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Abstract. We study the relationship between synchronization and the rate with which information
is exchanged between nodes in a spatio-temporal network which describes the dynamics of classical
particles under a substrate Remoissenet-Peyrard potential. We also show how phase and complete
synchronization can be detected in this network. The difficulty to detect phase synchronization in
such a network appears due to the high non-coherent character of the particle dynamics which unable
a proper definition of the phase dynamics. The difficulty to detect complete synchronization appears
due to the spatio character of the potential which results in an asymptotic state highly dependent on
the initial state.
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1. Introduction

The Sine-Gordon potential and similar others have been used to model the dynamics of
many systems in physics, biology and engineering [1–8]. However in real physical sys-
tems, the shape of the substrate potential can deviate from the standard one with a direct
incidence on the stability properties of the system. In physical situations, such as charge-
density waves, Josephson junctions, or crystals with dislocations, the application of stan-
dard sine-Gordon model becomes too restrictive. In recent years, a number of potentials
whose shapes can be turned at wish have appeared in the literature of nonlinear dynamical
systems [2–8]. These more realistic potentials certainly provide richer insights onto the
physics of reals systems than what is predicted using the conventional, rigid models such
as the sine-Gordon, double-sine-Gordon and φ4 potentials. In particular, we can expect
a more rich and complex synchronization phenomena in models of nonlinear oscillators
involving them.

The purpose of the present paper is to study networks formed by oscillators under re-
alistic shape deformable potentials. To model the network, we use the Remoisnet-Payrar
potential, which has been extensively used in the literature to describe the disturbance of
the sinusoidal shape of the substrate periodic potential of the Sine Gordon equation [1–3].
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We are mainly interested in the complex relationship between synchronization and trans-
mission of information. By synchronization, we mean complete synchronization (CS)
[9–12] and chaotic phase synchronization (PS) [13]. The information point-of-view will
be provided by the procedure described by Baptista et al. in Refs. [14]. As we shall show
synchronization and information are directly related in such an active network. The larger
the synchronization is the larger the rate with which information is exchanged between
nodes in the network, the so called mutual information rate (MIR).

Such relationship can be experimentally explored when one needs to observe how nodes
are attached to each other in a real network. For situations where the nodes of the network
are neither completely synchronous nor phase synchronous, the MIR provides one the level
of connectivity. In addition, the MIR limits the amount of information that can be retrieved
in some point of the network about an arbitrary external stimulus.

Due to the spatio character of the studied network, both approaches, the ones in Refs.
[9–12] and the ones in Refs. [14] might face difficulties to be implemented and this work
resolves many of them. In particular, we study networks which have node trajectories
departing from randomly initial conditions. That creates a situation similar to the one
observed in networks constructed with nodes presenting different parameters, when the
methods in Ref. [10] should be used with precaution.

Note that a quite number of physical objects allowing a model description with the
aid of the Sine Gordon equation are known: arrays of forced damped pendula, vortices
in long Josephson junctions, charge-density waves in quasi-one-dimensional conductors
ect... [1,2]. For real Physical systems, the account of various disturbances and of a more
complex character of atomic interactions breaks the exact integrability of the initial Sine
Gordon equation, leaving the possibility for describing the system dynamics in term of the
same quasi-particles which, however now interact with one another.

The rest of the paper is organized as follows: in Sec. 2. we explore the dynamics of
the network in consideration and analyze the effect of the deformability parameter in the
substrate potential on the stability synchronization of the network. In Sec. 3. we analyze
phase synchronization in such networks, and Sec. 4. is devoted to the study of information
transmission within the nodes of the network. Finally, we present the conclusions in Sec.
5..

2. Synchronization dynamics of the networks

2.1 Description of the networks

We first investigate the dynamical properties of a single particle in a deformable substrate
potential. If we define the variable x as the displacement of the particle in the potential
well, then the equation of motion describing its dynamics reads

ẍ + λẋ + ω2 ∂V (x, r)
∂x

= η0 cosΨt. (1)

In this work we consider the following fixed set of parameters λ = 0.01, ω = 1, η0 = 0.19.
The parameters Ψ and r will be varied.
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Recall that x is the coordinate variable which characterizes the behavior of the particle
in the potential well V (x, r). The new issues of our model under consideration are the fol-
lowing: we apply an AC force η(t) = η0 cosΨt to the particle and assume also the external
viscous damping with a coefficient λ. In this work, V (x, r) is a nonlinear potential with
a deformable shape introduced by Remoissenet-Payrard to study the coherent structure in
a network formed by a similar system. There are many versions of this potential, but we
concentrate our analyses on the most general case defined as [2–8]

V (x, r) = (1− r)2
1− cos x

1 + r2 + 2r cos x
(2)

where the deformability parameter r fulfills the condition |r| < 1.
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Figure 1. Form of the potential as a function of r and the corresponding periodic orbits
for a free particle (η0=0 and λ = 0). The pictures in the left (right) column shows x vs.
V (x, r) (x vs. ẋ).

The advantageous feature of this potential can be summarized in the fact that it repro-
duces the sine Gordon (r = 0) while avoiding most of it shortcomings. A shape of broad
wells separated by narrow barriers can be obtained for r > 0 and for r < 0, a shape of
deep narrow wells separated by broad gently sloping barriers can be obtained.

Figure 1 shows the form of the potential and the corresponding phase plane as a function
of the parameter r, for r > 0. One can observe that the larger the parameter r is, the flatter
the bottom of the potential.

In real physical systems, such potential can be produced by the interaction of an adatom
with substrate atoms, where the parameter r could account for the temperature or pressure
dependence, or for the geometry of the surface of the metallic surface. It can be calculated
from the first principles as described in Refs. [1,2,4] (and reference therein). However it
is more reliable to determine the parameter r from experimental data. Estimates for e.g., a
H/W adsystem (hydrogen atoms absorber on a tungsten surface), yield r ≈ −0.3 [1,2,4]

Typically, if periodic oscillators are subjected to a periodic force, different phase-locking
phenomena as well as chaos may be observed. And chaotic oscillators when subject to a
periodic force give rise to a series of bifurcation phenomena.
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Figure 2. Parameter space plot of the frequency ψ and the deformability parameter
r. Points represent chaotic behavior (positive KS-entropy and continuous Fourier spec-
trum).

Figure 2 shows the parameter space diagram of the oscillator in Eq. (1). Points (blank
space) indicate values of the frequency ψ and the deformability parameter r for which the
oscillator in Eq. (1) is chaotic (periodic).

The (r, ψ) space is characterized by the predominance of periodic solutions. The chaotic
solutions appear only for the value of the deformability parameter approaching the limit
1. However for hight frequency, the chaotic motion appears earlier, that is at r ' 0.4.
For larger r and ψ the parameter space presents a complex pattern whose chaotic regions
appear side-by-side with periodic regions. For the specific narrow band of the frequency
ψ around 0.70 and 0.75 a deep band of chaotic motion can be found for r between 0.1 and
0.4. This confirms the chaotic behavior of deformable models systems as first suggested in
references [4,7,8].

We now consider a network of N dynamical units of oscillators described by equations
(1) and (2). The governing equation for the network is given by:

ṗi = ni

ṅi = −λni − ω2 ∂V (pi, r)
∂pi

+ η0 cos Ψt (3)

+gl(pi+1 − 2pi + pi−1) with i = 1, 2..., N

where V (pi, r) is given by Eq. (2). The constant parameter gl determines the strength
of the coupling and N the number of oscillators coupled. This equation is known as the
Frenkel-Kontorova(FK) model with harmonic interaction and non-sinusoidal substrate po-
tential. It has been extensively studied in the research of static characteristics of kinks
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(topological solitons) such as the effective mass, shape, and amplitude of the Peierls po-
tential, the interaction energy of kinks, and the creation energy of kink-antikink pairs.
The applicability of the extended Frenkel-Kontorova model for describing diffusion char-
acteristics of a quasi-one-dimensional layer adsorbed on a crystal surface has also been
discussed in Ref. [1]. For real Physical systems, the account of various disturbances and
of a more complex character of atomic interactions break the exact integrability of the ini-
tial Sine Gordon equation, leaving the possibility for describing the system dynamics in
terms of the same quasi-particles which interact with each other. This interaction, which
is due to the departure from complete integrability, results in the following effects. The
kolmogorov-Sinai entropy becomes nonzero and the Fourier spectrum of excited states of
the system becomes continuous. Both characteristics of chaos.

2.2 Stability of the synchronization

Our analysis will be limited to networks of identical units. Since the N systems are identi-
cal, it exists an exactly synchronized solution of Eq. (3), and the synchronization manifold
is defined by M={p1 = p2 = .... = pN = ps;n1 = n2 = .... = nN = ns}.

In the study of synchronization, a very relevant problem is to assess the conditions for
the stability of the synchronous behavior for the networks and for the coupling config-
uration. The master stability function approach was originally introduced for arrays of
coupled oscillators [10], and it has been latter extended to the case of complex networks
of dynamical systems [9,12]. To use this, let us consider N coupled dynamical units, each
of them giving rise to the evolution of 2-dimensional vector fields xi ruled by a local set
of ordinary differential equations ẋi = F(xi). The equations of motion using the new
variable can be written as

ẋi = F(xi) + gl

N∑

j=1

GijH(xj), i = 1, 2, ..., N, (4)

where ẋi = F(xi) governs the local dynamics of the ith node. xi = [pi, ni]T , and

F(xi) =
[
ni,−λni − ω2 ∂V (pi,r)

∂pi
+ η0 cos Ψt

]T

with V (pi, r) as in Eq.(2), the output

function H(xi) is a vectorial function defined trough the matrix E=
(

0 0
1 0

)
by H(xi) =

E xi , and G(t) is a symmetric Laplacian matrix (
∑

j Gij = 0) describing the networks
connection and given by

G =




−2 1 0 . . . 1
1 −2 1 . . . 0
0 1 −2 . . . 0
...

...
...

. . . 1
1 0 . . . 1 −2




The stability of the synchronization state can be determined from the variational equa-
tions obtained by considering an infinitesimal perturbation δxi from the synchronous
states, pi = δpi + ps, ni = δni + ns. The equations of motion for the perturbation
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δxi can be straightforwardly obtained by expanding the Eq. (4) in Taylor series of first
order around the synchronized state which gives

δxi = DF(xs)δxi + gl

N∑

j=1

GijDH(xs)δxi, i = 1, 2, ..., N,

=
N∑

j=1

[DF(xs)δij + glGijDH(xs)] · δxi, i = 1, 2, ..., N, (5)

where DF and DH are the Jacobians of the vector field and the output function respec-
tively.

Equation (5) is referred to as the variational equation and is often the starting point for
stability determination. This equation is rather complicated since given arbitrary coupling
G it can be quite high dimensional. However, we can simplify the problem by noticing that
the arbitrary state δxi can be written as δxi =

∑N
i=1 vi

⊗
ξi(t) with ξi(t) = (ξ1,i, ξ2,i)

where γi and vi are the set of real eigenvalues and the associated orthogonal eigenvector
of the matrix G respectively, such that Gvi = γivi and vT

i vi = δij . By applying vT
i (t)

(and vi) to the left (right) side of each term in Eq. (5) one finally obtains a set of N blocks
for the coefficients ξi(t). The first term with the Kronecker delta remains the same. This
results in a variational equation in the eigenmode form

ξ̇k = [DF(xs) + glγkDH(xs)] ξk, k = 0, 1, 2, ..., N − 1, (6)

We recall that γk are the eigenvalues of G, and are given by γk = −4 sin2(πk/N) for
the diffusive coupling [10]. Note that each equation in Eq. (6) corresponds to a set of
2 conditional Lyapunov exponents λj

k (j=1,2) along the eigenmode corresponding to the
specific eigenvalue γk. For k = 0, we have the variational equation for the synchroniza-
tion manifold (γ0 = 0) and its maximum conditional Lyapunov exponent λ1

0 corresponds
to the one of the isolated dynamical unit. The remaining variations ξk, k=1,2,...,N-1 are
transverse to M, and describe the system’s response to small deviations from the synchro-
nization manifold. Any deviation from the synchronization manifold will be reflected in
the growth of one or more of these variations. The stability of the synchronized state is
ensured if arbitrary small transverse variations decay to zero. So, CS exists if λ1

k < 0, for
k ≥ 1.

We also calculate the condition for the synchronization in the network by using the
Lyapunov spectra, calculated directly from Eq. (5). Complete synchronization in the gen-
eralized sense as defined in Refs. [9,12] exists if the second largest Lyapunov exponent is
negative.

Due to the periodic potential in Eq. (2), the active network in Eq. (4) is highly sensi-
tive to initial conditions. As a consequence, networks whose elements have random initial
conditions that differ only slightly completely synchronize for a coupling strength smaller
than the coupling strength needed to completely synchronize networks that have elements
whose initial conditions differ moderately. Often, the network never complete synchro-
nizes, and one can only have that |xk − xl| < ϑ, and so, the trajectory is never perfectly
along the synchronization manifold. Even thought ϑ might be small, it is sufficiently large
in order to mislead the statement that complete synchronization appears by only checking
the conditional exponents. This discrepancy is due to the fact that, in this system, when
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the initial conditions are not too close, the systems goes to different attractors and the
approximation made to obtain the conditional lyapunov exponents [Eq. (6)] is no longer
completely valid, thought it provides still approximate results. The effect of having nodes
with different initial conditions in the studied network is similar to having networks with
different parameters.

In Fig. 3, we show the parameter spaces (coupling gl vs. deformability parameter r)
of the complete synchronization regime. Points show the values of gl and r for which all
the transversal (k ≥ 1) conditional exponents are negative [Figs. 3(A),(C)] or when the
second largest Lyapunov exponent becomes negative [Figs. 3(B),(D)].

When the initial conditions differ by no more than 0.01 [Figs. 3(A-B)] the two condi-
tions to predict complete synchronization provide the same surface in the parameter space.
However, when these initial conditions differ by no more than 0.5 [Figs. 3(C-D)], the
conditional exponents predict the appearance of complete synchronization for a coupling
strength smaller than the strength for which it really appears, as predicted by the value of
the second largest Lyapunov exponents [Figs. 3(D)].

One can also observe from these figures that as the deformability parameter increases,
the system becomes more and more unstable. When r > 9.5, it is almost not possible to
find complete synchronization in the network for low values of coupling strength gl. So,
when the potential V (Pi, r) has a flat bottom, the particles are almost non-synchronizable
in the network.
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Figure 3. Appearance of complete synchronization in a network of N=5 diffusively
coupled oscillators. Points represent gl and r values for which the conditional exponent
λ1

1 is negative (A,C) and for which the second largest Lyapunov exponent is negative
(B,D). In (A,B), the initial conditions differ by at most 0.01 and in (C,D) the initial
conditions differ by at most 0.5.
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3. Phase synchronization

Phase synchronization [13,15,16] is a phenomenon defined by

|φk −mφl| ≤ ε, (7)

where φk and φl are the phases of the nodes xk and xl in the network [Eqs.(3)] and m =
ωl/ωk, where ωk and ωl are the average frequencies of oscillation of these nodes, and ε is
a finite number. In this work, we have used in Eq. (7) m = 1, which means that we search
for ωk : ωl=1:1 (rational) phase synchronization. If another type of ωk : ωl-PS is present,
the methods in Refs. [15] can detect.

The phase φ is a function constructed on a good 2D subspace, whose trajectory pro-
jection has proper rotation, i.e, it rotates around a well defined center of rotation. Often,
a good 2D subspace is formed by the velocity space. In the oscillator considered in this
work, one can use the results of [16], and define the phase of the oscillator xi in Eqs. (3)
as

φ(t) =
∫ t

0

n̈iṗi − p̈iṅi

(ṗ2
i + ṅ2

i )
dt. (8)

However, the oscillators in Eqs. (3) for the considered parameters have not a well defined
phase, and even in a state where complete synchronization is achieved, one cannot use Eq.
(8) to verify whether PS exists.

In short, if PS exists in a subspace then by observing one node’s trajectory at the time
another makes any physical event, there exists at least one special curve, Γ, in this sub-
space, for which the points obtained from these conditional observations do not visit its
neighborhood. A curve Γ is defined in the following way. Given a point x0 in the attractor
projected onto the subspace of one oscillator where the phase is defined, Γ is the union
of all points for which the phase, calculated from this initial point x0 reaches n〈r〉, with
n = 1, 2, 3, . . . ,∞ and 〈r〉 a constant, usually 2π. Clearly an infinite number of curves Γ
can be defined.

Formally, for non-coherent dynamical systems for which phase is still not well defined,
PS implies localization of the conditional sets [16], but the contrary is not always true.
Therefore, finding localized sets should be considered a strong evidence that PS exists.

As an example, consider Eqs. (3) with two coupled oscillators, r=0.9, and φ = 0.08.
For a small coupling gl=0.01, in Fig. 4(A), we show a situation that PS is not present for
gl=0.01 and in Fig. 4(B), an evidence that PS exists, for gl=0.05. The curve Γ, a continuous
curve transversal to the trajectory, is pictorially represented by the straight line Γ. In (A),
the conditional observations are not localized and thus there is no PS in this subspace. The
light gray line (green online) represents the attractor projection on the subspace (pi, ni) of
the oscillator x1, and filled gray circles (red online) represent the points obtained from the
conditional observations of the oscillator x1 whenever the oscillator x2 makes an event.
An event is considered to be the crossing of the trajectory to the line n2 = 0, for p2 > 0.

To have a general picture of when PS might appear in the two coupled oscillators, we
show in Fig. 5(A) the quantity κ with respect to gl, defined as

κ =
max (pi

1)−min (pi
1)

max (p1(t))−min (p1(t))
(9)
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Figure 4. The appearance of phase synchronization in two bidirectionally coupled
oscillators. (A) There is no phase synchronization and the conditional observations are
not localized with respect to the curve Γ pictorially represented in the figure. (B) There
is evidence of phase synchronization and the conditional observations are localized.
Simulations are done considering initial conditions no more than 0.01 apart.

where pi
1 represents the value of p1 at the instant the trajectory of oscillator x2 makes an

event. Therefore, κ is related to how broad the conditional observations visit the attractor.
In Fig. 5(B) we show a few values of pi

1 with respect to gl. For gl ≥ 0.06, CS takes place.

4. Information Transmission in the Network

In order to study the way information is transmitted in active networks, we introduce quan-
tities and terminologies that assist us to better present our ideas and approaches.

The mutual information rate (MIR) is the rate with which information is being ex-
changed between two oscillation modes or elements in the active network.

The channel capacity, CC , is defined as the maximal possible amount of information that
two oscillation modes or nodes within the network with a given topology can exchange,
a local measure that quantifies the point-to-point rate with which information is being
transmitted.

The Kolmogorov-Sinai entropy offers an appropriate way of obtaining the entropy pro-
duction of a dynamical system. In chaotic systems, the entropy equals the summation of
all the positive Lyapunov exponents ( [17]). Here, it provides a global measure of how
much information can be simultaneously transmitted among all pairs of oscillation modes
or nodes. Therefore, the KS-entropy, HKS , of an active network, calculated for a given
coupling strength, bounds the MIR between two oscillation modes, I , calculated for the
same coupling strength. Thus,

I ≤ HKS (10)
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Figure 5. The appearance of phase synchronization in two bidirectionally coupled
oscillators. (A) Occupation of the conditional observations with respect to the attractor,
κ, and in (B) the position variable pi

1 when the oscillator x2 makes the ith crossing with
the section n2=0, for p2 > 0.

An active network is said to be self-excitable (non-self-excitable) when CC > H
(0)
KS

(when CC ≤ H
(0)
KS), with H

(0)
KS representing the KS entropy of one of the N elements

forming the active network, before they are coupled.
According to [14], the upper bound for the MIR between two oscillation modes in an

non-self-excitable active network, denoted as I , can be calculated by

Ik ≤ λ1
0 − λ1

k (11)

where λ1
0 and λ1

k (k = 1, . . . , N − 1) are the positive largest conditional exponent [10],
numerically obtained from Eq. (6), with the oscillators possessing equal initial conditions.
λ0 measures the exponential divergence of trajectories along the synchronization manifold
and λk along the transversal modes. The units used for the MIR is [bits/unit time], which
can be obtained by dividing Eq. (11) by loge(2).

The networks as in Eq. (4) are predominantly of the non-self-excitable type. Only for a
very small coupling strength, and a larger number of nodes, the network has a negligible
increase of the KS-entropy, which we will disregard.

As can be seen from the HKS curve in Fig. 6, the two coupled oscillators are of the
non-self-excitable type, since H

(0)
KS = HKS(gl = 0)/2 which is approximately equal to

CC . In this figure, we also show the MIR exchanged between the two coupled oscillators.
As typically happens for non-excitable networks, the channel capacity is reached when
the network complete synchronizes. Since the network is composed of two bidirection-
ally coupled systems, the MIR between the only two existing modes is actually the MIR
between the two oscillators.

Comparing Figs. 5(A) and 6, one can see that there is a direct relationship between
synchronization and information. The larger the amount of synchronization the larger the
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MIR, again another typical character of non-excitable networks.
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Figure 6. [Color online] (green) Circles show the KS-entropy HKS and (blue) squares
the MIR, I1, for two bidirectional coupled oscillators. (red) Diamonds show I1 for a
network of N=5 diffusively coupled oscillators.

For larger networks with arbitrary topologies, the MIR between oscillation modes is just
a rescaled version of the MIR between two coupled oscillators. Given that g

(2)
l is the cou-

pling strength for which complete synchronization takes place in two coupled oscillators,
and therefore this coupled system operates with its channel capacity, the coupling strength
for which complete synchronization takes place in a whole network composed of N nodes
with a certain topology is given by g

(N)
l

g
(N)
l = 2

g
(2)
l

γ1
1(N)

(12)

At the parameter g
(N)
l , every pair of oscillators operate with the channel capacity. Equation

(12) means that having the curve for the MIR for two coupled oscillators, the curve of the
MIR for larger networks is rescaled by the second largest conditional Lyapunov exponent
of the Laplacian matrix γ1

1(N).
As an illustration of Eq. (12), we show in Fig. 6, the MIR for a network composed

of 5 oscillators coupled diffusively. In this figure, we show the quantity 〈I〉 defined as
〈I〉 = 1/(N − 1)

∑N−1
1 Ik. Note that even though 〈I〉 might change its values according

to the network topology and N , its maximal value is bounded by the channel capacity,
which do not depends on the N and the topology, another typical characteristic of non-
self-excitable networks.
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5. Conclusion

We study the relationship between synchronization and the rate with which information is
exchanged between nodes in a spatio-temporal network which describes the dynamics of
classical particles under a substrate Remoissenet-Peyrard potential. In particular, we study
networks formed by Frenkel-Kontorova(FK) oscillators suffering the action of harmonic
interaction and non-sinusoidal substrate potential.

We show that such networks are predominantly of the non-self-excitable type, i.e. as the
coupling strength among the nodes increases the KS-entropy decreases. Other additional
characteristics of non-self-excitable networks are: the mutual information rate (MIR) and
the synchronization level increase simultaneously as the KS-entropy decreases; the channel
capacity, the maximal of the MIR, is achieved for the same coupling strength for which
complete synchronization appears.

We have overcome two difficulties concerning the detection of phase and complete syn-
chronization in this complex spatio-temporal network. Even though the phase dynamics
of each oscillator is not well defined, we have implement a technique which allows to ev-
idence the presence of phase synchronization, by detecting the presence of localized sets
obtained by the conditional observations. The more localized the sets are (which implies
larger amount of phase synchrony) the larger the MIR. Concerning complete synchroniza-
tion, we show that the master stability equation which provides the stability of the normal
transversal modes (providing conditions to state complete synchronization) should be used
with caution in such a network. The reason is that the final state is highly dependent on the
initial conditions, a consequence of the spatio character provided by the potential. For that
reason, in case the nodes have sufficiently different initial conditions, one should only state
complete synchronization using the master stability equation in an approximate sense. A
more rigorous condition to state complete synchronization is provided by the verification
that the second largest Lyapunov exponent is negative.

Finally, we have shown how one can calculate the MIR between oscillation modes in
larger networks with different topologies using as the only input information the curve of
the MIR with respect to the coupling strength for two bidirectionally coupled oscillators.
Having the curve for the MIR for two coupled oscillators, the curve of the MIR for larger
networks is rescaled by the second largest conditional Lyapunov exponent of the Laplacian
matrix of the larger network, the matrix that describes the way the nodes are connected
in the network. That enables one to construct larger networks based on the dynamical
characteristics of only two coupled oscillators.
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