MAX-PLANCK-INSTITUT

FUR
INFORMATIK

A Conservative Extension of First-order Logic
and its Applications to Theorem Proving

David Basin and Sean Matthews

MPI-1-93-235 December 1993
_ Y,

Pl

INFORMATIK

Im Stadtwald
D 66123 Saarbriicken
Germany

Author’s Address

Max-Planck-Institut fiir Informatik, Im Stadtwald, D-66123 Saarbriicken, Germany.
{basin,sean}@mpi-sb.mpg.de

Publication Notes

This paper will appear in the proceedings of the thirteenth conference on theoretical computer
science and foundations of software technology, Bombay, December 1993, published in Springer
Lecture Notes in Computer Science.

Abstract

We define a weak second-order extension of first-order logic. We prove a
second-order cut elimination theorem for this logic and use this to prove a
conservativity and arealisability result. We give applications to formal program
development and theorem proving, in particular, in modeling techniques in
formal metatheory.

Keywords

First-order logic. Higher order logic. Theorem proving.

§1 Introduction

A basic problem for the designer of a system for machine checked mathematics is
how to allow a user to extend it safely. To this end all sorts of machineries have been
imagined and implemented; what they all share (hopefully) is that they do not introduce
logical inconsistencies that allow the user to prove false sentences.

Perhaps the best known ways to extend a theorem proving system are lemmas and
tactics, which were systematically explored in [7]; also common are metatheoretic
reasoning and reflection [14]. Different approaches will, naturally, be successful in
different situations; for instance a lemma mechanism (i.e. a library facility that allows
a user to take advantage of a collection of previously proven theorems) is the simplest,
but it only works well in theories (mostly strong ‘foundational’ ones, such as set theory
or type theory). The problem with a lemma facility in, for example, first-order logic,
is that any particular theorem is too limited a statement to be generally usable. For
instance a simple truth about first-order logic is that, for any formula A,

FVrA — —~dx-A. (D)

But this is not, itself, a statement of first-order logic. Certainly, for any particular
instance of A the formula VA — —3Jz—A is a theorem, but particular instances are
not very useful; a particular instance is unlikely to come round again, even though
exactly the same pattern (in this case even with exactly the same justifying proof steps)
probably will. The problem is that (1) is schematic; i.e. A varies over formulae, and
in a simple first-order language it is not possible to take the universal closure of such
a statement, which could then be proven once, to be instantiated as necessary. Some
theories are more flexible in the way that they allow quantifiers to be used though,
and then the problem disappears; e.g. in a type theory, where we can quantify over
formulae, we are able to write (and prove) the universal closure of (1) as

VAVzA(x) — —Jx—A(z)). 2)

Another possibility is available in set theory, which, though it is first-order, and so does
not allow quantification over formulae, has comprehension axioms that produce, for
any A a cy such that A(z) <> x € ca; and then we can get the same effect with the
provable statement

Ve(Va(x € ¢) — =3z (z € ¢)).

The problem with moving to theories like type theory or set theory is that they
introduce new complexities that may be inconvenient in other ways. There are many
useful theorem proving tools that work well in simple theories, but become very
inefficient, or even do not work at all, in these much more powerful theories; and for
most purposes, such theories provide enormously more than we need — a lot of the
time we use them just so that we can make use of such simple tricks.

Since (1) cannot be expressed in ordinary first-order logic, we need some other
approach if the user is to be able to make use of it in a theorem prover, and this is one

of the reasons for tactic languages.! Even if we cannot write some general statement
that we can see to be true, if we have a tactic language we can still express its proof:
we can write a program that automatically builds the proof whenever it is needed, so
that we do not have to go to the slow and error-prone bother of typing it in by hand
each time. This is obviously going to be safe because it actually goes to the effort of
building the proof each time it is needed; it does not modify the system, it only speeds
up, by automation, the interface; i.e. the resulting proofs are, rule for rule, identical
with what would have been produced manually.

The other way to extend a theorem proving system is much more powerful, but also
much more difficult. The theory of a theorem prover is a mathematical object itself, so
we can formalise it too, and then do formal meta-theory, which we can use to verify
that extensions we make to the system are safe. The problems with this approach are
that metamathematics is unusually awkward to formalise in a way that is practical (see
[2, 11]) and that we now have to maintain two formal systems: the original theory, and
its metatheory. We can fix this second problem by attempting something even more
ambitious: if we have formal theory strong enough to encode and reason about other
formal theories, then we can use it to formalise itself and use it as its own meta-theory.
This is a powerful way to extend a system [3, 9, 14] but requires that complex and
subtle metamathematics be formalised inside the theorem prover.

In this paper we present a different way to extend a theorem proving system, that
allows us to state and prove formulae like (2). We describe a second-order extension
of a first-order logic where ‘schematic’ formulae such as (2) can be stated and proved,
without introducing the complexity of a full type theory. The logic we present has
several useful properties. First, it is expressive enough to state and prove theorems
using the second-order syntax. We do this by allowing quantification over abstracted
first-order formulae (which we can think of as formulae containing ‘holes’). This gives
us schematic facilities similar to what are available in (the second-order fragment of)
logical frameworks such as Isabelle. With these new facilities a theory for, e.g., first-
order logic, can be extended to provide directly the same kinds of derived rules that
Isabelle allows in the metatheory. Secondly, it is a conservative extension: no new
formulae in the language of the original logic become provable. This conservativity
result is shown constructively, using a elimination theorem for those cuts that introduce
second-order features. (This is not a property of most stronger logics: for example
ordinary second-order logic[13] is certainly not conservative over first-order logic.)

The rest of our paper is organized as follows: in § 2 we define our notation and give
the background that a reader needs, then we introduce our basic theory L K5 and prove
a cut elimination theorem showing that it has the properties we need; in § 3 we show
that our theory is adequate for the purposes we have discussed here — in particular,
meta-theory and ‘schematic proofs’; finally, in § 4, we draw conclusions.

LOf course there are others too: for instance to provide heuristic procedures, which cannot properly
be formalised as lemmas.

§2 The logic LK, and a cut elimination theorem

In this section we describe a second-order extension to the language L which we
call £k, and a second-order extension to the logic LK which we call LK5. Then
we prove a restricted cut elimination theorem for LK. First though, we give some
preliminary definitions.

§2.1 Preliminary definitions and conventions To save space we take our defini-
tions, where possible, from [5].

Definition 1 (LK) Take the sequent calculus presentation of intuitionistic logic in [5,
Ch. 5] as LJ; then LK is L.J extended with all sequents of the form I' - AV —A;
we refer to sequents of this form as ex-mid. Ly is the language of first-order logic
associated with LK. We indicate substitution of a free variable x by a term t in an
object A by Alt/z].

We make use of a modified form of the cut elimination proof for LK, and the reader
should be familiar with it (again, see [5]); note that the proof is by induction on the
structure of derivations, using the lexicographic ordering defined on the pair (R, S),
where R is the number of connectives in the cut formula at the root of an (otherwise
cut-free) proof, and S' is the number of steps in the proof.

Now we are able to define the logic LK.

Definition 2 (L, x,) The language L k, is the smallest extension of the language L1 i
closed under the following:

1. We define a new class of predicate variables, o, of all arities, where if o has arity
n, then a(tq, ..., t,) isin Lk, .

2. If Aisin L ,, and « a predicate variable, then Voo A and 3o A are in L, .

3. If Aisin Lk, not containing ¥V, or 3o, then Ax1, ..., x,A is a predicate of Lk,
of arity n, and called an abstracted formula.

We call ¥, and dJ5 second-order quantifiers. Note that we have to extend our notion
of substitution to allow replacement of n-ary predicate variables by n-ary predicates:
if an abstracted formula, say Az; ... \x, A, is substituted for a predicate variable «
in a formula like (¢4, ..., t,), then the result, after appropriate alpha-conversion, is

Alt/xq, ...ty x,].

Definition 3 (LK>) The logic LK, has the language L k., and its rules include those
for the logic LK (extended for L,); extra rules are also added for the second-order
quantifiers ¥, and 35, as follows:

I, Alp/a] - B 'FA
v, —Vr
F,VQ&A FB '+ \V/QOéA
3)
INAFB ' Alp/a
LARE o, DA
F, HQCYA FB '+ 320614

Finally, an extra side condition is placed on the first-order rule 3-I: not only should
the quantified variable not appear free in the other formulae in the sequent, but there
should be no occurrences above it in the proof hidden by an application of 35-r. We also
place a restriction on ex-mid, that we do not allow instances containing second-order
quantifiers.

In Y-l and Js-r the arity of « and p should be the same; also notice that the syntax
(definition 2, part 3) places the restriction on p that it be an abstraction of a formula
that does not contain any second-order quantifiers.

We now distinguish between different cuts in LK.

Definition 4 (second-order cuts) In the rule

I'FA AAFB
T A+ B

cut

A is called the cut formula. If A contains either ¥, or J,, then the cut is said to be
second-order.

We can now state, and prove, the most important fact about L K5:

Theorem 5 If a sequent I' - A is provable in LK, then it is provable without using
second-order cuts.

Proof: By induction on derivations, and similar to ordinary cut elimination, except
that we treat first-order cuts like any other rule. We use a lexicographic ordering on
the triple (@, R, S) where R and S are, as in the usual proof, the complexity of the cut
formula, and the number of steps in the derivation, and () is the number of second-order
quantifiers in the cut formula.

Since most of the cases for the induction are the same as for ordinary cut elimination,
we will look only at some of the new ones. Consider the case for d;; here we have a
transformation

. IT; : 11, . .
Dk Ap/a] AAFB 1k Talp/al
~ Tk Alp/a] T,Alp/alF B
[Fhad I, 30AFB cut
cut LI FC
II'F B

where II; and II, are derivations. Notice that A[p/a] does not necessarily have a
smaller R measure, since p is an arbitrary formula, but it does have a smaller ()
measure, since a second-order quantifier has been removed and, by the restrictions we
have placed on it, p cannot have introduced any new ones. By the hypothesis it is now
possible to eliminate all second-order cuts in the derivation. The case for ¥, is very

similar. The other extra case is when one of the sub-derivations of a second-order cut
is a first-order cut. Then the restructuring needed is

'-A TV A-B I : I"'MA+-B TI”,BFC
3 H1
cut; . ~ . cut,
I.T'+ B " BFC T A I'T" AFC
cut, cuty
OLI'1T"FC OLI'1T"kFC

and, since the S measure of the subderivation ending with the second-order cut is now
smaller, it can, by appeal to the hypothesis, be restructured to be cut free; and, if the cut
is on the right hand side, the transformation is essentially the same. And the theorem
follows.

Readers familiar with the proof of cut elimination will rightly suspect that (if we
drop the law of the excluded middle, or rearrange our calculus into the standard classical
form) it is possible to eliminate all the cuts from a proof in LK5. However we are
interested only in removing second-order cuts, and we want to make sure this result
holds if we extend LK, to theories that do not allow elimination of first-order cuts.
Further (and ironically), we need excluded middle in order to get the realisability result
below in corollary 8.

Remark 6 Notice that any application of any of the rules in (3) is recorded in the root
sequent of a proof, or it is eliminated by a cut somewhere below in the derivation.
Thus, in a proof free of second-order cuts we can tell whether or not any of the rules in
(3) have been used simply by examining the formulae in the root sequent.

As an important corollary of theorem 5 we have the following:
Corollary 7 The logic LK, is conservative with respect to LK.

Proof: 1If I' = A is a sequent in the language of Ly provable in LK, then, by
theorem 5, it is provable without second-order cuts. None of the rules of (3) can have
been used in this proof, since any such application would result in a second-order
quantifier appearing in the final sequent (since there are no second-order cuts, the only
alternative, that second-order quantifiers appear in cut formulae that do not appear
in the final sequent, is, by remark 6, impossible). The proof may, however, contain
second-order variables; for each of these substitute in any abstracted formula of the
right arity, not containing second-order variables. The result is a proof of the sequent
in LK.

§2.2 Realisability A second corollary is that if a theorem begins with a second-
order existential quantifier, we can ecover a witness for that quantifier:

Corollary 8 If a sequent - J,aA is provable in LK, then it is possible to find an
abstraction p such that A[p/«] is provable in LK.

5

Proof: We prove a generalisation of this by induction on the depth of derivations, for
sequents of the form I' = 3y A, where I contains no second-order quantifiers.

If I' - JoaA is provable in L K then, by theorem 5, it is provable without second-
order cuts, and the rule above it must be either J,-r or a first-order cut, or one of the
first-order left rules. In the first case, the derivation is

'+ A[p/a]

_— 2_r
'k HQOCA

so p is the predicate we are looking for. In the case of a first-order cut, the we can
restructure the derivation as:

"B T"F3had ~ T'FB T",BF A]p/al
cut cut
I, T" F JaA ', 7"+ Alp/a]

where I' = [V, I"”. This follows since, by the induction hypothesis, we can derive a
witness p for the righthand subgoal. Similarly for all the other left hand rules, except
for the rule for disjunction (the only other problem might be with the rule for 3-r, but
the side condition on the rule ensures that this problem is avoided.? There we have
I'=T1",1", BV C and the derivation is

I",BF3adA TI",CF JaA
I, I”,BVCF JaA

By the induction hypothesis we can find provable sequents IV, B+ Alp/a]and T, C' I
Alq/a] and, if we take (abusing notation slightly) » = (B A p) V (=B A q) to be the
obvious formula abstraction, from these we can derive I' - A[r/a] using excluded
middle (B V —B). Note that r is uniformly equivalent in each case to either p or ¢
but never both; i.e. if B is true, then ¢ is ‘switched off’, no matter what value C' has.
Here we can see the intuition behind the restriction on excluded middle to formulae
free of second-order formulae: in a first-order classical theory we are unable to realise
the existentials because we are not able to resolve disjunctions introduced by excluded
middle. Here, however, we are trying to realise second-order existential variables, and
we can simply factor instances of excluded middle into the formula we are trying to
realise. However, this would not be possible if instances of excluded middle could
contain second-order quantifiers.

2This side condition is in fact almost identical with what the behaviour of Isabelle turns out to be in
a similar circumstance.

Remark 9 The design of LK, is pragmatic, and with this in mind, the way to extend
it to other, more powerful theories, sould be obvious. Consider, for instance, a theory
of arithmetic; then cut elimination is not available in the constructive, finitist manner
described above, if it is available at all. But we can extend LK to such a theory, while
ensuring that the properties above still hold.

The problem divides naturally into two parts. We extend LK to arithmetic (AR)
by first adding, as new basic rules or axioms all sequents of the form I' = A, where A
is a theorem of elementary arithmetic, and then adding a new rule

I'EA[0/z] T,AF Als(z)/z]
I'-VzA

Then we can convert AR into AR, in the same way as we converted LK into LK5;
however we do not carry over ind to AR, in the same simple way: we add the side
condition that A does not contain any second-order quantifiers. It is this side condition
that ensures that if we apply the cut elimination procedure above, we shall never
encounter a second-order cut where the cut formula is produced by an induction, and
so do not have to try to eliminate such cuts. And thus theorem 5 still holds for AR.
With this knowledge we can check that the corollaries also hold.

ind.

3 Applications

§3.1 Metatheory: schematic theorems Recall the motivation given in the intro-
duction: to provide an extension of a logic where formulae like (1) can be derived as
lemmas, instead of each instance having to be proven separately. Clearly we can do this
here: since we have a theory in which we can prove the second-order universal closure
(2). And we can use the resulting lemma to produce first-order theorems as necessary;
i.e. we can instantiate the V, with any first-order abstracted formula to get any instance
we need, and we know from the conservativity results that such a first-order theorem
really is a theorem. (Note that our conservativity proof actually gives us more than
that: because it is constructive we can remove all second-order traces from the final
proof.)

For example, induction is typically not finitely axiomatisable in a first-order theory,
and has to be provided by a class of axioms defined by a schema. Unfortunately the
given induction schema is often not the most convenient for a particular proof: a more
natural proof is often possible with some other, more specialised induction principle. In
arithmetic, for instance, the standard induction is structural induction on the successor
function, but, in practice, course-of-values induction, i.e. that for any formula A

Ve(Vy(y <z — Aly/z]) — A) — Vx A,

is often easier to use. But the general form of this is not a theorem of, say, AR, even
though there is a simple, well known, meta-theoretic proof of the schema, because
A ranges over formulae, which are not quantifiable over in the theory. And so each
instance has to be proven as needed. But in the extension we propose, we can instead
show simply:

Proposition 10 In the theory AR;:
FY%a(Ve(Vy(y <z — a(y)) = a(z)) — Yea(x)).

Proof: Standard. Assuming an arbitrary « and the antecedent of —, show the
consequent: we generalize, and prove

Vae(Vy(y <z — a(y)) — o))

by structural induction. This is the standard proof and is clearly formalizable in AR,
since the induction formula contains no second-order quantifiers.

§3.2 Metatheory: existentially schematic theorems We have shown that we
can formalize schematic theorems by treating metavariables in a theorem as second-
order variables and proving the universal second-order closure. But there are other
applications of metavariables, where we do not want to show that the formula is
provable for all instantiations, but rather that there is some instantiation for which it is
provable. For example, in [1] we show how what we call ‘schematic proofs’ can be
used for program synthesis, and, as as worked example, show how, in Isabelle, we can
start with a schematic formula

VaVyVz(z +y = z < a(x,y, 2)), %)

and gradually refine « to be a recursive predicate (a logic program for addition) simply
by applying the ordinary proof rules of the system, such as induction, with unification
gradually filling out .. In effect we have, implicitly, existentially quantified the meta-
variables, and then, in the process of the proof, constructed witnesses for them. Here
we might try to make this implicit quantification explicit by quantifying « existentially
(with 35) in the theory. But we have to be sure that this will work. In fact we need the
following properties:

1. That we can recover valid instantiations of such 3, quantified variables,

2. That we can recover valid proofs in the original logic (i.e. proofs that do not use
any of the second-order features we have added) supporting these instantiations.

We show that L K, has these properties. First, if we represent a formula with schematic
variables o; ..., as a formula where the «; are predicate variables quantified using
Js, then, by corollary 8 above, if we have a proof in a theory such as A R, that the latter
is a theorem, then we can recover witnesses for the «;. In fact, we do better than just
being able to recover a first-order theorem, since there is no reason why there cannot
be ¥, quantifiers inside the scope of the Jy, in which case, after realising the «, the
result is a theorem that is, itself, schematic.

The second property also follows, from the existence of effective witnesses and
conservativity: given a proof of a ground first-order formula A, then, irrespective of

how the proof makes use of second-order facilities, by corollary 7 and the fact that its
proof is constructive, we can recover a proof of this formula in the original theory.
So we can state (4) in AR5 as the formula

Joa(VaVyVz(z +y = 2 & oz, vy, 2))) 3)

and prove it, knowing that we can recover a witness for o« when we are finished.

Obviously it is not possible here to use the schematic lemmata we have discussed
earlier, since we now have occurrences of J5 in the theorem itself, rather than just in
schematic lemmas in the library. But there are other sorts of lemmata that we can state
and prove, and then use here. For instance, in [1] the idea was to refine the « in (4)
as necessary for the derivation. In particular, an application of induction was used to
refine « to a recursive predicate. We can state and prove a lemma equivalent to that
refinement as follows?

Yoy (F28Vy(v(0,y) <> B(y)) —
HzUVxVy(v(S(l‘), y) < I (v(z,y) No(s(x),y,y)) = (6)
Ba(y(z,y) < a(r,y)))

where 7y is a specification, 5 and o are the base and step cases, and « will then be a
recursive predicate equivalent to . Then refining (5) by back chaining through (6) has
a similar effect to applying induction to (4).

4 Related and further work, conclusions

We have proposed here a method for extending a theory with second-order quantifiers.
This extension provides approximately the same facilities as would be available with
predicate reasoning at the meta-level, i.e. simple derived rules and schematic proof
development. It can also be seen as a way of importing some of the often claimed
advantages of higher order logics (and functional programming languages) into a con-
servative extension of a first-order theory. We believe this is useful for many purposes,
and avoids the complexities that meta-level reasoning proper involves. Similar facili-
ties can be supplied with a logical framework style system such as the L F' of Harper,
Honsell and Plotkin [8]. The approaches have different applications, of course; the
approach here is much simpler to implement, for any particular logic, than a complete
type-theoretic framework, and will probably be faster, but then it lacks the universality
that an LI style system boasts.

Other similar work on adding (the effect of) our universal second-order quantifiers
to a theory is that of Boyer and Moore [4], who effectively exploit the theorem
on constants to get theorems schematic over classes of functions in a purely first-
order setting. Also, Goguen [6] discusses parametrised algebraic specifications, and
adding universal quantifiers over functions to equational theories as a way to supply the
equivalent of higher order functions in a first-order setting. Interestingly, Goguen gives

3We gloss over technical details (such as the problem of defining new recursive predicates) in order
to give a feel for the idea.

a semantic proof of the conservativity of his approach, and argues that this is better;
we are sympathetic to the argument for semantic rather than proof theoretic proofs in
general, but we think that the proof-theoretic methods here have the advantage that
they not only prove conservativity, but allow all syntactic traces of the extra machinery
to be removed; also we are able to treat existential quantifiers, which neither Boyer
and Moore nor Goguen discuss.

On the theoretical side, our theory L K5, and the cut elimination theorem we prove
for it, resemble the ramified second-order logic and associated normalisation results
Prawitz discusses [12]; the major differences are the modifications we make to get
realisability and the embedding of other theories inside it. Also, we use sequent
calculus, were he uses natural deduction.

There are many areas of possible further work. For instance, the system as described
here is a slightly ad hoc modification of intuitionistic sequent calculus, and it would
be good to get a more elegant formulation. Also, our realisability result only applies
to classical theories; oddly, it seems much more difficult to get a ‘nice’ realisability
result in a constructive logic, but it would be very useful to have. However, even if we
sacrifice easy realisability by throwing away the excluded middle rule, the fragment
for the universal quantifier certainly still is very useful for the sort of applications that
Boyer and Moore, and Goguen describe.

Acknowledgments

We thank Alan Smaill and Nax Mendler for their careful reading of drafts, which
uncovered various bugs. Paul Taylor’s code for setting proofs was used. The research
of the first author was in part supported by the German Ministry for Research and
Technology under grant ITS 9102.

Responsibility for the contents of this paper lies with the authors.

References

[1] D. Basin, A. Bundy, I. Kraan, and S. Matthews. A framework for program
development based on schematic proof. In Proc. Seventh International Workshop
on Software Specification and Design, 1993. Also available as MPI-93-231.

[2] D. Basin and R. Constable. Metalogical frameworks. In [10].

[3] R. Boyer and J. S. Moore. Metafunctions: Proving them correct and using them
efficiently as new proof procedures. In R. Boyer and J. S. Moore, editors, The
Correctness Problem in Computer Science. Academic Press, 1981.

[4] —— Functional instantiation in first-order logic. In V. Lifschitz, editor, Artificial
Intelligence and Mathematical Theory of Computation. Academic Press, 1991.

[5] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University
Press, 1989.

10

[6] J. Goguen. Higher-order functions considered unnecessary for higher-order pro-
gramming. In D. A. Turner, editor, Research Topics in Functional Programming.
Addison-Wesley, 1990.

[7] M. J. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanized
Logic of Computation, LNCS 78, 1979. Springer.

[8] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal
of the ACM, 40:143-184, 1993.

[9] D.J. Howe. Computational metatheory in Nuprl. In Proc. CADE-9, LNCS 310,
1988. Springer.

[10] G. Huet and G. Plotkin, editors. Logical Environments. Cambridge University
Press, 1993.

[11] S. Matthews, A. Smaill, and D. Basin. Experience with F'S; as a framework
theory. In [10].

[12] D. Prawitz. Natural Deduction; A proof theoretic study, Almqvist and Wiksell,
1965.

[13] G. Takeuti. On a generalized logical calculus. Japanese Journal of Mathematics,
23:39-96, 1953.

[14] R. Weyhrauch. Prolegomena to a theory of mechanised formal reasoning. Artifi-
cial Intelligence, 13:133-170, 1980.

11

