common periodic boundary condition are perhaps
the Born-Von Karman, used solid state physics to ensure the periodicity of
wavefunctions of a Bravais lattice.

Our system uses a simple very simple implementation: particles that exit a
face of the box, must re-enter from the opposite face; the turbulent vector field
must be periodic with period equal to the length of the box.

f ! f

Figure 3.2: A two dimensional example of periodic boundary conditions (source:
wikipedia.org)

Configurational PBC Positions of the particles are periodic so that every
particle that crosses a boundary re-enters the system from the opposite side of
the boundary. The implementation in C can be easily done using the modulus
operator related to the box length.
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Turbulent Field PBC We also want the turbulent field to respect the PBC
to avoid strange boundary artifacts. Periodicity causes our turbulent spectrum
to be quantised.

For the periodic boundary conditions to be implemented we want that

L L
vturb(_Eyt) = vturb(+§at) (34)

this quantises our wave numbers in the following way

21
ky, = —
L

3.4 Kraichnan’s Method

Solving a non-linear partial differential equation is always a daunting task. Solv-
ing Navier-Stokes equations (2.2), in three dimensions, might sometimes be im-
possible. Solutions to two dimensional systems were found, but we are still
obliged to use numerical results to study three dimensional systems. As seen in
the section regarding turbulence, very often in real systems the type of solutions
we are interested in is a particular subset of the very general solution. Therefore
solving analytically may not be even necessary.

In our system, we solve all the turbulence related issues with a numeri-
cal approximation elaborated by Robert Kraichnan in the 70s[29] The method
focuses on a single particle affected by an incompressible, stationary, homo-
geneous, isotropic, and multivariate normal velocity field. The reason we can
simply treat the particles as separated entities is that, in our model, we calculate
mutual interaction through the Lebwohl-Lasher potential(2.13).

Kraichnan’s method exploits the fact that the turbulent phenomenon can be
seen as a superposition of eddies that have a length scale equal to k.

(3.6) shows how the turbulent velocity field is calculated at each point in
space through a Fourier truncated Series.

Np
Veur (T, 1) = Z(élﬁncosﬂn + é2., 80 82,,)|Cy | (3.6)
n=1
where:
Np is the number of modes we compute; ¢; ,, = @y, X ky, and éa,, = by, X kp; @y
and b, are random unit vectors; and Q,, = Q, (¢, %) = (k, - T + wt).

The field intensity can be easily written as sum of sines and cosines. Numer-
ical precision is proportional to the number of modes that we decide to sum.
We always used Np = 30, but in literature it is often equal to a power of 2,
for example Nrp = 32 or Ng = 64 [30]. For more details about the number of
modes necessary, we recommend Fung’s work[31].
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3.5 Velocity Verlet Integration

Computational models always need to deal with the fact that the precision
of a computer is discrete. Numerical analysis is the branch of mathematics
that studies the discrete algorithms used to solve a variety of problems such as
integrating differential equations.

When integrating numerically a differential equation, there are three impor-
tant factors to take in account when choosing the correct algorithm:

e convergence: does the numerical solution converge to the analytical solu-
tion we are looking for?

e order: what is the error committed by one iteration of the algorithm?
e stability: is the solution stable or does it oscillate?

When integrating equations of motion such as (2.17) and (2.18), the most
intuitive, yet somewhat imprecise way to integrate would be using an Euler
algorithm.

The Euler algorithm:

z(to + h) = z(to) + ha'(to) + %hQ:c”(tO) +O(h?) (3.7)

This algorithm is only of the first order and since we also need to integrate the
variation of velocity (2.18), we are looking for a more sophisticated algorithm.

The algorithm we decided to use gets its name from Loup Verlet, the French
Physicist that popularised its use in molecular dynamics; the algorithm is called
velocity Verlet and operates in the following way:

L Z(t+ At) = Z(t) + 0(t) At + $ a(t) At

2. U(t+ At) = 0(t) + 3 (a@(t) + a(t + At)) At

where d(t) is found deriving the interaction potential (see (2.18) ); #(t) is the
position; ¥(t) is the direction; and At is the discrete timestep used to integrate
the equation.

The algorithm integrates both velocity and positions at the same timestep.

Velocity Verlet is a second order algorithm and its computable as Euler,
without additional cost. It has a good numerical stability and preserves some
important physical characteristics of the phase space. This explains its wide
usage in molecular dynamics.

We use this algorithm in conjunction with the lambda method to further
simplify the second step of the integration

28



3.6 Lambda Method and Viscosity

In our model, the viscosity of the fluid has not yet been talked about. Viscosity
is both important because we are studying low Reynolds number fluids, and, by
definition, this means that viscous forces are far stronger that inertial ones. It is
also known that viscosity is key in the dissipative nature of turbulence: eddies
break into smaller scaled versions of themselves, until the fluid viscosity is able
to dissipate the energy completely.

In our system viscosity sets the non conservation of energy which avoids the
system from having unwanted behaviour.

Viscosity is implemented by constraining the direction vector on a sphere of
unitary radius. The constraint also helps to solve the differential equations with
the Lagrangian multiplier method. This is how the differential equation for the
direction of the particle(2.18) can be written:

S 1
=T+ )+ 5(& x €) (3.8)

where T is intended as the perpendicular component of torque particle; \ is the
coeflicient that comes from the Lagrange method; and for the other definitions
look at Equation (2.18).

T+ can also be written in the following way:

all

TH-=T-Tl =T —(T-@&¢ (3.9)
where Tl the parallel component of the torque on the particle.
The velocity Verlet equations then becomes:
7(t + At) = 7(t) + (Jvole(t) + u(r,t)) At (3.10)
where @(r,t) is the turbulent field intensity at the current point and timestep.

et + At) = &(t) + AtT+ + At(\et) + %(w x €)) (3.11)

where we used the (3.8) to write the velocity verlet equation. We also keep in
mind that

_ ou . 1 AT
AT+ = (*’7% +17) LA = (Q’Yn* E (€-€j)ej +ne) LAt (3.12)
"

Remembering the definitions given for (2.18).
The equation (3.11) shows the exact integration used in the simulations.
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Chapter 4

Results

In this chapter we show the main plots concerning our work. Clustering is
studied with a three pronged approach: the first is the most conventional, used
also by Stocker which use the patch enhancement factor Q. The second takes in
account the number of particles in the biggest cluster, the last uses the radius of
gyration of the largest cluster in the system. Alignment of the system is studied
using the previously defined nematic order parameter.

4.1 Q(f) Plots

The @ factor is calculated according to the previously given definition (see
Equation(2.15)). The densities are calculated by constructing Voronoi cells
around each particle and calculating the volume of each cell. Particles were
subsequently ordered from denser to sparser and the f fraction of most dense
particles were used to calculate our Q(f) factor.

To choose the the optimal f, three dimensional snapshots of the most clus-
tered systems were analysed at various fractions. The cherry picked value wants
to highlight the difference between the clustered and unclustered particles with-
out showing too much visual noise caused by the non clustered particles.

The optimal value was established to be f = 0.05 half of the one used by
Stocker.

Figure 4.2 with Q(f = 0.1) was nonetheless included to give a term of
comparison with the peer reviewed paper.
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Q(f = 0.05)
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Figure 4.1: plot of the patch enhancement factor Q(f = 0.05) varying the
parameters kappa, turbulent field intensity; and eta, thermal noise

Figure 4.1 is the central result of our research. There we show the dependence
of Q(f) on the turbulent field intensity x (on the horizontal axis) and on the
intensity of the thermal noise 1 (on the vertical axis). We find that the clustering
can reach values up to 103 times the average density of particles. What is most
interesting is that a high degree of clustering is found in the systems with large &,
that is strong turbulence, regardless of the noise. So whereas at weak turbulent
intensities we see that the noise is able to disrupt clustering (top left corner of
the plot), at stronger turbulence, thermal noise is more or less ignored.

Since active particles are usually able to vary their speed, they have a degree
of control on the mutual interactions which, in turn, affects the turbulence in the
system. Our result suggests that particles could induce clustering in a thermally
noisy environment simply by adjusting their swimming speed.
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Q(f = 0.12915)
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Figure 4.2: plot of the patch enhancement factor Q(f ~ 0.1) varying the pa-
rameters kappa, turbulent field intensity; and eta, thermal noise; this plot is
just a term of comparison with Stocker’s

4.2 Cluster Radius

The following study of the clusters uses a different methodology from one used
in the calculation of @ systems. The previous analysis constructed Voronoi cells
for each particle and, taking the inverse of the volume of each cell, computed and
assigned a density value for each particle. In this study, we used a C routine to
run through all the spatial configurations of particles and check whether they
are within a cut-off range. The cut-off range is the same range used for the
nematic interaction between each particle.

Once it is established that the particles are part of the same cluster, the script
can characterise the cluster in many more ways calculating some interesting
quantities.

In this case we computed the gyradius(or radius of gyration) of each cluster
(see eq. (2.16)) and then we selected the maximum one for every simulation.

The configurations used for the calculation are, of course, the same used for
the study with the Voronoi cells,

Figure 4.3 shows the variation of maximum gyradius in the system, max(R,),
as a function of the turbulent field intensity x (on the horizontal axis) and the
intensity of the thermal noise n (on the vertical axis). We remind the reader that
the box has a length of L = 30 and max(R,) = 10'5 ~ 31.63, the maximum
value, is close to the one dimensional length of the box, but in principle it could
even reach the length of the diagonal of the box since we are in three dimensions.

Low k result in a system that is mainly driven by the thermal noise: the
higher the 7, the smaller the radius.
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High k systems seem to ignore completely the thermal noise when it comes
to clustering radius.
The results are coherent with the ones found in figure 4.1

This is very sensible since p T%
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Figure 4.3: maximum radius of gyration varying the parameters kappa, turbu-
lent field intensity; and eta, thermal noise

In nature, the radius of the cluster could affect the behaviour of the active
swimmers in many ways. If particles are able to vary the radius of the cluster,
it means they are able to distribute in space in a favourable way so that they
can either reach food or flee from toxins. Depending on the specific swimmer,
various understandings on the behavioural traits can be carried on.
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4.3 Cluster Crowdedness

This study uses the same C script used in the gyradius calculation. Once all
the spatial configurations of each particle are analysed to give an accurate list
of the clustered particles, the number of particles in every cluster is calculated.
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Figure 4.4: maximum number of particle in the largest cluster varying the
parameters kappa, turbulent field intensity; and eta, thermal noise

Figure 4.4 shows the maximum number of cluster members in each system
as a function of the turbulent field intensity ( on the horizontal axis) and the
thermal noise (on the vertical axis).

The plot, even though very noisy, shows something familiar: small turbulence
causes the system to be governed by the thermal noise, which tends to let
particles gather in very small-populated clusters; higher turbulence enables the
system to gather more particles in the same cluster; low noise allows clustering
to be achieved without too much turbulence.

Q comparison We clearly see that the result is coherent with figure 4.1. Once
again, this makes sense because the p o< Npgrticies

As opposed to the other plots, this one shows a high degree of noise. This is
caused by the fact that only one simulation was used to calculate the number of
particles in the most crowded cluster. It is possible to reduce the noise running
a set of simulations with the same parameters but different random initial seed.
Another alternative is analysing the time evolution of the values and calculate
a mean.
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4.4 Nematic Order Parameter plot

The nematic order parameter is a way to know if the system aligns to a given
axis. Details on the calculation can be found in the homonimous section.

Figure 4.5 shows the nematic order parameter in each system as a function
of the turbulent field intensity (on the horizontal axis) and the thermal noise
(on the vertical axis). Contour lines help to highlight different areas of the
parameter space which could interest us. We can clearly see that both « and 7
have a disrupting effect on the nematic symmetry of the system, that is, they
both restore the broken symmetry of the system.
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Figure 4.5: contour lines of the nematic order parameter plot varying the pa-
rameters kappa, turbulent field intensity; and eta, thermal noise
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Correspondence Principle It is noteworthy to look at figure 4.6 and the
first column of dots on the y axis in figure 4.5. Due to the logarithmic scale,
that column represents the system with turbulent interaction switched off. We
can see that there is a really close a nematic-isotropic phase transition curve
we would find on a textbook (and in the Mazza-Breier model). The curve
starts with a system almost entirely aligned in a direction, that is nematic order
parameter, S ~ 1, and as the thermal noise increases (temperature) there is a
continue transition towards a completely isotropic phase, S = 0.
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Figure 4.6: nematic order parameter in laminar flow
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Chapter 5

Conclusions

To recap, active particles that swim in low Reynolds numbers fluids interact with
one another very often generating turbulent effects in the fluid. Our main result
is that nematic particles are able to form larger clusters thanks to turbulence;
high turbulence helps the particles to ignore the cluster-disrupting effect of
thermal noise, as a consequence local density values is allowed to reach values
up three orders of magnitude larger than the homogeneous counterpart.

A second result is that, when clustered, the particles tend to align isotropi-
cally. Therefore turbulence (or the effects of it, so clustering) cause the isotropic
symmetry to be recovered just as temperature would do.

The main result is very interesting because nature exhibits many cases where
clustering creates favourable conditions for active swimmers; for example, sper-
matozoa of the wood mouse swim faster in a clustered configuration than as
isolated cells[18].
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Chapter 6

Outlook

In research, very often a result leads to many, more questions. We have found
clustering in our system, we found when the system prefers such configurations,
but there are many open questions.

Faster Simulations The running time of the simulations ranges from a few
hours to several days. This time is what is needed to plot a single point in
graphs such as figure 4.5 or figure 4.1. Speeding the code would not only speed
up the data gathering, but also help us explore new variations of the system
that were previously computationally impractical.

The actual state of parallelisation uses openMP for the main loops. The speed
up was very impressive, but the running time is still lengthy. An obvious solution
to this problem is port the performance critical parts of the code to a natively
parallel language (using CUDA C or Julia) and/or, since the code is intended
to run on CPU clusters, even think of a good MPI implementation.

Time Analysis of the Clustering At the moment we study clusters only
at the utmost timestep. Studying the time evolution of the clusters can help
us gain insight on the time scales of these clustering effects and gives more
statistical data

Variable Density All the simulations were run with a concentration C' =
% = 1. Varying the densities as a parameter could help shed further

box
light on systems such as the ones encountered in nature.

Bigger Boxes Turbulent phenomena are highly affected by the boundaries.
Larger boxes result in reducing the boundary effects thus giving us a more
precise representation of our system.

Different Particles It would be very interesting to study variable particle
velocities for at least two reasons: first, it models genetic variance; second, it
models an ability that most of the living active particles have: varying the
cruising speed to suit their needs. Another interesting improvement would be
modelling the size of the particles through a hard core potential. Sizes could
even be randomly generated.
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More Phase Transitions The Mazza-Breier model, shows that nematic ac-
tive particles exhibit other peculiar phases like the Chiral, the Smectic, and
even coexistence between different phases. How does the turbulence affect these
phases? Is there the chance of observing coexistence?

Generalising the Particle Shape Our model studies nematic particles whereas
there are many models that study the spherical counterparts. Finding the former

as a limit of the latter (or vice versa) would help understanding the clustering
in specific bacteria with different, regular shapes.
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