
MAX-PLANCK-INSTITUT
FOR

INFORMATIK

On Kernels , Defaults and Even Graphs

Yannis Dimopoulos Vangelis Magirou
Christos Papadimitriou

MPI-1-9:3-226 .June 199:3

0

mPD
_________ IN F 0 R M AT I K _________ _

Im Stadtwald

66123 Saarbrucken

Germany

On Kernels, Defaults and Even Graphs

Yannis Dimopoulos Vangelis Magirou
Christos Papadimitriou

MPI-1-93-226 .June 1993

Author's Address

Y anuis Dimopoulos

Max-Planck-lnstitut fiir lnformatik,

lm Stadtwald ,

6612:3 Saarbriicken, Germany,

yannis@mpi-sb.mpg.de

Vangelis Magirou

Athens University of Economics,

Department of lnformatics,

76 Patission Str. , 104:34,

Athens, Greece,

vmag@isosun.ariadne-t.gr

Christos Papadimitriou

University of California at San Diego,

CS & EE Department,

La Jolla, CA 92093-0114, USA,

christos@cs.ucsd.edu

Abstract

Extensions in prerequisite-free, disjunction-free default theories have been shown to be

in direct corespondence with kernels of directed graphs; hence default theories without

odd cycles always have a "standard" kind of an extension. We show that , although

all "standard" extensions can be enumerated explicitly, several other problems remain

intractable for such theories: Telling whether a non-standard extension exists, enu­

merating all extensions, and finding the minimal standard extension. We also present

a new graph-theoretic algorithm, based on vertex feedback sets, for enumerating all

extensions of a general prerequisite-free, disjunction-free default theory (possibly with

odd cycles) . The algorithm empirically performs well for quite large theories.

Keywords

Default Reasoning, Logic Programming, Graph Theory, Kernels, Tractability, Algorithms .

1 Introduction

Default Logic, first introduced in [10], is a most important formalism of common-sense reason­

ing. A prepositional default is a rule of the form a : M b1, . . . , M bn/w where a, b1, ... , bn, w are

propositions. Intuitevely such a default means that if I believe a (called the prerequi.site) and it is

consistent to believe b1, ... , bn (called the justifications), then I should believe w (called the con­

.sequent). A prepositional default theory is a pair ~ = (D, W), where D is a set of prepositional

defaults and W is a set of propositions.

The semantics of a default theory are formalized in terms of an important model-theoretic

concept called an extension. Let ~ = (D, W) be a default theory. A set of propositions E is an

extension of~ iff it satisfies the equation E = Uf:0E; where Eo = W and Ei+ 1 = Th(E;) U { w I
a: Mb11\Mb2· · ·Mbn/w,aEE and -.bj ~ E}.

In this paper we are interested in propositional, disjunction-free, prerequisite-free, seminonnal

defaults, in which W and the prerequisites of all defaults are empty, while the justifications and

the consequent are conjuctions of literals. Seminormal is a default of the form a : Mb 1\ cjb.

Restricting ourselves to the case of prerequisite-free theories is not a serious limitation, since in

[4] it is shown that for every disjunction-free default theory there is a semantically equivalent

disjunction-free, prerequisite-free theory. On the other hand seminormal defaults seem to be

adequate for practical applications. The disjunction-free case is a real limitation, but a widely

studied one.

In [3] a graph-theoretic approach to disjunction-free, prerequisite-free, seminormal, default

theories was proposed. We can associate with each disjunction-free, prerequisite-free, seminormal,

default theory D a directed graph G(.Ll) = (N, E) where the nodes N are associated to the defaults

and the edges depict the interaction between the default rules. In particular a edge (n;, ni) E E

if the negation of some proposition in the consequent of default d; occurs in the justification of

dj.

Extensions of~ were shown in [3] to correspond to kernels of of a graph. A kernel of a directed

graph G = (N, E) is a set of nodes K ~ N such that the nodes in K are pairwise non-adjacent,

and for every node i EN- K there is some node j E K such that (j, i) E E -in other words, a

kernel is an independent dominating set.

This connection between kernels and extensions ofdefault theories was further exploited in [8],

and in [9], [4] in the context of Logic Programs with negation. Thus, algorithms for finding a kernel

in a graph, or even better for enumerating all kernels, have direct applications for default theories

and logic programs under stable model semantics ([7]). Unfortunately, the problem of finding

whether or not a graph has a kernel is known to be NP-complete [6]. However, there are certain

important positive results that are obtained by the graph-theoretic connection: Directed graphs

that have no odd cycles (called even directed graphs in this paper) always have a "standard"

kind of a kernel, which includes every other node of each (even) cycle (these "standard" kernels

are implicit in the proof of Richardson's Theorem, [2]) . Hence, prerequisite-free, disjunction­

free default theories that happen to have no odd cycles always have a certain "standard" kind

of default, which can be found in linear time. In fact , in this paper we present an algorithm

which enumerates all such "standard" kerne.l.s (and thus extensions) with linear delay between two

solutions output.

Unfortunately, we also show two negative complexity results related to kernels of even graphs:

Even graphs may have kernels other than the standard ones. Besides, it is NP-complete to tell

whether a given even graph has such a "non-standard" kernel (and thus it is NP-complete to

tell whether an even default theory has other defaults than those enumerated by our algorithm).

Furthermore, suppose that you do not want to enumerate all standard kernels (or defaults) of an

even graph, but want to identify a "high-quality" one. It turns out that it is NP-complete even

to find the standard kernel with the minimum number of nodes -or even one with at most twice

the minimum number of nodes (or any constant multiple of the minimum). Thus, we cannot

find among all standard extensions the one that is the most conservative (in that it fires as few

defaults as possible), or even to find an extension which is approximately the most conservative

(under a most liberal definition of "approximately") .

In Section 3 we present an algorithm which computes all the kernels of an arbitrary graph.

The running time of the algorithm is 0(21FI) , where F is a feedback vertex set of the graph. A

feedback vertex set of a graph is a set of nodes which, when removed from the graph, leave the

graph with no cycles. This means that in the cases of sparse graphs the algorithm is expected to

be fast. Experiments reported in Section :3 confirm this expectation . Interesting is also the fact

that for very dense graphs the algorithm performs well, as well . These results are commented in

Section :3 .

2 Even Graphs

Recall that a directed graph is even if it has no odd cycles. For even graphs Richardson's Theorem

[2] guarantees the existence of a kernel. Furthermore the proof of the theorem easily leads to

an algorithm which computes a kernel of such a graph in polynomial time. An outline of the

algorithm is the following:

Let G = (N , E) be the graph. Initially K = 0. Repeat the following until G is empty:

First, find the strongly connected components of the graph. Since the graph is odd cycle-free,

each component is a bipartite graph, say C; = (N;1, N;2, E;). For each such component C; =
(N; 1 , N;2, E;) with no incoming edg~s, select j E { 1, 2}, set K := K U N;i , and delete from G

N;1 , N;2, and all nodes v which there is an edge (u, v) with u E N;j. 0

We say that an algorithm for generating configurations is polynomial delay [5] if there is

2

only a polynomial delay between any two configurations generated. Such algorithms may behave

exponentially because of the number of the exponentially many different configurations, but this

is obviously unavoidable. The time complexity of a polynomial delay algorithm is O(p(n)C)

where n is the size of input and C the number of configurations output. In [5] a polynomial delay

algorithm is presented for c.omputing all maximal independent sets of an undirected graph, which

in some sense is a problem related to the one we study. It is easy to extend the algorithm above

in order to generate all standard kernels of an odd cycle-free graph, with line.ar delay. That is,

between any two consecutive standard kernels produced, the algorithm takes time O(IEI).

Proposition 1. There is a linear delay algorithm for generating all standard kernel of an odd

cycle-free graph.D

Figure 1

Figure 1 shows that even graphs may have nonstandard kernels. In this graph our algorithm

would compute only two kernels, namely K1 = {1,3,5, 7} and K2 = {2,4,6,8} even though an

additional kernel K' = { 1, 4, 7} also exists.

The next question is whether a polynomial delay algorithm exists for enumerating all kernels

of the graph, standard or not. The following result provides a negative answer:

Theorem 1: Let G = (N, E) be a strongly connected even graph. Telling whether this graph

has another kernel besides the two standard ones is NP-complete.

Proof The proof is by reduction from :3-SAT. Given a formula in CN F C = { C't, C2, ... , Cn},

C; = C;1 V Ci2 V C;3 we construct a graph like the one shown in Figure 2 as follows: For every

literal z; (and its negation) we construct a node i (i' respectively) in the set K. For every clause

C; we also put a node in K. The set L contains a node y; for every pair of nodes i, i', and a node

3

C;i for every literal in the clause C;. We construct the set of edges E of the graph as follows: a)

There is an edge from each node C; in K to every node in L, b) there is an edge from every node

y; in L to every node in K, c} Two edges (Xi, yi) and (:z:L y;), d) an edge (C;j, C;) for every C;,

e) A bidirectional edge (k, C;i) or (k', C;j), depending on whether k or k' corresponds to C;i .

Figure 2

The graph constructed is strongly connected, does not contain odd cycles since it is bipartite,

and K and L are both kernels for the graph. The problem is whether a third kernel M exists. If

such a kernel exists then observe that none of the nodes C; can belong to the kernel. The same

holds for the nodes y;. Hence, for each C; at least one of the nodes C;j must belong to the kernel

M . On the other hand at least one of the i, i' must belong to M. Therefore M divides the graph

into four parts: a) 8, 8 C K, b) r+(S), r+(S) CL, c) L- r+(S), and d) r+(£- r+(S)). Note

that K- S = r+(£- r+(S)) due to the edges (C;i, k), and S u (L- r+(S)) =M.

We give the following interpretion to these sets of nodes: The set S contains all the false literals,

while r+(S) contains the nodes y; as well as all false occurences of literals in C. On the other

hand L- r+(S) contains all the true occurences, while r+(£- r+(S)) contains all true literals

and all satisfiable formulas. Notice that both z; and z~ can not be assigned the value true since

the 1/;s can not belong to M. It is obvious now that the true literals in this interpretation induce

a satisfiable truth assignment for C .

Conversely, it is easy to verify that any satisfiable truth assignment induces a new kernel for the

graph.D

4

An immediate consequence of Theorem 1 is the following negative result:

Corollary 1 : There exists no polynomial delay algorithm for the problem of finding all kernels

of a graph without odd cycles (unless P=NP).D

Indeed, if such an algorithm existed it would calculate in polynomial time a kernel different from

/{ , L or show that such a kernel does not exist, thus determining in polynomial time the solution

of any :3-SAT problem. On the other hand, Theorem 1 does not rule out the existence of a total

polynomial algorithm for the problem.

Let FewP [1) be the subclass of NP consisting of problems solvable by nondeterministic ma­

chines that are guaranteed to have at most polynomially many accepting computations. The

eventuality P=FewP is almost as improbable as P=NP -for example, it would imply that there .

are no one-way functions, and thus public-key cryptography is impossible.

Corollary 2: There exists no algorithm for enumerating all kernels of a graph without odd

cycles which is polynomial inK and the number of kernels of G (unless P=FewP).D

Corollary 3: Unless P=NP, there is no polynomial-delay algorithm for enumerating all ex­

tensions of prerequisite-free, disjunction-free default theories with no odd cycles. Unless P=FewP,

there is no algorithm for enumerating all extensions of prerequisite-free, disjunction-free default

theories with no odd cycles which is polynomial in the number of variables and the number of

extensions output.D

In [3] another negative result is proved, namely that determining whether in an even graph

there is kernel including (or excluding) a given node is NP-complete. This problem is easy to

solve for standard kernels.

But suppose that we are interested only in standard kernels, and we wish to find the one that

is the most "conservative," in that it has the fewest nodes. In fact, suppose that you would be

content with a standard kernel which has no more than c · m nodes, where c > 1 is a constant

and m is the minimum number of nodes in any standard kernel. We show that this problem is

NP-hard for any c > 1 -even for large c's such as one million.

Theorem 2: Let k?: 1 be any integer, however large. Unless P=NP there is no polynomial­

time algorithm that finds a kernel of an even graph with at most k ·m nodes, where m is the

number of nodes in the smallest kernel of the graph.

Proof First fork= l. Reduction from SAT. We have a node for each literal and each clause. The

edges are of the form (x, x) and (x, x) for all variables x, and (.X, C) for each literal .>. occurring

in clause C. The graph is even. We claim that the graph has a kernel with n nodes (where n is

the number of variables) iff the formula is satisfiable.

5

Obviously all kernels must have a node among x , x for all variables, son is the smallest possible

size of a kernel. And each kernel with n nodes must be a satisfying truth assignment (the nodes

must dominate all clauses) .

Now, for k > 1, we have k · n copies of each node C , and all edges (>., Ci). Obviously, if the

formula is satisfiable then the minimum kernel has size n, and if it is unsatisfiable then it has

minimum kernel size at least (k + 1) · n.QED

Corollary 4: For simple even default theories, unless P=NP we cannot find in polynomial

time a default which has approximately minimum number of TRUE's (or activates the- approxi­

mately minimum number of defaults).QED

3 Feedback Vertex Sets and Kernels

The algorithm developed in the last section, works only with even graphs, and can only compute

a subset of the kernels. It exploits the fact that given a node j E r-(i), i E K (where K is the

kernel) it is always possible to find a node k E K such that j E r+(k). This is not possible for

graphs with odd cycles and thus a different approach is needed.

The algorithm we present in this section .is composed of two stages. In the first stage the graph

is preprocessed in order to compute a feedback vertex set F . This set is used in the second stage

of the algorithm which is an exhaustive backtracking algorithm which computes all the kernels

of the graph.

3.1 The Basic Algorithm

The basic algorithm is a backtracking recursive algorithm which assigns to each one of the nodes

in the graph one of the values 0, 1, -1, -2 (we denote by Ui the value assigned to the node i) .

These values which may change while the algorithm proceeds, have the following meaning:

• If Ui = 0 then the algorithm has not yet decided about the value of node i.

• If Ui = 1 then the node i inust belong to the kernel.

• If Ui = -1 then the node i must not belong to the kernel.

• If Ui = -2 then the node i is not to belong in the kernel, but there is no node j , (j, i) E E

which has been assinged the value 1 so far.

In the sequel we give a general description of the operation of the algorithm. It starts by assigning

to all nodes the value 0. In each step the algorithm assigns to a node i with Ui = 0, the value 1.

The value u.~: = -1 is assigned to all the nodes k E r+ (i), while the value the value u.~: = -2 is

given to all nodes k E r- (i). After assigning these values, the algorithm enters a second phase

6

in which the feasibility of the u; 's values is checked. If this holds some of the values 0 or -2 may

be changed to 1 or -1 respectively.

A value assignment may not be feasible because it is possible for a node i to have a value

u; = -2, but for each k E r-(i) the values satisfy ttA: < 0. This case is obviously (".ontradictory

and the algorithm has to backtrack and assign the value -2 to the last node assigned the value .

1. Each · time a node is assigned the value 1 or -2 an attempt is made at some of the nodes to

change their values from 0 or -2 to 1, -1, or -2 according to the following criteria:

• If there is a node i, u; = -2 and for all k E r- (i) it holds that ttA: < 0 except for a single

node j E r- (i) for which Uj = 0, then assign Uj = 1.

• If there is a node i with u; = 0 and for all nodes k E r- (i), Uk < 0 holds, then set u; = 1.

• If some node i is assigned the value 1 for one of the previous reasons then

1. All nodes k E r+ (i) are assigned the value ttA: = -1

2. All nodes k E r-(i) having the value 0 will get the value -2 .

The above procedure iterates until there is no node the value of which can be changed or a

contradiction is created. Then the algorithm is recursively called with the new partial value

assignment.

If a point is reached where there is no node having the value 0 then the total value assignment

is checked in order to be determined whether this assignment is kernel or not. In both cases the

algorithm backtracts in order to exhaustively compute all the kernels of the graph. Backtracking

means the assignment of the value -2 to the node which was assigned the value 1 last.

3.2 The Use of Feedback Vertex Set

The basic algorithm presented in the previous section does not possess any criterion for choosing

the nodes which will be assigned the value 1 in each recursive call. An obvious selection criterion

would be · to choose the node with the highest outgoing degree. In this case the nodes which have

no definite value in the next step will be the as few as possible. But the worst case time of the

algorithm is still 0(21NI) where I N I is the number ofthe nodes of the graph. In this section

we present an algorithm which achivies a speed up of the computations, especially in the case of

sparse graphs where the basic algorithm of the previous section is remarkably inefficient.

The basic idea stems from the fact that, although for acyclic graphs the problem of finding a

kernel is polynomial, it becomes exponential when cycles are allowed. We can therefore conclude

that the culprit for the computational burden is the presence of cycles. If all the nodes which

create cycles are removed then the remaining acyclic graph has exactly one kernel which can be

computed in polynomial time.

7

Given a graph G = (N, E) , a set of nodes F s; N such that the graph G' = (N- F, E') is

acyclic is called feedback vertex set. A value assignment to the nodes of F can lead to a kernel

or not , something that can be verified in polynomial time. The time complexity of the algorithm

now becomes 0(21FJ) times the time needed to determine a kernel of an acyclic graph . Since the

most important parameter of the performance of the algorithm is the size of the graph 's feedback

vertex set it is reasonable to look for the smallest such set. However it has been proved that the

corresponding decision problem is NP-coinplete ((6]). This implies that the attempt to determine

the feedback vertex set with the minimal cardinality will increase exponentially the complexity of

the whole problem. Hence we use a heuristic which computes a hopefully small feedback vertex

set. The algorithm which we use is polynomial but there is no guarantee that the feedback set

computed is minimal. Our method determines first the strongly connected components of the

graph, 8 1 , S2 , . .. Sn . For each of them a feedback vertex set is computed, by a depth search which

marks the nodes of the components which cause circularity. The union of all these sets is the

feedback vertex set of the graph .

3.3 Computational experience

In this section we give a high-level description of the basic parts of the algorithm. Following this,

we summarize the computational experience with the algorithm.

Description of the Algorithm

Procedure Find-Kernels (G, V, F);

begin

Choose a node i E F , Ui = 0.

If such a node exists then

begin

Assign ui = 1 and call Check-and-Expand(G, V' , cont) ;

if cont then call Find-Kernels(G, V', F) ;

end.

Backtrack, assign ui = -2 and call Check-and-Expand(G, V' , cont) ;

if cont then call Find-Kernels(G, V' , F);

end

else if Leads-to-Kernel(G, V') then output V' ;

Main Algorithm

begin

Find the strongly connected components of the algorithm .5'1 , 82 , ... , Sn ;

(*These sets are ordered according to their level (depth) in the components tree*)

foreach Si do find a feedback vertex set Fi;

8

Compute the union of Fi, F preserving their height-out degree ordering;

foreach i do Ui = 0;

Call Find-Kernels(G, V, F);

end

The procedure Check-and-Expand is responsible for checking the consistency of value assign­

ments (assigning the appropriate value to the boolean variable cont) and expanding those as­

signements as described in section :3.1. The procedure Leads-to-Kernel simply checks whether a

value assignment is a kernel.

In Table 1 we give some results of execution of the algorithm. Rows correspond to number of

nodes, while columns to graph densities.

5% 10% 15% 20% 25% 30% 35% 40% 45%

50 0.24 0.61 0.95 1.28 1.:37 . 1.34 1.31 1.34 1.:34

60 0.49 1.49 2.:37 3.08 3.14 3.11 2.91 2.69 2.51

70 0.96 :3.0 5.2 6.2 f} .9 5.4 4.8 4 .. 5 :3.9

80 2.17 7.1 12.6 14.1 13.8 11.0 9.7 7.9 7.1

90 :3.5 16.0 29.3 30.0 24.8 20.3 16.6 1:3.8 11.8

100 6.6 47.8 69.0 63.0 50.1 41.8 29 .. 5 22.9 18.9

CPU time in seconds.

Table 1

The algorithm was implemented in Pascal and the program executed in a VAX-8810 under VMS

V er 5.4.2 operating system. The time given is in seconds and each of them is the average of the

C.P.U. time of the execution of 10 different instances.

As it was expected the algorith is fast for sparse graphs. The small feedback vertex set of those

graphs leads to the efficient computation of their kernels. Recall that the edges between nodes

correspond to interaction between rules. We would expect that in most of the cases emerging from

default theories or logic programs, the graph will be sparse. Under this assumption the algorithm

bec.omes particularly useful for practical applications. On the other hand intersting enough is

9

the fact that the algorithm is also efficient for very dense graphs (density ~ 50%) . This can

be explained by the fact that choosing the nodes with the highest degree in each step , radically

reduces the size of the graphs to be considered in the next steps. Furthermore our experience has

shown that dense graphs have more kernels than sparse graphs. This is because in dense graphs

a small number of independent node.s with a high out-degree can dominate the rest of the nodes.

The algorithm performs worst in graphs with densities between 15% and 20%. In this case on

the one hand the feedback set is large enough, while on the other hand the degree of the nodes

is not large enough to considerably reduce the size of the problem.

This program differs from the one we described in that the procedure Check-and-Expand is

called in every even level of the search tree. The results have clearly shown that in this way, better

running times are accomplished. This is due to the fact that even though such a test reduces the

search space it is, overall, time consuming. Our experimentation with the algorithm showed that

calling the procedure every 2 or 3 levels gives the best running time.

Another sound, incomplete but efficient procedure for default theories could be the outcome

of the combination of the two algorithms presented in this paper. Namely given the graph G(~)

of a default theory ~ instead of computing a feedback vertex set, compute a set of nodes S such

that the graph G'(~) obtained after removing this set , is odd-loop-free. Then apply a procedure

similar to the one described above by first assigning values to the nodes of Sand then computing,

given the assignment of the nodes in S, the kernels of G'(~) . Obviously the procedure can

compute only a. subset of the kernels of G(~) but yet the time complexity is polynomial in size

of G(~) and the number of kernels of G'(~).

4 Conclusions

In this paper we presented complexity results showing that the problem of computing all the

kernels of a graph without odd cycles is intractable. Nevertheless we presented a polynomial

delay algorithm which computes a, hopefully large, subset of the kernels. This algorithm may

serve as a. sound, incomplete but tractable procedure for reasoning in default logic. We also

presented an algorithm which produces all the kernels of an arbitrary graph and its complexity

is exponential in the size of a feedback vertex set. This algorithm performs particurarly well in

the case of sparse graphs.

The results presented here are applicable in wide range of nonmonotonic formalisms such as

default logic, autoepistemic logic, logic programming and TMS. Graph theory allows us to tackle

the computational problems of those formalization within a. unified framework.

10

References

[1] E. Allender, The complexity of sparse sets in P, in Proc. Syrnp. on Structure in Complexity

Theory , Lecture Notes in CS 223 , pp. 1- 11 , 1986.

[2] C. Berge, Graph.s and Hypergraph.s (North Holland , 197:3) .

[:3] Y. Dimopoulos and V. Magirou, A graph theoretic approach to Default Logic., Information

f.<f Computation , to appear.

[4] Y. Dimopoulos and A. Torres, Graph Theoretical Structures in Logic Programs and Default

Theories, in preparation, 199:3.

[5] D. Johnson, C. Papadimitriou and M. Yannakakis, On generating all Maximal Independent

Sets, Infonnation Processing Letters, Vol. 27, 1988, pp . 119-123.

[6] M. Garey and D. Johnson, Computers and Intractability (Freeman, 1979).

[7] M. Gelfond and V. Lifschitz, The Stable Model semantics for Logic Programming, in: Logic

Programming: Proceedings of the 5th International Conference and Symposium, eds. R.

Kowalski and K. Bowen, 1988, pp. 1070-1080.

[8] C. Papadimitriou and M. Sideri, On finding Extensions of Default Theories, in: Proc. of the

International Conference on Database Theory, eds. J. Biskup and R. Bull , 1992, Lecture

Notes in CS 646.

[9] Papadimitriou C. , Yannakakis M., "Tie-Breaking Semantics and Structural Totality", Sym­

posium on the Principles of Database Systems, 1992.

[10] R. Reiter , A Logic for Default Reasoning, Artificial Intelligence, 1:3 , 1980.

11

	93-226_Cover
	93-2260002
	93-2260003
	93-2260004
	93-2260005
	93-2260006
	93-2260007
	93-2260008
	93-2260009
	93-2260010
	93-2260011
	93-2260012
	93-2260013
	93-2260014
	93-2260015

