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Abstract

To obtain a well defined path integral one often employs discretizations. In the case of
gravity and reparametrization invariant systems, the latter of which we consider here as a toy
example, discretizations generically break diffeomorphism and reparametrization symmetry,
respectively. This has severe implications, as these symmetries determine the dynamics of
the corresponding system.

Indeed we will show that a discretized path integral with reparametrization invariance
is necessarily also discretization independent and therefore uniquely determined by the cor-
responding continuum quantum mechanical propagator. We use this insight to develop an
iterative method for constructing such a discretized path integral, akin to a Wilsonian RG
flow. This allows us to address the problem of discretization ambiguities and of an anomaly–
free path integral measure for such systems. The latter is needed to obtain a path integral,
that can act as a projector onto the physical states, satisfying the quantum constraints. We
will comment on implications for discrete quantum gravity models, such as spin foams.

1 Introduction

Discretizations have become a popular tool in classical and quantum physics, on the one hand to
allow for a numerical treatment, on the other hand to regularize for instance the path integral.
Also a quite popular expectation is that fundamental physics is based on discrete structures
rather than continuum space time, a conjecture followed in a number of quantum gravity ap-
proaches, for instance [1, 2].

However, in discretizing a continuum theory one has to face several issues. One issue, which
is particularly relevant for discrete quantum gravity approaches, is that the symmetries of the
continuum theory might be broken by the discretization. Another issue is that discretizations
are typically never unique, many different discrete models might lead to the same continuum
physics.1 This is not a problem if discretization is just viewed as a tool for obtaining continuum
physics, but has to be addressed if the discrete theory is claimed to be ‘fundamental’.

These problems appear in one form or other in many approaches to quantum gravity, where
discretizations break diffeomorphism symmetry [3]. This symmetry is deeply entangled with the
dynamics of the theory and hence its breaking has particularly severe repercussions [4].

1Although one of the main problems in many discrete quantum gravity approaches is actually to extract large
scale physics.
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In the canonical framework diffeomorphism symmetry leads to the Hamiltonian and diffeo-
morphism constraints, satisfying the so–called Dirac algebra, a canonical version of the group
property of diffeomorphisms. These constraints are central to the (quantum and classical) dy-
namics. A discretization, violating diffeomorphism symmetry leads however to a violation of the
Dirac algebra and inconsistencies in the dynamics [5, 6]. Some of these issues can be addressed
in the consistent and uniform discretization [7] and master constraint [8] approach, however
there the symmetries can only be regained in the continuum limit (if at all) [9]. There is an
anomaly–free quantization of the Hamiltonian constraints [10] in Loop Quantum Gravity, how-
ever it features many ambiguities whose significance is not fully understood yet [11] and the
status of the corresponding Dirac algebra is not fully satisfactory [10, 12]. Although one might
suspect that in a covariant approach the situation regarding diffeomorphism symmetry is much
better than in the canonical ones, this is not the case – indeed the problems are closely con-
nected [3, 4, 13, 14]. So far, we are lacking a path integral in which diffeomorphism symmetry
is realized on the discrete level. Related to this issue is the lack of ‘discretization independent’
(four–dimensional gravity) models, as there are arguments [15] that discretization independence
should be the equivalent to the diffeomorphism invariance of the continuum. Indeed, we will
present in section 2 an argument involving the dynamics of the theory, showing this equivalence
for the toy model of a one–dimensional reparametrization invariant system.

A proper (non–compact) gauge symmetry in a path integral leads to divergencies, as one
integrates an invariant amplitude over gauge orbits. If the symmetries are broken, these diver-
gencies do not necessarily appear on the discrete level, but should reappear in the continuum
limit. However, these divergencies have to be distinguished from proper UV divergencies which
might also appear in a continuum limit. Additionally in a perturbative approach to path inte-
grals broken symmetries might lead to inconsistencies [14].

In addition to the amplitudes for the path integral one has to define an integration measure.
Usually one would like this integration measure to be anomaly–free, i.e. to respect the gauge
symmetries of the action. Although there is no discrete amplitude respecting diffeomorphism
invariance yet, there is some work [16, 17, 18] deriving invariance conditions for the measure in
spin foam models and in this way fixing some of the ambiguities. These however do not involve
the full dynamics so far. Again we will show in the context of the one–dimensional toy model
that a symmetry preserving measure can be found. For this one has however to involve the full
dynamics of the theory.

There is a wide range of ideas to tackle these issues, which we cannot all discuss here. We
will rather illustrate one approach, which is to obtain so–called perfect discretizations via a
Wilsonian renormalization procedure [19, 20, 21, 22], within the toy model of a one–dimensional
reparametrization invariant system. The basic idea is to ‘pull back’ continuum physics onto the
lattice. Alternatively one can start with a discretization, subject it to a renormalization group
transformation, which maps the physics of a fine discretization to a coarse grained one. Iterating
this procedure one should be able to find a fixed point which gives the continuum physics exactly
mirrored onto the discretization.

Although the model we will consider in this work is extremely simple compared to gravity,
it displays many features that we believe will also be relevant for gravity. We will show that
even for this simple system, a perfect discretization cannot be simply guessed, but has to be
determined by solving the dynamics of the system. In particular we will show that a full
implementation of reparametrization invariance – the equivalent to diffeomorphism invariance
in general relativity – into the discrete path integral implies ‘discretization invariance’, i.e. the
result of the path integral is independent of the number of subdivisions, including the possibility
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to have none at all. We expect that a similar feature will hold for gravity. This ‘discretization
invariance’ actually means that the basic discrete amplitude (and measure) provides already the
full quantum propagator of the system, also on large scale. Hence any free parameter in such
a discretization will influence macroscopic physics. In this sense, requiring reparametrization
invariance for the discretization, will resolve all discretization ambiguities. We can expect that
likewise many ambiguities for discrete quantum gravity are fixed by requiring diffeomorphism
invariance. The crucial question is, whether we are left with finitely or infinitely many (relevant)
parameters [23].

As will be explained in section 2 for the one–dimensional reparametrization invariant systems,
a perfect discretization of the path integral is provided by the (continuum) quantum propagator,
i.e. the evaluation of the continuum path integral. This is however not very helpful in the many
situations where such a continuum quantum propagator or path integral is not available. In this
case one typically rather has to start with the discrete system and develop some approximation
methods. We therefore develop an iterative method to evaluate the path integral, basically
following a Wilsonian renormalization approach. This approach will automatically address the
issue of discretization ambiguities, as we do not consider a specific discretization but a parameter
space describing a certain class of discretizations, in which one determines the flow induced by
a renormalization group transformation.

A technical difficulty which we address here, is to deal with the broken gauge symmetries
in the path integral. This can be done by expanding around a special solution, for which the
symmetries are exact. (Typically the zero solution qn ≡ 0 for one–dimensional systems. For
many discretizations of gravity flat space is such a solution.) The action (and measure) can
then be improved order by order such that the gauge symmetries are exact to the order where
one has to evaluate the path integral. Hence one can either gauge fix or cleanly separate the
(infinite) factor arising from the integration over the gauge orbits.

To start with we will explain the basic ideas of the approach in the next section 2. In
particular we will show that for one–dimensional systems reparametrization invariance and dis-
cretization independence for the discrete path integral are equivalent. In the following section 3
we will consider the parametrized, discretized harmonic oscillator, and demonstrate the concepts
from section 2. Since in this case the time variable is discrete as well, this is not a linear system
anymore, and we consider different linearizations in order to compute the reparametrization-
invariant propagator. In section 4 we will treat the (quartic) anharmonic oscillator with the
same methods, computing the perfect propagator to first order in the interaction parameter
λ. Finally, we will summarize and discuss our findings in section 5, considering in particular
the implications for discrete gravity and spin foam models. The appendices A, B, C contain
more technical details on the uniqueness of the solutions to the recursion relations describing
the renormalization flow, and techniques to solve such recursion relations.

2 Reparametrization invariance in the discrete and discretiza-

tion independence

Consider a one-dimensional mechanical system defined by a Lagrangian L(q, q̇). The variation of
the corresponding action S =

∫

L(q, q̇) with respect to q(t) will determine the solutions. Such a
system can be made reparametrization invariant by adding the time parameter t as a dynamical
variable to the configuration variable q. Time evolution is then with respect to an auxilary
parameter s. One can define a new action (here ′ denotes the derivative with respect to the

3



auxiliary parameter s)

S
(

q(s), t(s)
)

=

∫

ds L

(

q,
q′

t′

)

t′ (2.1)

which is invariant under reparametrizations q(s), t(s) → q(f(s)), t(f(s)) of the trajectories. This
new action has to be varied with respect to q(s) and t(s). The equation of motion for t(s) will
however be automatically satisfied, if the equation of motion for q(s) is. Hence our system is
underdetermined as we have two variables but only one independent equation of motion. Indeed,
the solutions qs(s), ts(s) are not uniquely determined by the boundary conditions, as given one
such solution one can find a family of (physically equivalent) solutions qs(f(s)), ts(f(s)) by
reparametrizing the auxiliary evolution parameter s → f(s). Performing a (singular) Legendre
transformation one will find instead of a proper Hamiltonian a Hamiltonian constraint C = pt+H
(where H is the Hamiltonian of the original system), which at the same time is the generator of
the gauge transformations, i.e. it generates evolution in the auxiliary parameter s. This is very
similar to general relativity (where the role of the auxiliary parameter is taken over by space
time coordinates).

This reparametrization symmetry is typically broken if we discretize the system. To this
end we replace q(s), t(s) with s in some finite interval, by some finite set of variables qn, tn with
n = 0, . . . , N . One method of discretization is to replace derivatives by difference quotients and
to choose some discretization for the potential term V , for instance

S(qn, tn) :=

N−1
∑

n=0

Sn :=

N−1
∑

n=0

[

1

2

(

qn+1 − qn
tn+1 − tn

)2

+
1

2
(V (qn) + V (qn+1))

]

(tn+1 − tn) (2.2)

(Here and in the following we will consider Wick rotated actions in order to make the path
integrals convergent. This just changes the minus in front of the potential V to a plus sign.)
The factor (tn+1 − tn) arises from the integration measure

∫

ds t′ in (2.1).
This action (2.2) does in general (an exception being the free particle V ≡ 0) not feature

anymore any gauge symmetries. As a result, the equations of motion arising by varying with
respect to qn, tn, n = 1, . . . , N−1 in fact uniquely fix both qn and tn. Hence both q and t become
propagating (or physical) degrees of freedom in the discrete theory. Only in the continuum limit
does reparametrization invariance arise, so that t becomes a gauge variable again. The broken
symmetries lead to so-called pseudo constraints in the canonical formalism [3, 7, 14] instead of
proper constraints. These are equations of motion, i.e. equations between the canonical data of
two consecutive time steps n and n + 1, which do however only weakly depend on the data at
n+ 1. (Proper constraints are equations of motion which do involve only data of one time step
n.)

This feature arises also for discretizations of gravity, such as Regge Calculus [3]. In this case,
the discretization (i.e. the triangulation of space-time) breaks reparametrization-invariance (i.e.
four-dimensional diffeomorphism invariance) as well. Furthermore, in gravity theories singling
out an equivalent for t, i.e. identifying the (pseudo) gauge degrees of freedom and separating
them from the truly physical ones, becomes hideously complicated.

The breaking of gauge symmetries is a result of the choice of discretization, however. In par-
ticular, there are discrete actions in 1D which exhibit a discrete remnant of the reparametrization
invariance, which lead to the correct amount of physical degrees of freedom. Such perfect ac-

tions can be constructed by a refinement process. Starting from a discrete action S(qn, tn), one
improves it by refining the discretization, solving the equations of motion for the refined degrees
of freedom, and evaluating the refined action on that solution. By iterating this process, or by
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directly considering the limit of sending the refined discretization to the continuum, one will
find the perfect action, which can be shown [3] to be given by Hamilton’s principal function for
the system, i.e.

Sperf(qn, tn) =
∑

n

SHPF (qn, tn, qn+1, tn+1) (2.3)

where SHPF (qi, ti, qf , tf ) is Hamilton’s principal function (for the continuum system), i.e. the
action evaluated on the solution q(s), t(s) with boundary conditions (qi, ti, qf , tf ). The perfect
action does display a gauge symmetry for every (inner) discretization point n, which we will call
vertex translation symmetry, as it is of the form (for finite gauge parameter λ)

tn→tn + λ

qn→f(qn−1, tn−1, qn, tn, qn+1, tn+1) , (2.4)

i.e. it translates the discretization point in time. Hence all the tn can be seen as gauge param-
eters. Furthermore the action is ‘discretization independent’, i.e. Hamilton’s principal function
SHPF (q0, t0, qN , tN ) (being the classical equivalent to the partition function or path integral,
which encodes all the dynamical information) computed from Sperf(qn, tn) does not depend on
the number of discretization points used, and coincides with the one computed from the contin-
uum action SHPF (q0, t0, qN , tN ) = Sperf(q0, t0, qN , tN ). In particular we can choose N = 1. Note
that to construct this action one needs to basically solve the dynamics of the system. This can
be seen as a huge disadvantage of the method. However Hamilton’s principal function provides
actually the only discretization featuring vertex translation symmetry [24]. Hence addressing
the dynamics of the system cannot be avoided if one wants to implement the symmetries of the
system (or even just ensure that these symmetries appear in the continuum limit).

Instead of solving the dynamics at once, one can consider various approximations and follow
an iterative approach of constructing better and better actions. We will follow this idea here
and see that it is closely related to a Wilsonian renormalization group approach. The perfect
actions then arise as fixed points of iterative (renormalization group) transformations. Note
that this also resolves (at least in one dimension) all the discretization ambiguities, as Sperf is
the unique action, displaying (the discrete remnant) of discretization invariance.

It has been shown that this procedure also works for 3D Regge Calculus with nonzero
cosmological constant [25]. For first steps to dealing with 4D gravity in a perturbative set–up,
see [22].

This addresses the classical theory. An open issue is, whether a similar approach will work
for the quantum theory, here in a path integral approach. To evaluate path integrals analytically
we have to follow a perturbative approach. For broken symmetries such a perturbative ansatz
may turn out to be inconsistent however [14]. The problem are exceptional solutions (such as
qn ≡ 0), which are typically the only ones displaying symmetry under vertex translations (i.e.
the tn can be chosen arbitrarily, the qn remain zero). Perturbing around such solutions one will
not find a quadratic term for the time variables, however these time variables will appear in the
higher order potential terms. This hinders the perturbative evaluation of the path integral. A
way out, suggested in [14, 22] and also followed up here, is to improve the action perturbatively,
so that gauge invariance can be obtained order by order. This allows an evaluation of the path
integral to the corresponding order, either by gauge fixing or by changing to gauge invariant
variables.

In addition to the action, a path integral requires an integration measure. In the presence
of gauge symmetries one would require this measure to be invariant under these symmetries,
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otherwise one will obtain anomalies. Indeed only if the measure is invariant, can the path
integral serve as a projector onto the states satisfying the constraints (arising in a canonical
quantization) [13]. We will argue here that, similarly to having to solve the classical dynamics
to obtain the perfect action, one needs to solve the quantum dynamics to obtain the ‘perfect
measure’2 and with this a perfect discretization of the path integral:

Consider a discrete path integral with two time steps

〈q0, t0|q2, t2〉 := Z(q0, t0, q2, t2) :=

∫

dq1dt1 K(q0, t0, q1, t1)K(q1, t1, q2, t2) (2.5)

where we summarised amplitude and measure for one discretization step into the discrete prop-
agator K(qn, tn; qn+1, tn+1). (We term this the propagator as the perfect discretization is given
by the quantum propagator of the system.) Now assume that vertex translation invariance (2.4)
has been fully implemented into (2.5). As the gauge symmetry just translates the time variable

t1 we can gauge fix to an arbitrary value t1 = tf1 and drop the t1 integration. (The Fadeev-Popov
determinant is trivial in this case.) We obtain

Z(q0, t0, q2, t2) :=

∫

dq1 K(q0, t0, q1, t
f
1)K(q1, t

f
1 , q2, t2) . (2.6)

As tf1 is arbitrary we can consider the limit tf1 → t2. Now the interpretation of K(q1, t
f
1 , q2, t2) is

to give the amplitude for a particle to propagate from q1 to q2 during the time interval (t2− tf1).

In the limit tf1 → t2 we should therefore have K(q1, t
f
1 , q2, t2) → δ(q1− q2). Hence we will obtain

that the right hand side of (2.6) is equal to the discrete propagator K(q0, t0, q2, t2) and since tf1
can be chosen arbitrarily we have shown that

K(q0, t0, q2, t2) =

∫

dq1 K(q0, t0, q1, t1)K(q1, t1, q2, t2) . (2.7)

Starting from the assumption, that vertex translation invariance has been realized for the path
integral (2.5), we have shown that the discrete propagator K needs to satisfy (2.7), which is the
usual convolution property for the propagator kernel in quantum mechanics.

This actually proves that a path integral with vertex translation invariance is also discretiza-
tion invariant, i.e. it does not depend on the number of subdivisions. Having no subdivisions at
all – which gives just the discrete propagator K – should coincide with having infinitely many –
which gives the propagator in the continuum. Hence the discrete propagator K(qn, tn, qn+1, tn+1)
is given by the usual quantum mechanical propagator for the continuum system.

On the other hand, if we have a discrete propagator satisfying (2.7) (where we do not integrate
over t), then the corresponding path integral is invariant under vertex translations, as one can
integrate out and reinsert every discretization point (qn, tn). This shows that for one–dimensional
reparametrization invariant systems, finding a discretization which respects this invariance and
discretization independence3 are equivalent. We conjecture that this will also hold for discrete
gravity, i.e. discretized path integrals respecting diffeomorphism invariance (which in its discrete
form is also expected to be vertex translation invariance, see the discussion in [22]) should be
also discretization independent. Again, this also means that in order to construct such path
integrals one has to consider the dynamics of the discrete (quantum) models.

2The split of the path integral into amplitude and measure is ambiguous and we will not insist on one particular
splitting here.

3Where here we understand under discretization independence the property (2.7). There we do not integrate
over the time variable, that is we consider already a gauge fixed version of the path integral. Otherwise the
integral would be divergent, if vertex translation invariance is realized.
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To summarize the discussion, a perfect discretization of the quantum mechanical path inte-
gral would be given by the (continuum) propagator. This would however not be very helpful
for systems in which this propagator is not known, such as quantum gravity. Therefore in this
article, we want to adopt the procedure of successively improving the action of a classical dis-
crete system to the quantized case, as this approach might also be helpful for more complicated
cases. This will also introduce a method to actually solve the path integral for the corresponding
continuum system iteratively.

To improve the discrete propagator iteratively we start from the propagator property (2.7)
with a ’naively discretized’ propagator K(0). This can be taken as

K(0)(qn, tn, qn+1, tn+1) = η(0)n exp(−
1

~
S(0)
n ) (2.8)

where S(0) is the naive discretized action (2.2). We will see that the classical part of the iteration
equations (which is the part without ~ dependence) leads to the perfect discretization for the

action. The initial measure factor η
(0)
n should be chosen such that K(0) → δ(qn − qn−1) for

(tn−1 − tn) → 0.
Refining the discretization and integrating out the intermediate degrees of freedom will

result in the improved propagator K(1), and iterating the procedure will lead to the perfect
propagator satisfying (2.7). From the construction it should be clear that one subdivision step
will be sufficient, i.e. we define

K(n+1)(q0, t0, q2, t2) :=

∫

dq1dt1 K
(n)(q0, t0, q1, t1)K

(n)(q1, t1, q2, t2) . (2.9)

Here we included the integration over t1. In section 3 we will perturb around the solution
qn ≡ 0 which is reparametrization invariant also in the naive discretization and introduce a
method such that the t1 integration can be dropped.

q0, t0

q0, t0 q1, t1

q2, t2

q2, t2

K(n)(q0, t0, q1, t1) K(n)(q1, t1, q2, t2)

K(n+1)(q0, t0, q2, t2)

Integrate out q1, t1. K(n) → K(n+1)

Figure 1: The refinement process of the propagator K(n) involves subdividing the discretization
intervals and integrating over the new variables, obtaining a new propagator K(n+1). This
process can be iterated, leading in the limit to the perfect propagator, which is in particular
invariant under refinement of the discretization.

In order to find the perfect propagator, we will parameterize (some part of) the space of
functions, allowing for arbitrary couplings in the action and measure factors. Equation (2.9)
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will then lead to recursion relations for the coefficients, which are closely related to the renor-
malization group flow of the system. We will find that, not only does the classical perfect action
provide a fixed point of the equations derived from (2.9), but also the measure factor η will be
determined, providing the quantum corrections to the classical perfect action.

3 The harmonic oscillator linearized around q̄n = 0

In the following, we will deal with the (Wick-rotated) parameterized harmonic oscillator, the
action for which is given by

S
(

q(s), t(s)
)

=
1

2

∫

ds

(

q′(s)2

t′(s)
+ ω2q(s)2t′(s)

)

. (3.1)

By naively discretizing the action one replaces continuum functions q(s), t(s) by discretely
many values qn = q(sn), tn = t(sn), and derivatives by difference quotients. For the discretization
of the integral measure we use ds = sn+1 − sn. Hence we arrive at

S(0)(qn, tn) =

N−1
∑

n=0

[

1

2

(

qn+1 − qn
tn+1 − tn

)2

+
ω2

2

(

q2n + q2n+1

2

)

]

(tn+1 − tn) . (3.2)

As we have already indicated, because of the naive discretization, the action (3.2) does not con-
tain gauge symmetries, see for instance [3]. That is given (general) boundary data (q0, t0; qN , tN )
both the qn and the tn for n = 1, . . . N − 1 are determined by the equations of motion.

The action (3.2) is not quadratic and not even polynomial in the tn-variables, and therefore
not considered to be a non–interacting system. The path integral is therefore non-trivial, and
we consider approximations to it which will render it feasible. The approximation we are going
to perform here involves quantizing only the perturbations around a background solution, i.e.
we consider the perturbed variables

qn = q̄n + xn (3.3)

tn = t̄n + τn (3.4)

where q̄n, t̄n are to satisfy the equations of motion coming from the discrete action. The path
integral for this linearized theory, containing the variables xn, τn, can be viewed as a linear
approximation to the path integral for the whole theory. Of all the solutions to the equations
of motion derived from (3.2), the constant solution, i.e. q̄n ≡ 0, t̄n arbitrary, is special in the
regards that this solution still exhibits some gauge symmetry (i.e. change in the t̄n), which is
a remnant of the reparametrization invariance of the continuum theory. In this regards, it is
analogous to the flat solution ǫt = 0 in 4D Regge calculus [3, 26], which still exhibits the vertex
displacement symmetry. We will consider linearization around this solution first, before turning
to linearization around a general solution later.

Expanding the action for one time-step (neglecting all orders of xn, τn higher than two), we
arrive at

S(0)(x0, τ0, x1, τ1) =
1

2

(x1 − x0)
2

T01
+

ω2

4
(x21 + x20)T01 (3.5)

=: α
(0)
1 (T01)(x

2
0 + x21) + α

(0)
2 (T01)x0x1
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with T01 := t̄1− t̄0. Note that here the t̄n (hence the Tnm) now play the role of parameters, since
they are just the background solution. The actual perturbed time variables τn have disappeared
from (3.5), mirroring the invariance of the background solution q̄n = 0 under translations of the
t̄n.

In the second line of (3.5) we introduced a general parametrization of an action, quadratic in
the variables x0, x1 and symmetric under exchanging x0, x1. This allows also to consider different
discretizations in one go. We will define a renormalization procedure (corresponding to the so-
called decimation procedure, where one just integrates out some variables) on the space of such
actions and look for fixed points of the renormalization flow acting on the parameter functions
αk. Hence we can expect that some choices for the initial discretization are not relevant, as
these different choices may flow to the same fixed point.

A difference to the usual discussions of renormalization group transformations is, that the
parameters αk(T01) in the action (3.5) are not just coupling constants but functions of the time
distance T01. The appearance of ‘coupling functions’ α(T01) can be avoided by expanding these
functions in a suitable basis, for instance a power series in T01. In general this will introduce
infinitely many coupling parameters (which one could also treat perturbatively). However the
fixed point conditions (which are related to the condition of discretization independence and
reparametrization invariance) will fix almost all of these coupling constants.

To define the iteration procedure we assume that the one–step propagator has the form

K(x0, x1, T01)=η(T01) exp

[

−
1

~

(

α1(T01)(x
2
0 + x21) + α2(T01)x0x1

)

]

, (3.6)

that is that the measure factor η(T01) does only depend on the background time difference and
not for instance on the x0, x1. This assumption is justified, as the form of the propagator will
be stable under iteration.

Since the perturbative variable τ1 does not appear in the action (3.5) the propagator for two
time steps

K(1)(x0, x2, T01 + T12)=

∫

dx1dτ1 η(0)(T01)η
(0)(T02)

exp

[

−
1

~

(

S(0)(x0, τ0, x1, τ1) + S(0)(x1, τ1, x2, τ2)
)

]

(3.7)

leads to a divergent result.
This infinite factor represents the volume of the discrete diffeomorphism group (in this case

the actual placement of the interior discretisation point), which is the whole real line. We will
drop this infinite factor here, so we will not integrate over τ1, which will lead to a finite result.4

Having dropped the τ1-integration in the path integral, the remainder can be easily com-

4This is reminiscent of the Ponzano-Regge model, which also needs to be gauge fixed in order to produce finite
results. One could argue that τ1 shouldn’t range over the whole real line, since t1 should always remain between
t0 and t2. Indeed, restricting the integration range appropriately would lead to a finite result, just as a similar
restriction within the Ponzano Regge model – which ensures that one only sums over diffeomorphisms which
preserve the orientation everywhere – renders the model finite. However, the finite result does not only not agree
with the Ponzano-Regge amplitude, it also leads to a triangulation-dependent model, in which the diffeomorphism
symmetry is still broken [27]. We therefore do not adapt that strategy here.
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puted. Choosing T := T01 = T12 for simplicity5, we obtain for the propagator

K(n+1)(x0, , x2, 2T ) = η(n)(T )2
∫

dx1 exp

[

−
1

~

(

α
(n)
1 (T )(x20 + 2x21 + x22) + α

(n)
2 (T )(x0x1 + x1x2)

)

]

=:η(n+1)(2T ) exp

[

−
1

~

(

α
(n+1)
1 (2T ) (x20 + x22) + α

(n+1)
2 (2T )x0x2

)

]

. (3.8)

This defines recursion relations for the coefficients α1, α2 and η given by

α
(n+1)
1 (2T ) = α

(n)
1 (T )−

α
(n)
2 (T )2

8α
(n)
1 (T )

(3.9)

α
(n+1)
2 (2T ) = −

α
(n)
2 (T )2

4α
(n)
1 (T )

(3.10)

η(n+1)(2T ) =

√

π~

2α
(n)
1 (T )

η(n)(T )2 . (3.11)

To find the perfect propagator, one can iterate the equations (3.9) - (3.11), with initial values for

the α
(0)
i (T ) taken from (3.5). Alternatively we can directly look for the fixed points. Considering

the first two equations involving only the α coefficients, a family of fixed points is given by6

S∗(x0, x1, T ):=α∗
1(T )(x

2
0 + x21) + α∗

2(T )x0x1

=
ω̃

2g

cosh(ω̃T )(x20 + x21)− 2x0x1
sinh(ω̃T )

. (3.12)

Note that this action is Hamilton’s principal function for the harmonic oscillator with frequency
ω̃ and a coupling 1/g in front of the action. These constants are determined by the initial values
for the action, which for our choice (3.5) leads to ω̃ = ω, g = 1. Indeed [28], this initial action
converges to (3.12) under the iterations defined by (3.9). That there is at least a two–parameter
family of fixed points parametrized by ω̃, g can be easily deduced from the iteration equations
(3.9). These are invariant under a rescaling αk → g−1αk. Furthermore if αk(·) is a fixed point,
so is αk(ω̃× ·). In the appendix B we will show that the action (3.12) provides the most general
solution to the fixed point conditions.

For the fixed point equation of the measure factor η(T ) we can use the fixed point solution
α∗
1(T ). A solution is given by

η∗(T ) =

√

ω̃

2π~g sinh(ω̃T )
exp(ξ̃ T ) . (3.13)

where ξ̃ is a free parameter. Again we will show in the appendix B that this is the most general
fixed point solution. The free parameter ξ̃ describes the possibility to add a constant potential
term ∼ T to the action (3.5).

Note that the iteration equation for the measure factor η is not linear in η – rather we have
η quadratically appearing on the RHS of (3.11). Hence if we scale the initial value η(0) with a

5It will turn out that this regular subdivision is sufficient to regain the full symmetry under vertex translations
and arbitrary subdivisions, i.e. discretization independence.

6The fixed point property is easy to check using sinh(2y) = 2 sinh(y) cosh(y) and cosh(2y) = cosh2(y)+sinh2(y).
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factor a we obtain a scaling η(n) ∼ a2
n

for the n-th iteration. Therefore many initial values will
either diverge or converge to zero. Starting with e.g. the measure factor of the path integral for

the free particle η(0)(T ) =
√

1
2πg~ T

− 1
2 leads to a non–vanishing convergent result however [28].

This also satisfies the normalization condition mentioned in section 2.

To summarize for the initial action (3.5) we obtain the perfect quantum propagator

K(x0, x1, T ) =

√

ω

2π~ sinh(ωT )
exp

[

−
ω

~

cosh(ωT )(x20 + x21)− 2x0x1
2 sinh(ωT )

]

. (3.14)

Note that this propagator (3.14) – although calculated for the linearized theory – coincides
with the non–perturbative quantum mechanical propagator for the harmonic oscillator

K(q0, t0, q1, t1)=

√

ω

2π~ sinh(ω(t1 − t0))
exp

[

−
ω

~

cosh(ω(t1 − t0))(q
2
0 + q21)− 2q0q1

2 sinh(ω(t1 − t0))

]

. (3.15)

This also gives the propagator for the parametrized harmonic oscillator – which we obtain from
our calculation for the linearized theory by replacing the background parameters tn by the full
dynamical variables tn and the perturbations xn by qn.

Hence the propagator property

K(q0, t0, q2, t2)=

∫

dq1 K(q0, t0, q1, t1) K(q1, t1, q2, t2) (3.16)

is not only satisfied for equal step times (t2 − t1) = (t1 − t0) (which holds due to the fixed point
condition) but also for arbitrary subdivisions into unequal time steps.7 Furthermore we achieved
full ‘discretization independence’: if we use for the discrete propagator in the (discretized) path
integral the perfect propagator the result will not depend on the number of subdivisions we use.

As explained in section 2, related to this discretization independence is the invariance of the
path integral (3.16) under ‘vertex translations’, i.e. changing the value for t1 in (3.16)8. Again,
we do not integrate over t1 (which in the parametrized theory is a dynamical variable) in (3.16),
as this would just lead to an infinite factor.

The gauge symmetry in the path integral leads to a constraint in the canonical theory. Indeed,
the propagator (3.15) satisfies the quantum mechanical constraint equation for the parametrized
harmonic oscillator (which is just the usual Wick rotated Schrödinger equation if one reinterprets
t as a non–dynamical time parameter)

ĈK(q0, t0, q1, t1) =
(

~
∂

∂t0
+

~
2

2

∂2

∂q20
+

ω2

2
q20

)

K(q0, t0, q1, t1) = 0 . (3.17)

Note that this constraint equation is only satisfied for the fixed point (3.15) and not for any
of the propagators K(n) for finite n, which would correspond to some (non–perfect) discretized
version of the path integral. That is the fixed point is characterized by a symmetry, which is
reflected in the constraint equation (3.17).

7This is not so surprising as we basically computed the path integral iteratively. The fixed points correspond
to taking the (equal time step) discretization to the continuum limit.

8The gauge symmetry also involves a corresponding change in q1, this can however be absorbed in a variable
transformation for q1 in the action. One can check that the Jacobian of this transformation changes the measure
factor accordingly, so that one obtains the measure appropriate for the transformed t1.
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3.1 Linearized dynamics around a solution with q̄n 6= 0

In this section we will linearize the discretised, parametrised harmonic oscillator around a clas-
sical solution (3.3) with q̄n 6= 0. Since in this case the background solution does not exhibit
gauge symmetry, neither does the linearized theory [14]. Hence, the τn appear as variables and
have to be dealt with.

Expanding the action (3.2) into second order via (3.3), one arrives at an action for the
linearized variables xn, τn. Since reparametrization symmetry is broken, there is no obvious
choice for a gauge variable (a role which was fulfilled by the τn in the previous case, where the
symmetries were present), so in the path integral the integrals over both xn and τn have to be
performed. Moreover, the resulting propagator is not a projector on the physical Hilbert space
of the continuum theory.

Performing one refinement step therefore amounts to evaluating

K(n+1)(x0, τ0, x2, τ2) =

∫

dx1dτ1K
(n)(x0, τ0, x1, τ1)K

(n)(x1, τ1, x2, τ2) (3.18)

with K(0)(x0, τ0, x1, τ1) = η(0) exp(−S(0)(x0, τ0, x1, τ1)/~). In this case η(n) and the action S(n)

depend furthermore on the background variables q̄i, t̄i. It should be noted that, for one refine-
ment step, the background solution q̄1, t̄1 has to be chosen such that it is a solution to the
equations of motion of the discretized action S(n) with boundary values q̄0, t̄0, q̄2, t̄2.

The integral (3.18) is actually finite in most cases9, despite the τ1 integration actually being
carried out. This is a result of the broken symmetries of the linearized theory: the τn are actually
propagating degrees of freedom, corresponding to a small but non–vanishing eigenvalue in the
Hessian of the action.

Due to τ1 being present, there are many more coefficients in the action S(n), leading to more
complicated recursion relations coming from (3.18). These have been derived in [28], and we
report on the findings in what follows:

The recursion relations for the coefficients coming from the action S(n) converge to a fixed
point which is given by

S =
ω

2

cosh(ωT )(q̄20 + q̄21)− 2q̄0q̄1
sinh(ωT )

+
ω

2 sinh(ωT )

(

cosh(ωT )(x20 + x21)− 2x0x1
)

(3.19)

+
ω2(q̄0 − cosh(ωT )q̄1)

sinh2(ωT )
x0(τ0 − τ1) +

ω2(q̄1 − cosh(ωT )q̄0)

sinh2(ωT )
x1(τ0 − τ1)

−
ω4(q̄0 − cosh(ωT )q̄1)(q̄1 − cosh(ωT )q̄0)

2 sinh4(ωT )
(τ20 + τ21 ) (3.20)

with T = t̄1− t̄0. Not surprisingly, the action (3.20) is actually the perfect action of the harmonic
oscillator expanded up to second order in the linearized variables (3.3). More interesting is the
behavior of the measure factor η(n). One can separate the measure factor into two contributions

η(n) = A(n)B(n) (3.21)

9Note however that even in the Wick-rotated framework the path integral for the linearized theory (3.18) is
not necessarily always convergent. The reason is that, depending on the (background) boundary values q0, t0,
qN , tN , the Hessian matrix of second derivatives, which arises as inverse propagator for the xn, τn due to the
expansion (3.3), might not be positive definite, rendering the Gaussian integral divergent. This is also an effect
of the broken gauge symmetries. There is, however, a good control over which boundary values lead to positive
definite Hessian [28], and we assume that such a choice has been made in what follows.
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where A(n) arises as prefactor from the integration over the x1, and B(n) from the integration
over τ1 in (3.18). It is not hard to show that in the limit of infinite refinement

A(n) −→

√

ω

2π~ sinh(ωT )
(3.22)

which coincides with the measure factor for the linearized case (3.14). However, despite B(n)

being finite for every n, in the limit it actually diverges, leading to a diverging propagator.
This is also not surprising if one keeps in mind that in the continuum theory τ is actually the

gauge variable, and therefore should not be integrated over in the path integral. The breaking
of symmetry in the discrete theory has led to a finite integral, however in the perfect limit the
integration over τ1 coincides with an integral over the volume of the gauge group. This volume
is infinite, since it corresponds to the placement of the intermediate point τn, which can be put
everywhere on the real line.

Hence, in the perfect limit, the gauge symmetry can also be recognized by the volume of
the gauge group still being present in the path integral. This could have been remedied from
the first place by not integrating over τ1, but rather gauge fixing it to a definite value, e.g.
τ1 = (τ0 + τ2)/2, which also coincides with the classical solution to the equations of motion of
the linearized system. In the case of gravity such a split is not so easy to obtain. In this case one
has to consider the eigenmodes of the Hessian of the action and the corresponding eigenvalues.
The eigenvalues of the pseudo gauge modes will converge to zero in the perfect limit and will
lead to a divergence of the measure.

Dropping the infinite volume of the gauge group, one arrives at the perfect propagator

K(x0, τ0, x1, τ1) =

√

ω

2π~ sinh(ωT )
exp

(

−
1

~
S(x0, τ0, x1, τ1)

)

(3.23)

where S is given by (3.20). Is is straightforward to check that the propagator (3.23) satisfies the
constraint

Ĉ K(x0, τ0, x1, τ1) =

(

~
∂

∂τ1
+

~
2

2

∂2

∂x21
+

ω2

2
x21

)

K(x0, τ0, x1, τ1) = 0 (3.24)

i.e. K is a projector on the physical Hilbert space. Furthermore, writing explicitly the depen-
dence of K on the background solution q̄i and t̄i, K also satisfies

K(x0, τ0, x2, τ2; q̄0, t̄0, q̄2, t̄2) (3.25)

=

∫

dx1 K(x0, τ0, x1, τ1; q̄0, t̄0, q̄1, t̄1)K(x1, τ1, x2, τ2; q̄1, t̄1, q̄2, t̄2)

for every q̄1, t̄1 that satisfy

q̄1 = q̄0
sinh(t̄2 − t̄1)

sinh(t̄2 − t̄0)
+ q̄2

sinh(t̄1 − t̄0)

sinh(t̄2 − t̄0)
(3.26)

i.e. that satisfy the equations of motion of the (Wick-rotated) continuum harmonic oscillator.
In this sense the perfect propagator is independent of the actual discretization, i.e. for N = 2
of which actual background solution one is perturbing around.
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4 The anharmonic oscillator

In section 3 we dealt with the harmonic oscillator linearized around the background solution
with qn = 0. Here the linearization effectively lead to omitting the fluctuations τn in the time
variables. Indeed, treating these explicitly in the path integral is quite complicated, as the time
variables appear non-polynomially in the action.

To discuss a truly interacting theory we will now consider the quartic anharmonic oscillator,
so that we need to expand the action to at least fourth order. We have to face the problem
that the τn appear in the third and fourth order of the expansion. Nevertheless we will see that
also in this case we can avoid the integration over the fluctuations τn by perturbing around the
perfect propagator for the harmonic oscillator.

To start with, a discretization for the quartic anharmonic oscillator is given by the following
action for one time step

S01 =
1

2

(q1 − q0)
2

(t1 − t0)
+

ω2

4
(q21 + q20)(t1 − t0) +

λ

2 · 4!
(q40 + q41)(t1 − t0) . (4.1)

In a path integral approach we can treat such actions only perturbatively. For instance we can
expand as before around the background solution qn = 0 and tn arbitrary. To second order in
the perturbation variables xn, τn we recover the harmonic oscillator, treated in section 3. In
particular there the perturbations τn did not appear and we could just ignore the integration
over these variables in the path integral.

To capture however the anharmonic term, we need to expand to higher order in the variables,
which introduces a dependence on the τn. Even worse, the lowest order terms in which the τn
appear, are linear in the τn, which cannot be directly dealt with in the path integral.

Classically one can show [14] that a perturbative treatment of actions with broken sym-
metries, which are however expanded around a background solution with exact symmetries, is
in general inconsistent in higher-than-linear order. The problem is that the background gauge
parameters (here the tn) are free to lowest order in perturbation theory but are fixed by (non-
linear) consistency conditions to higher order. That is, if the tn are not already chosen such
that these consistency equations are satisfied, the ansatz tn = tn + ǫτn is not justified as the
solutions for the τn will involve terms τn ∼ ǫ−1.

To avoid this issue one can improve the action order by order. That is one would start with
the quadratic order of the action and find the perfect action to this order. To this one adds the
(naively discretized) third order term. For this third order action the problem above does not
appear (to lowest non-linear order), i.e. the background gauge parameters tn remain free. This
third order action has to be improved again, after which one can add the fourth order term and
so on.

This solves the consistency problem on the classical level. It also solves the problem in the
path integral: the action (and measure) being perfect up to a certain order will be also gauge
invariant to this order. Hence one can either apply gauge fixing, or rewrite the action into gauge
invariant variables, such that the path integral needs only be performed over these variables.

As explained in section 3 in the case of the harmonic oscillator the perfect action for the
quadratic approximation gives us already the full non-perturbative perfect action, if we just
replace the background time parameters tn with the full variables tn. We therefore do not need
to perform the perfection procedure to third order. To fourth order we have a contribution from
the anharmonic potential term. So we will start from the action

S01 =
ω

2

(

cosh(ω(t1 − t0))(q
2
0 + q21)− 2q0q1

sinh(ω(t1 − t0))

)

+
λ

2 · 4!
(q40 + q41)(t1 − t0) . (4.2)
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We will again consider the case with two time steps, so that we always need to integrate only
over one variable pair q1, t1. That is we consider

S = S01(q0, t0, q1, t1) + S12(q1, t1, q2, t2) . (4.3)

Applying the expansion qn = 0+ xn, tn = tn + τn we would actually encounter third and fourth
order terms (from the expansion of the perfect part of the action) in which the τ1 appear. We
know however that the perfect action is exactly gauge invariant, hence there exist a variable
transformation (q1, t1) → (Q1, T1) such that this perfect part only depends on Q1. Indeed with
T1 = t1 and

Q1 :=

√

sinh(ω(t2 − t0))

sinh(ω(t1 − t0)) sinh(ω(t2 − t1))

(

q1 −
sinh(ω(t2 − t1))

sinh(ω(t2 − t0))
q0 −

sinh(ω(t1 − t0))

sinh(ω(t2 − t0))
q2

)

(4.4)

we find

S01 + S12=
ω

2
Q2

1 +
ω

2

(

cosh(ω(t2 − t0))(q
2
0 + q22)− 2q0q2

sinh(ω(t2 − t0))

)

+
λ

2 · 4!

(

(q40 + q41(Q1, q0, q2))(t1 − t0) + (q41(Q1, q0, q2) + q42)(t2 − t1)
)

. (4.5)

In the last line q1 has to be expressed as a linear combination of Q1, q0 and q2 (with tn
dependent coefficients) by inverting (4.4). Note that the second term in the action (4.5) is
just Hamilton’s principal function for the harmonic oscillator, coinciding with the perfect action
for the time step t2 − t0. We now expand the action (4.5) in Q1 = 0 + X1, qn = 0 + xn for
n = 0, 2 and in tn = tn + τn. Indeed we see that τ1 does not appear in an expansion up to
fourth order in the variables. We can therefore drop the τ1-integration in the path integral just
as in the case of the harmonic oscillator. A similar argument can be applied if we consider the
path integral involving any number N of steps. Again one can find a transformation from the
q1, . . . , qn−1, t1, . . . , tn−1 to variables Q1, . . . , QN−1, t1, . . . , tN−1 such that the harmonic part of
the action depends only on the Qk. We can therefore ignore the fluctuation variables τk also in
the iteration process (which computes the N = 2M path integral iteratively) below.10

This allows us to compute iteratively the perfect propagator for the anharmonic oscillator to
first order in λ. As for the harmonic case we have to choose a parametrization for the propagator.
To this end consider the first iteration step, i.e. integrating out Q1 from (4.5), where again we
assume T = t2 − t1 = t1 − t0:

K(1)(x0, x2, 2T ) =

∫

dQ1 (η(T ))
2 exp

(

−
ω

2~
Q2

1 −
1

~
Sharm(x0, x2, 2T )

)

×

(

1−
λ

~

(

I
(0)
01 (T ) + I

(0)
12 (T )

)

+O(λ2)

)

=:η(2T ) exp

(

−
1

~
Sharm(x0, x2, 2T )

)(

1−
λ

~
I
(1)
02 (2T ) +O(λ2)

)

(4.6)

The action Sharm is the perfect action for the harmonic oscillator appearing in (4.5). It does
not depend on Q1, hence this exponential factor can be pulled out of the integral.

10Alternatively [28] to introducing the variable Q1 one can expand first the action in qn = 0+ xn, tn = tn + τn
for n = 0, 1, 2 to fourth order and then define a coordinate transformation x1 → X̃1 such that the action to fourth
order only depends on X̃1 and not on τ1. This leads to the same results as the approach presented here.
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We have chosen a measure factor

η(T ) =

√

ω

2π~ sinh(Tω)

(

sinh(Tω)

2 cosh(Tω)

)1/4

(4.7)

which corresponds to the perfect measure for the harmonic oscillator for the Q1 variable. The
second factor is (the square root of) the Jacobian of the transformation from q1 to Q1. To zeroth
order in λ this measure factor remains indeed invariant under iteration. (First order corrections
in λ to the measure can be absorbed into the interaction term I02.)

The interaction terms I
(0)
01 , I

(0)
12 are polynomials of up to fourth order in X1. The coefficients

of the X1 in these polynomials depend on x0, x2 in such a way that all terms are fourth order
if we add up the powers in x0, X1, and x2. Performing the integration11 in (4.6) one will find

that I
(1)
02 will contain all even powers in x0, x2 up to fourth order including a constant term. We

therefore adopt the following parametrization for the interaction term

I01=α0(T ) (x
4
0 + x41) + α1(T ) (x

3
0x1 + x0x

3
1) + α2(T )x

2
0x

2
1 +

β0(T ) (x
2
0 + x21) + β1(T )x0x1 + γ(T ) . (4.8)

From the iteration

K(n+1)(x0, x2, 2T ) =

∫

dX1 K(n)(x0, x1(X1), T ) K
(n)(x1(X1), x2, T ) +O(λ2) (4.9)

with

K(n)(x0, x1, T ) = η(T ) exp

(

−
1

~
Sharm(x0, x1, T )

)(

1−
λ

~
I
(n)
01 (T ) +O(λ2)

)

(4.10)

we obtain recursion relations for the coefficients α, β, and γ. This is a straightforward exercise
involving only the transformation from x1 to X1 given by (4.4), just replacing q1, Q1 by x1, X1

and performing the integration over X1.
By expanding in powers of ~ these recursion relations can be divided into a classical part and

quantum corrections. The classical part of the recursion relations coincides with the recursion
relations one would obtain by extremizing

Sharm(x0, x2, 2T ) + λI(n+1)(x0, x2, 2T )=Sharm(x0, x1, T ) + Sharm(x1, x2, T ) +

λI(n)(x0, x1, T ) + λI(n)(x1, x2, T ) +O(λ2) (4.11)

with respect to x1. A solution to the corresponding fixed point equations is given by Hamilton’s
principal function (for the corresponding continuum action), which can be readily obtained to
first order in λ, see appendix A.

We will see that the classical part coincides with the homogeneous part of the recursion
relations. As will be explained in the appendix C, the inhomogeneous recursion relations can
be easily brought into a standard form once the fixed point solutions to the homogeneous part
is known. Hence it helps very much to have the classical system solved, in order to obtain the
full quantum mechanical solution.

11
∫
dX X2k exp(−ax2) = a−(k+ 1

2
)Γ(k + 1

2
).
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The recursion relations for the αi-coefficients are a closed system as these correspond to the
classical problem with just an x4 order interaction term:

α
(n+1)
0 (2T ) =

1

8 cosh4(Tω)

(

(1 + 8 cosh4(Tω))α
(n)
0 (T ) + (4 cosh3(Tω) + cosh(Tω))α

(n)
1 (T ) +

2 cosh2(Tω)α
(n)
2

)

α
(n+1)
1 (2T ) =

1

2 cosh4(Tω)

(

α
(n)
0 (T ) + (cosh3(Tω) + cosh(Tω))α

(n)
1 (T ) + cosh2(Tω)α

(n)
2

)

α
(n+1)
2 (2T ) =

1

4 cosh4(Tω)

(

3α
(n)
0 (T ) + 3 cosh(Tω)α

(n)
1 (T ) + 2 cosh2(Tω)α

(n)
2 (T )

)

. (4.12)

One fixed point of these equations is provided by the perfect action for the anharmonic
oscillator (to linear order in λ), determined in the appendix A:

α∗
0(T ) =

λ̃

768ω sinh4(Tω)

(

12Tω − 8 sinh(2Tω) + sinh(4Tω)
)

α∗
1(T ) =

λ̃

192ω sinh4(Tω)

(

− 12Tω cosh(Tω) + 9 sinh(Tω) + sinh(3Tω)
)

α∗
2(T ) =

λ̃

64ω sinh4(Tω)

(

2Tω(2 + cosh(2Tω))− 3 sinh(2Tω)
)

(4.13)

The fixed point equations are invariant under a rescaling αi → λ̃αi, and hence we have λ̃
as a free parameter for the solutions. This is easy to understand as the freedom to rescale
the interaction term by an arbitrary constant, redefining the coupling constant λ. As for the
ambiguities g, ω̃ appearing in the fixed points for the harmonic oscillator, the final coupling
constant is determined by the initial conditions for the iteration procedure.

The solution (4.13) is actually not the most general one. We will explain in the appendix B
that the most general solution has two further free parameters, which determine the couplings to
terms ẋ4 and ẋ2x2 in the corresponding continuum Lagrangian. In the following we will however
set these couplings to zero, that is consider the standard quartic anharmonic oscillator with a
perturbation term x4.

Next we consider the recursion relations for the βi, which are given by

β
(n+1)
0 (2T ) = β

(n)
0 (T )

(

1 +
1

2 cosh2(Tω)

)

+ β
(n)
1 (T )

1

2 cosh(Tω)

+
~

ω

( 3 tanh(Tω)

2 cosh2(Tω)
α
(n)
0 (T ) +

3 tanh(Tω)

4 cosh(Tω)
α
(n)
1 (T ) +

tanh(Tω)

2
α
(n)
2 (T )

)

β
(n+1)
1 (2T ) = β

(n)
0 (T )

1

cosh2(Tω)
+ β

(n)
1 (T )

1

cosh(Tω)

+
~

ω

(3 tanh(Tω)

cosh2(Tω)
α
(n)
0 (T ) +

3 tanh(Tω)

2 cosh(Tω)
α
(n)
1 (T )

)

. (4.14)

The equations (4.14) have a homogenous part which is independent of ~, and an inhomogeneity
proportional to ~ depending on the αi, i.e. the fourth order potential. To any solution of the full
recursion relations one can add an arbitrary multiple of the solutions to the homogeneous part
of the recursion relations. Hence to find all solutions one has to determine also the solutions to
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the homogeneous part. As this part is of the order of ~0 it is again equivalent to the classical
iteration relations one would obtain if one considers an interaction term quadratic in x added
to the perfect action for the harmonic oscillator. A solution for the homogeneous fixed point
equations is hence again given by the perfect action for the harmonic oscillator: Take (3.19) and
replace there ω̃, g → ω + λν̃, 1 + λµ̃ and expand to first order in λ, resulting in

βh
0 (T ) = µ coth(Tω)−

νTω

sinh2(Tω)

βh
1 (T ) = ν

2Tω cosh(Tω)

sinh2(Tω)
− µ

2

sinh(Tω)
. (4.15)

(Here we reparametrized µ = 1
2(ν̃−ωµ̃) and ν = 1

2 ν̃.) Again we find a two–parameter ambiguity
corresponding to the ambiguities g and ω̃ that we found for the harmonic oscillator.

For the inhomogeneous equations we can assume that the αi are given by their fixed point
values (4.13). There is a general strategy with which one can attempt to find the fixed points
for the inhomogeneous equations, which requires the knowledge of the homogeneous equations.
We will demonstrate this in the appendix C as an example. The general solution is given by

β∗
0(T ) = µ coth(Tω) −

νTω

sinh2(Tω)

+
λ̃~

32ω2 sinh2(Tω)

(

2 + cosh2(Tω)− 3Tω coth(Tω)
)

β∗
1(T ) = ν

2Tω cosh(Tω)

sinh2(Tω)
− µ

2

sinh(Tω)

+
λ̃~

32ω2 sinh3(Tω)

(

4Tω + 2Tω cosh(2Tω)− 3 sinh(2Tω)
)

. (4.16)

Finally the recursion relations for γ are given by

γ(n+1)(2T ) = 2γ(n)(T ) +
~ tanh(Tω)

ω
β
(n)
0 (T ) +

3~2 tanh2(Tω)

2ω2
α
(n)
0 (T ) . (4.17)

Again we have a homogeneous part corresponding to a classical iteration procedure. This corre-
sponds to having a constant potential added to the perfect action for the harmonic oscillator. It
is easy to see that under the classical recursion relations such a constant term is just multiplied
by 2 corresponding to changing the time interval from T to 2T . Hence a (family of) fixed points
for the homoegenous part of the relations is just given by γ∗(T )hom = ξT .

The fixed points for γ∗(T ) for the full recursion relations can be readily found with methods
shown in appendix C. These are given by

γ∗(T ) = ξT −
~

ω

(

µ− νTω coth(Tω)
)

−
λ̃~2

64ω3

(

3 coth(Tω)− Tω(2 +
3

sinh2(Tω)
)
)

. (4.18)
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To summarize, the fixed point propagator is

K(µ,ν,ξ,λ̃)(x0, x1, T ) =

=

√

ω

2π~ sinh(Tω)
exp

(

−
1

~
Sharm(x0, x2, T )

)

×

(

1−
λ

~
×

[

λ̃

768ω sinh4(Tω)

(

12Tω − 8 sinh(2Tω) + sinh(4Tω)
)

(x40 + x41)+

λ̃

192ω sinh4(Tω)

(

− 12Tω cosh(Tω) + 9 sinh(Tω) + sinh(3Tω)
)

(x30x1 + x0x
3
1)+

λ̃

64ω sinh4(Tω)

(

2Tω(2 + cosh(2Tω))− 3 sinh(2Tω)
)

x20x
2
1+

(

µ coth(Tω)−
νTω

sinh2(Tω)
+ λ̃~

(

2 + cosh2(Tω)− 3Tω coth(Tω)
)

32ω2 sinh2(Tω)

)

(x20 + x21)+

(

ν
2Tω cosh(Tω)

sinh2(Tω)
− µ

2

sinh(Tω)
+ λ̃~

(

4Tω + 2Tω cosh(2Tω)− 3 sinh(2Tω)
)

32ω2 sinh3(Tω)

)

x0x1+

ξT −
~

ω

(

µ− νTω coth(Tω)
)

−
λ̃~2

64ω3

(

3 coth(Tω)− Tω(2 +
3

sinh2(Tω)
)
)

]

+O(λ2)

)

.

(4.19)

For the initial data used in (4.6) the propagator takes on a simplified form, as in this case
λ̃ = 1 and µ = ν = ξ = 0. Nevertheless the result is quite complicated: even to guess the correct
reparametrization invariant measure (i.e. all terms proportional to ~ and ~

2 in square brackets)
in case the perfect classical action is given, without actually solving the dynamics, seems to be
quite impossible in general situations.

From the infinitely many parameters αi(T ), βi(T ), and γ(T ) in our initial parametrization
we are left with the couplings λ̃, µ, ν, and ξ (and a further two couplings corresponding to
adding terms ẋ4 and ẋ2x2 to the continuum Lagrangian, see appendix B). These parameters
characterize the continuum Lagrangian (and Hamiltonian, see below), i.e. all discretization am-
biguities are resolved by requiring reparametrization invariance for the discretized path integral.

Again, although for the recursion equations (4.9) we have set t1 =
t0+t2

2 , the fixed points of
the recursion equations satisfy a stronger condition, namely

K(x0, x2, T1 + T2) =

∫

dx1 K(x0, x1, T1)K(x1, x2, T2) + O(λ2) (4.20)

for arbitrary positive T1, T2. In other words, the perfect propagator K(x0, x1, T ) leads to a
path integral which for N > 1 has become independent – to first order in λ – on the actual
placement of the intermediate discretization points, which correspond to the discretized choice
of t(s) in (3.1). It therefore mimics exactly the gauge symmetry of the continuum theory. Also
(4.20) shows that the model defined by the propagator (4.19) is discretization independent (up
to terms of order λ2), i.e. the discrete path integral defined by the amplitude (4.19) does not
depend on the number of discretization points.
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The invariance under a gauge symmetry leads to a constraint, which is satisfied by the
propagator (4.19)

Ĉ(µ,ν,ξ,λ̃) := ~
∂

∂T
+ (1 + 2(ν − µ))

~
2

2

∂2

∂x21
+

x21
2
(ω2 + 2(ν + µ)) +

λ̃λ

4!
x41 + ξ (4.21)

such that

Ĉ(µ,ν,ξ,λ̃)K(x0, x1, T ) = O(λ2) . (4.22)

This constraint equation characterizes the fixed points, it would not be satisfied by the K(n) for
finite n.

5 Summary and Discussion

In order to obtain a well defined path integral one often utilizes discretizations. This may
however lead to a breaking of (gauge) symmetries, which in the case of general relativity are
central for the dynamics of the system. We addressed this problem here in the context of
reparametrization invariant systems. Despite being extremely simple compared to gravity, these
systems share the property that the gauge symmetry determines the dynamics of the system
[29].

Indeed we could show in section 2 that requiring the implementation of reparametrization
invariance for the discretized path integral – where it assumes the form of vertex translations
(2.4) – uniquely fixes the discrete propagator. Namely the propagator has to coincide with the
quantum mechanical continuum propagator of the system under consideration. Furthermore
such a discretized path integral is automatically discretization independent, i.e. the propagator
does not depend on the number of subdivisions . This is just the convolution property (2.7) of the
continuum quantum mechanical propagator. The number of subdivisions can be taken to zero,
in which case one obtains the discrete propagator itself, even for large time steps. This (fixed
point) discrete propagator is furthermore characterized by satisfying the constraint equations.

We conjecture that similar properties will also hold for discrete gravity: a full implementation
of diffeomorphism invariance in the form of a symmetry under vertex translations [22] should
lead to discretization independence. Similar to the example of reparametrization invariance, the
discretization can then be taken to be a very coarse one, hence one would expect that many
discretization ambiguities will be fixed (as free parameters in the discrete propagator have an
effect on macroscopic scales). It would be interesting to have a proof for more general cases,
in analogy to the arguments presented here. One important difference to the one-dimensional
case is that a perfect action or perfect discretization for higher dimensional theories will include
non-local couplings [20, 21, 22].

The implementation of vertex translation symmetry into the discretized path integral will also
ensure that this path integral satisfies constraints [13], which can be taken as a characterization
of the fixed point. Again, an important difference to the one-dimensional case is, that such
constraints will involve non–local couplings, and are therefore not explicitly known. These
constraints would however be free of anomalies.

Coming back to reparametrization invariant systems, we can take the requirement of dis-
cretization independence in the form of the convolution property (2.7) as a starting point to
define an iterative procedure. This iterative procedure improves the discrete propagator, so
that in the limit it satisfies the convolution property (2.7) and defines a discretization in which
reparametrization invariance is realized in the form of vertex translations. Some points we wish
to emphasize, are the following:
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• Quite naturally, one is led to consider not one specific discretization, but an entire class
of discrete models. The iterative procedure defines a renormalization group flow within
this class. This allows a discussion of all possible fixed points. Indeed here, we found not
only the solutions to the (an–) harmonic oscillator, but to the most general Lagrangian
involving even powers in q and q̇ up to order 4. Hence to study the relevance of discretiza-
tion ambiguities in gravity models [11], it might be essential to study the behavior of these
models under coarse graining. Note also that the relevant parameters – which fix the corre-
sponding continuum Lagrangian – are all determined by the lowest orders in an expansion
of the discrete propagator in the time variable, that is by the behavior of the propagator
for short times. The higher order coefficients in this expansion can indeed be understood
as proper discretization ambiguities, which are fixed by requiring reparametrization invari-
ance of the discrete propagator. This might be an interesting point for spin foam models,
as there one often rather concentrates on the limit of having large building blocks (with
an amplitude that would correspond to what we termed naive discretization, as it has not
been subject to any coarse graining procedure).

• Even for the simple case of the anharmonic oscillator, the reparametrization invariant
discrete path integral (4.19) is quite complicated, and it would probably be impossible to
guess it without actually solving the dynamics. Similarly, to find an anomaly-free measure
for spin foam models [16, 17, 18], it seems to be unavoidable to address the dynamics of
the system, in particular the behavior under coarse graining. Even to just ensure anomaly-
freeness in the continuum limit (which is the only thing one might realistically expect), a
study of the coarse graining properties might be valuable. As we have seen, the choice of
initial data for the iterative procedure of the measure factor had to be done carefully in
order to obtain a convergent result. The behavior of the amplitudes under (dynamically)
trivial subdivisions [16, 18] are nevertheless interesting as first steps in this direction. These
might actually be important in order to show that vertex translation symmetry implies
discretization independence for gravity, in analogy to the one-dimensional case.

• Path integrals with (properly implemented) gauge symmetries act as projectors onto the
space of physical states [13]. Indeed spin foams are often mentioned as a tool to obtain
physical states, or to define the physical inner product, for loop quantum gravity. As we
have seen in the toy example of reparametrization invariant systems, to obtain a propagator
satisfying the quantum constraints, it was necessary to take the fixed point propagator,
that is the perfect or continuum limit of the (naively) discretized path integral. On the
other hand the constraints can be expressed as conditions on the fixed point coefficients
α∗
i (T ), . . . , γ

∗(T ). For future work it would be interesting to explore the relation between
these conditions encoding reparametrization invariance, and the fixed point conditions
encoding discretization independence.

• Finally, the methods applied in this work – basically a version of Wilsonian Renormaliza-
tion Group flow – might be actually useful in order to find solutions to quantum mechanical
path integrals. Also it would be interesting to apply these techniques to reparametrization
invariant systems arising in mini-superspace reductions of gravity, for instance for loop
quantum cosmology [30]. The path integral for the anharmonic oscillator is usually used
to derive the corrections to the energy levels of the harmonic oscillator [31], for which
one just needs to obtain the T → ∞ behavior of the propagator. Here we derived the
full propagator for arbitrary T , as this is needed to define a perfect discretization of the
path integral, and with this an anomaly-free (with respect to vertex translation symmetry)
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path integral measure. We also want to point out the work [32], where the authors also
discussed a perfect path integral for the anharmonic oscillator. The difference to the work
presented here is that [32] uses a different coarse graining procedure, namely averaging
instead of decimation as applied here. We employed decimation as this seems to be the
only method to obtain reparametrization invariance.
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A Hamilton’s principal function for the anharmonic oscillator

Here we give Hamilton’s principle function for the anharmonic oscillator to first order in λ, as
this will provide a fixed point for the recursion relations for αi (4.12).

In [3] it was shown that for a 1D system the perfect action coincides with Hamilton’s principal
function for the given boundary values, i.e.

Sperf(q0, t0, q1, t1) =

∫

ds

(

1

2

(q′)2

t′
+

ω2

2
q2t′ +

λ

4!
q4t′
)

(A.1)

where q(s) and t(s) are solutions to the continuum equations of motion with boundary values
q0, t0, q1, and t1. To find Hamilton’s principal function to first order in λ we would need to find
the solutions at most to first order in λ, and then perform the integral in (A.1), i.e. we expand

q(s) = q̄(s) + λx(s) + O(λ2) (A.2)

t(s) = t̄(s) + λτ(s) + O(λ2) (A.3)

where q̄, t̄ are solutions to the harmonic oscillator. However to first order in λ we do not need
the explicit form of the solutions x(s), τ(s): These would only appear in the harmonic oscillator
part of the action (A.1). This contribution vanishes however due to the (harmonic oscillator)
equations of motion for the background solution q̄(s), t̄(s). Hence we just need to evaluate the
integral (A.1) on the harmonic oscillator solution. One finds

Sperf(q0, t0, q1, t1) =
ω

2

cosh(Tω)(q20 + q21)− 2q0q1
sinh(Tω)

+

λ

768ω sinh4(Tω)

[(

12Tω − 8 sinh(2Tω) + sinh(4Tω)

)

(q40 + q41) +

(

− 48Tω cosh(Tω) + 36 sinh(Tω) + 4 sinh(3Tω)

)

(q0q
3
1 + q30q1) +

(

24Tω(2 + cosh(2Tω))− 36 sinh(2Tω)

)

q20q
2
1

]

. (A.4)

Similarly one can obtain Hamilton’s principal function to first order in λ for the harmonic
oscillator with perturbation terms λq̇4 and q̇2q2. As explained in the next section, these terms
arise in the most general fixed point solution to the recursion relations (4.12).
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B On the uniqueness of the fixed point solutions

Here we will discuss the uniqueness of the solutions to the fixed point equations (3.9), (3.10),
(3.11), (4.12) in the main text. In all cases we assume that the the solutions can be represented
by a power series

∑∞
n=n0

cnT
n, which starts with some finite lowest power T n0 , that can also be

negative.
We start our considerations with the relations (3.9) - (3.11) for the discretized action of the

harmonic oscillator, which we rewrite into

0=α∗
1(2T ) α

∗
1(T )− α∗

1(T )
2 + 1

8α
∗
2(T )

2 (B.1)

0=α∗
2(2T ) α

∗
1(T ) +

1
4α

∗
2(T )

2 . (B.2)

Making the ansatz

αi(T )=
∞
∑

n=n0

αi,nT
n (B.3)

one will find the following equation arising from the coefficients to the lowest power T−2n0 in
the equations (B.1)

0= (2n0 − 1)(α1,n0)
2 + 1

8(α2,n0)
2

0= 2n0 α1,n0 α2,n0 +
1
4 (α2,n0)

2 . (B.4)

It is easy to see that this equation can be only solved for n0 = −1, in which case we obtain

α2,−1 = κ1 , α1,−1 = −1
2κ1 (B.5)

where κ1 is a free parameter. After having fixed the lowest order, one can convince oneself that
if one iteratively solves the higher order equations for the coefficients of T−2+k+1, then these
equations are linear (inhomogeneous) equations for the coefficients αi,k, i.e. are of the form

∑

j

Aijαj,k=hi . (B.6)

Here the matrix A is given by

A =

(

2k−1 − 3
4 −1

4
−1

2 2k−1 − 1
2

)

(B.7)

and hi represents the inhomogeneous terms. The matrix has only vanishing determinant for
k = 1 (and k = −1, which we already discussed). Indeed, the equations for αi,1 add a further
free parameter κ2, as one will find the solutions

α2,1 = κ2 , α1,1 = −κ2 . (B.8)

Since the matrix A has non-vanishing determinant for all other k’s one will have unique
solutions for all the other coefficients depending on the two free parameters κ1, κ2. The solution
obtained in this way agrees with the one (3.12) presented in the main text, with an appropriate
choice of the two free parameters g, ω̃ there.

One will find the same matrix A appearing in the recursion relations (4.14) for the β-
coefficients in the anharmonic oscillator case. This is not surprising, as these arise by adding a

23



perturbation to the harmonic oscillator quadratic in the variables x0, x1. Since the determinant
of the matrix A is only vanishing in two cases k = −1, 1 one will again find at most solutions
with two free parameters, which is indeed the case for the solutions (4.16).

We will now discuss the solutions to the fixed point equations (3.11)

η∗(2T ) =

√

π~ sinh(ω̃T )

2 cosh(ω̃T )
η∗(T )2 =

[

T 1/2
∞
∑

k=0

c2kT
2k

]

η∗(T )2 . (B.9)

Here we used in the fixed point solution (3.11) and expanded the prefactor appearing in the
first equation into a power series. As we have to choose for our initial measure η(0) a functional
dependence η(0) ∼ T−1/2 ,we start with the assumption that η∗ is of the form

η∗(T )=T−1/2
∞
∑

n=n0

ηnT
n (B.10)

with some finite, not necessarily positive number n0. Using this form in the fixed point conditions
(B.9), it is easy to see that we must have n0 = 0 and that the first coefficient η0 is given by

η0 = 2−1/2c−1
0 . (B.11)

Using (B.11), one will find that the coefficient equation for the power of T 1−1/2 in (B.9) leaves
η1 as a free parameter. Indeed for the coefficients ηk with k > 0, the equations are of the form

(2k − 2)ηk=fk(ηl, l < k) , (B.12)

with f1 = 0. Hence η1 remains a free parameter, determining all other coefficients uniquely.
The additional parameter corresponds to adding a constant potential term to the Lagrangian
for the harmonic oscillator. The full solution is given in (3.13).

Now we will turn to the recursion relations (4.12)

α∗
0(2T ) =

1

8 cosh4(Tω)

(

(1 + 8 cosh4(Tω))α∗
0(T ) + (4 cosh3(Tω) + cosh(Tω))α∗

1(T ) +

2 cosh2(Tω)α∗
2

)

α∗
1(2T ) =

1

2 cosh4(Tω)

(

α∗
0(T ) + (cosh3(Tω) + cosh(Tω))α∗

1(T ) + cosh2(Tω)α∗
2

)

α∗
2(2T ) =

1

4 cosh4(Tω)

(

3α∗
0(T ) + 3 cosh(Tω)α∗

1(T ) + 2 cosh2(Tω)α∗
2(T )

)

(B.13)

for the x4 terms in the discretized action of the anharmonic oscillator. This case is even easier
to treat than the relations (B.1) as we have a system linear in the variables. We assume again
an ansatz

αi(T )=

∞
∑

n=n0

αi,nT
n (B.14)
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with a lowest order T n0 . Since the cosh(Tω)−l functions appearing in (B.13) can be expanded
in a Taylor series (i.e. there are no negative powers of T appearing), the equation for the lowest
order coefficients αi,n0 will be

∑

j

Aijαj,n0=0 (B.15)

where

A =





9
8 − 2k 5

8
1
4

1
2 1− 2k 1

2
3
4

3
4

1
2 − 2k



 . (B.16)

The determinant of this matrix is only vanishing for k = −3, −1 and k = 1 and for these cases
the matrix has rank 2. Hence we can expect three linearly independent solutions. For the higher
order coefficients one has the same equation as in (B.15), just that inhomogeneous terms (arising
from the lower order coefficients) have to be added to the right hand side. As the determinant
of A is non-vanishing except for the three cases mentioned above, we do not have any further
free parameter than the three parameters from the three linearly independent solutions.

The solutions with lowest order n0 = 1 is the one (4.13) displayed in the main text. The
most general solution is

α0(T ) =
1

768ω sinh4(Tω)

[

4(3λ̃−3 − λ̃−1 + 3λ̃1)Tω + 8(λ̃−3 − λ̃1) sinh(2Tω) +

+(λ̃−3 + λ̃−1 + λ̃1) sinh(4Tω)
]

(B.17)

α1(T ) = −
1

192ω sinh4(Tω)

[

4(3λ̃−3 − λ̃−1 + 3λ̃1)Tω cosh(Tω) +

+(11λ̃−3 + λ̃−1 − 9λ̃1) sinh(Tω) + (3λ̃−3 + λ̃−1 − λ̃1) sinh(3Tω)
]

(B.18)

α2(T ) =
1

192ω sinh4(Tω)

[

4(3λ̃−3 − λ̃−1 + 3λ̃1)Tω + 2(3λ̃−3 − λ̃−1 + 3λ̃1)Tω cosh(2Tω) +

+3(5λ̃−3 + λ̃−1 − 3λ̃1) sinh(2Tω)
]

(B.19)

These coefficients describe Hamilton’s principal function corresponding to a perturbation term
(as this is still first order in λ)

λ

4!

( λ̃−3

ω4
ẋ4(t) +

λ̃−1

ω2
ẋ2(t)x2(t) + λ̃1x

4(t)
)

(B.20)

added to the Lagrangian for the harmonic oscillator. The solutions that start with n0 = −3,
n0 = −1 correspond to terms ẋ4 and ẋ2x2 added to the Lagrangian.

Applying the same techniques to the last recursion equation (4.17) reveals that there is only
one free parameter ξ for the solutions, which does appear in the solution (4.18).

To summarize, we have found all the solutions to the fixed point equations under the (phys-
ically justifiable) assumption that all the solutions can be expanded into a power series in T
starting with some lowest, not necessarily positive, order. The free parameters that do appear
in the solutions can be all interpreted in terms of ‘large scale’ physics. Hence there are no
discretization ambiguities left, if we require reparametrization invariance to hold.
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C Recursion relations for the βi

Here we want to shortly explain how one can tackle the recursion relations (4.14)

β
(n+1)
0 (2T ) = β

(n)
0 (T )

(

1 +
1

2 cosh2(Tω)

)

+ β
(n)
1 (T )

1

2 cosh(Tω)
(C.1)

+
~

ω

( 3 tanh(Tω)

2 cosh2(Tω)
α
(n)
0 (T ) +

3 tanh(Tω)

4 cosh(Tω)
α
(n)
1 (T ) +

tanh(Tω)

2
α
(n)
2 (T )

)

β
(n+1)
1 (2T ) = β

(n)
0 (T )

1

cosh2(Tω)
+ β

(n)
1 (T )

1

cosh(Tω)
(C.2)

+
~

ω

(3 tanh(Tω)

cosh2(Tω)
α
(n)
0 (T ) +

3 tanh(Tω)

2 cosh(Tω)
α
(n)
1 (T )

)

These recursion relations have a homogeneous part

β
(n+1)
0 (2T ) = β

(n)
0 (T )

(

1 +
1

2 cosh2(Tω)

)

+ β
(n)
1 (T )

1

2 cosh(Tω)
(C.3)

β
(n+1)
1 (2T ) = β

(n)
0 (T )

1

cosh2(Tω)
+ β

(n)
1 (T )

1

cosh(Tω)
. (C.4)

to which an inhomogeneity is added. Hence there will be at least one ambiguity, as to every
solution of the inhomogeneous equations one can add an arbitrary multiple of the solutions to
the homogeneous solutions. One therefore needs to determine the solutions to the homogeneous
equations, if one wants to find the full space of solutions. These solutions can be obtained
as explained in the main text, or alternatively, by subsequently transforming the variables to
simplify and decouple the equations. Another general method is the expansion in a power series
in T , which replaces the ‘coupling functions’ β0(T ), β1(T ) by infinitely many coupling constants
βk
0 , β

k
1 .

Assume we are being given the solution βh
0 , β

h
1 to the homogeneous equations, in our case

βh
0 (T ) = µ coth(Tω) − ν

Tω

sinh2(Tω)

βh
1 (T ) = ν

2Tω cosh(T )

sinh2(T )
− µ

2

sinh(T )
(C.5)

We want to introduce new variables β̃0, β̃1 such that the recursion relations (C.1) decouple
and simplify. To this end we can use the solutions (C.5). To decouple the equations we choose
the new variables such that β̃0 ∼ µ and β̃1 ∼ ν for the solutions in the new variables:

β̃0(T ) := 2 cosh(Tω)β0(T ) + β1(T )

β̃1(T ) := β0(T ) +
1

2
cosh(Tω)β1(T ) . (C.6)

Indeed we find for the (homogeneous) fixed point conditions

β̃∗
0(2T ) = 2 cosh(Tω)β̃∗

0(T )

β̃∗
1(2T ) = 2β̃∗

1(T ) . (C.7)
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The homogeneous solutions in the new variables are now

β̃h
0 (T ) = 2µ sinh(Tω) (C.8)

β̃h
1 (T ) = νTω , (C.9)

To write the fixed point equations into the form f(2T ) − f(T ) = g(T ) with g(T ) representing
the inhomogeneous terms, we apply another transformation:

β̄0(T ) :=
β̃0(T )

sinh(Tω)
(C.10)

β̄1(T ) :=
β̃1(T )

T
. (C.11)

This will lead to the following inhomogeneous fixed point conditions (where we replaced the α
(n)
k

by the fixed point (4.13))

β̄∗
0(2T )− β̄∗

0(T )=
~

32ω2 sinh4(2Tω)

[

cosh(Tω)(10Tω + 2Tω cosh(4Tω)− 4 sinh(2Tω)−

sinh(4Tω)) + 2(−6Tω cosh(2Tω) + sinh(2Tω) + sinh(4Tω))
]

β̄∗
1(2T )− β̄∗

1(T )=
~ sinh2(Tω

2 )

32Tω2 sinh3(2Tω)

[

− 8Tω − 6Tω cosh(Tω)− 2Tω cosh(2Tω) +

2Tω cosh(3Tω) + sinh(Tω) + 3 sinh(2Tω) + sinh(3Tω) + sinh(4Tω)
]

(C.12)

The fixed point condition for both recursion relations is now of the form f(2T ) − f(T ) = g(T )
where g(T ) is some known function of T . For this one can use an ‘integration table’, see below.
Alternatively a power series expansion of the solution can be easily given: If g =

∑

n 6=0 gnT
n

then

f(T ) =
∑

n 6=0

gn
2n − 1

T n . (C.13)

Note that it would be inconsistent to have a constant term ∼ T 0 in g(T ). An arbitrary integration
constant can be added to the solution f(T ). This ambiguity in the solutions corresponds however
to adding an arbitrary multiple of the homogeneous solutions (which here are the constants) to
one solution of the inhomogeneous recursion relations.
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The following table can be used to obtain a more explicit solution for f(T ).

f(T ) g(T ) = f(2T ) − f(T )

T T

coth2 T − cosh 2T
sinh2 2T

− 1
2 sinh2 T

coth T 1
sinh 2T

T
sinh2 T

−2T coth 2T
sinh 2T

tanhT tanh T
cosh 2T

T coth T T tanhT

T
sinh 2T 2T 1−coshT

sinh 2T

T tanhT T tanh 2T + T tanh T
cosh 2T

ln sinhT ln(2 cosh T )

− 2
T coth T 1

T

(

1
sinh(2T ) + coth(T )

)

Tf ′(T ) Tg′(T )

(C.14)

In this way one can find all solutions to the fixed point equations for the βi(T ):

β∗
0(T ) = µ coth(Tω) − νTω

1

sinh2(Tω)
+

λ̃~

32ω2 sinh2(Tω)

(

2 + cosh2(Tω)− 3Tω coth(Tω)
)

β∗
1(T ) = ν

2Tω cosh(Tω)

sinh2(Tω)
− µ

2

ω2 sinh(Tω)
+

λ̃~

32 sinh3(Tω)

(

4Tω + 2Tω cosh(2Tω)− 3 sinh(2Tω)
)

. (C.15)
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