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A TUseful formulas

1 Introduction

In [IL 2], Ryu and Takayanagi develop a holographic approach to calculate entanglement entropy (EE)
of quantum (conformal) field theories in the context of AdS/CFT correspondence [3]. For a subsystem

A on the boundary, they propose an elegant formula of EE

Area of y4
Sp=—7— 1
A e (1)
where 74 is the minimal surface in the bulk whose boundary is given by A and G is the bulk Newton
constant. Their formula yields the correct EE for two-dimensional CFTs and satisfies the strong

subadditivity of EE [27]
Sa+Sp > Saus + Sans. (2)

Recently, the conjecture eq.(I]) was proved by Lewkowycz and Maldacena [5]. See also [0l [7] for the
proof of Ryu-Takayanagi conjecture. Besides the gravity side there are also many interesting progress
in the field theory side, please refer to [, [@, 10, 11l 12, 13| 4] for more details.

The formula of Ryu and Takayanagi applies to quantum field theories dual to Einstein Gravity.

Thus the corresponding CFTs have only one independent central charge. To cover more general



field theories, one need to generalize their work to higher derivative gravity. A natural candidate of

holographic entanglement entropy (HEE) for higher derivative gravity would be Wald entropy:

oL
Swald = —QW/ddy\/?TGuufpo- (3)
nvpo

However, as pointed out by Hung, Myers and Smolkin[I5], Wald entropy does not give the correct
universal logarithmic term of EE for CFTs when the extrinsic curvature is non-zero. For Lovelock
gravity, we have another entropy formula: the Jacobson-Myers entropy [16] which differs from Wald
entropy by some extrinsic-curvature terms. It turns out that the Jacobson-Myers entropy [16] yields
the correct CFT results [I5, 17]. However, there is no similar entropy formula for general higher
derivative gravity. One do not know how to derive HEE from the first principle when the extrinsic
curvature appears.

The first breakthrough was made by Fursaev, Patrushev and Solodukhin [I8]. They develop a
regularization procedure to deal with the squashed conical singularities. Using this regularization
procedure, they successfully obtain HEE for the curvature-squared gravity. Soon after [18], another
important breakthrough was made by Dong [19]. Dong find that, similar to holographic Weyl anomaly,
the would-be logarithmic terms also contribute to HEE. Dong call such contribution as the ‘anomaly
of entropy’. For the so-called ‘general higher derivative gravity’ whose action including no derivatives

of the curvature S(g, R), Dong derive an elegant formula of HEE:

_ d oL 9’L 8K .ij Kzn
SEE = / a y\/g[aR + ; (8Rzizl8R2k2l )a do +1 L (4)
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where the first term is Wald entropy and the second term is the anomaly of entropy. Please refer to [19]
for the definition of ¢,. It should be mentioned that Camps [20] also made important contributions
in this direction. For recent developments of HEE, please refer to [21], 22| 23| 24 25, 26|, 27| 28] 29]
30, 31, 32].

So far, HEE for gravitational actions which include derivatives of the curvature is not known. In
this paper, we fill this gap by generalizing Dong’s work to ‘the most general higher derivative gravity’
S(g,R,VR,...). We find all the possible would-be logarithmic terms and derive a formal formula of
HEE for ‘the most general higher derivative gravity’. To get more exact formulas, we focus on gravity
theories whose action S(g, R, VR) includes only one derivative of the curvature. A natural guess of
HEE for S(g, R, VR) would be Dong’s formula eq.( ) with all @ be replaced by §. This is however
not the case. Instead, we find that new terms should be added to both Wald entropy and anomaly of
entropy even if we replace all @ by §. The generalized Wald entropy for S(g, R, VR) is

oL oL
Wald = 2 d? 2 Kz .
SG Wald 7T/ y\/g[ 6Rz2z2 * (aszZiij ! e C) }
oL oL
= 27T/ddy\/§ — = €uwbpo T 25— Kp g(nﬁ Ny — € €ow) (5)
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By ‘generalized Wald entropy’, we means the total entropy minus the anomaly of entropy. Interestingly,
a new term proportional to the extrinsic curvature appears in the generalized Wald entropy. This new

term only appears in dynamic space-time, thus it is consistent with Wald’s results for stationary black



holes. While for the anomaly of entropy, since the general case is very complicated, we set Kg;; = 0
for simplicity. If the anomaly of entropy is just Dong’s formula with 9 be replaced by 4§, it should

vanish after we set K,;; = 0. However, we get

>’L Q22ijQzzr
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Applying the above formula, we resolve the puzzle raised by Huang, Myers and Smolkin that the
logarithmic term of EE derived from Weyl anomaly of CFTs does not match the holographic result
even if the extrinsic curvature vanishes [I5]. We find that such mismatch comes from the contributions
of the derivative of the curvature. After considering these contributions carefully by using the above
formula, we resolve the HMS puzzle successfully.

For non-zero extrinsic curvature, we investigate a toy model with Lagrangian L = \{V,RV*R +
A Vo R W VR + A3V o R pe VX RFYP7. We derive HEE and prove it yields the correct logarithmic
terms of EE for 4d CFTs. We also compute HEE of the toy model by using FPS regularization [18]
and find full agreement with the results by using Dong’s method.

The paper is organized as follows. In Sect. 2, we briefly review Dong’s derivation of HEE for
‘general higher derivative gravity’. In Sect. 3, we generalize Dong’s method to the most general cases.
We obtain a formal formula of HEE for the most general higher derivative gravity. As an exercise, we
work out the exact formula for some interesting cone metrics. In Sect. 4, we check our formula by
using the FPS method. We also prove that our formula yields the correct logarithmic term of EE for
4d CFTs. In Sect. 5, we resolve the HMS puzzle. We derive the logarithmic term of entanglement
entropy for 6d CFTs from Weyl anomaly and find it is consistent with the holographic result for
entangling surfaces with zero extrinsic curvature but without rotational symmetry. We conclude in

Sect 6.

2 Dong’s proposal of HEE for higher derivative gravity

In this section, we briefly review Dong’s derivation of HEE for higher derivative gravity. The key
observation of Dong is that, similar to the holographic Weyl anomaly, the would-be logarithmic term

also contributes to HEE. As a result, corrections of entropy from the extrinsic curvature emerge:

0L K. Kz
= 327 [ d° g R EkL
58 321 / yv9( R aRikzl)al B, (7)

Dong calls such corrections as the anomaly of entropy. For simplicity, he focuses on the gravity theories
without derivatives of the curvature, S = S(g, R). We review Dong’s derivation of HEE in this section

and generalize it to the most general case S = S(g, R, VR, ...) in the next section.



2.1 The replica trick

A useful method to derive HEE is by applying the replica trick. Let us take Einstein Gravity as an
example. Recall that the Renyi entropy is defined as

R p
Zn:TTpn7 p= 10 9
oo =7 Y

where Z,, is the partition function of the field theory on a suitable manifold M,, known as the n-fold
cover.

For theories with a holographic dual we can build a suitable bulk solution B,, whose boundary
is M,,. Then the gauge-gravity duality identifies the field theory partition function on M, with the

on-shell bulk action on B,
Zn = Z[M,)] = e~ 5Bl (10)
We can derive the HEE by taking the limit n — 1 of Renyi entropy

Spe = lim Sy = =0, (log Tr[p"]|n—1 = =Tr[plogp]
= —0h(log Z, —nlog Z1)|n—s1 = 0n(S[Bn] — nS[B1])|n—1
= —0eSreg, (11)

where Sycq = (nS[B1] — S[B,]) is the regularized action and e = 1 — 1. For Einstein gravity, we have

1 Area
Sreg = —— dz”VG R = : 12
’ 167G Reg Cone ! ‘ 4G ( )
Then we can derive HEE of Einstein gravity as S = —’Y—g". Note that we work in the Euclidean

signature. So entropy formula differs from its usual Lorentzian form by a minus sign.

There is still one question need to be answered. On which surface shall we apply this formula?
We know the answer is the minimal surface for Einstein gravity. In general, according to [5], we
require that the analytically continued solution satisfies the linearized equations of motion near the

cone p = 0. We call this method the “boundary condition method”. The metric of regularized cone is
ds? = 2 dzdz + (gij + 22K .45 + 22K 25)dy' dy’ + o(p?), (13)

where z = pe'™, dzdz = dp? + p?dr?, A = —elog(p) and K is the extrinsic curvature. Let us compute
the linearized equations of motion dG,, = 87GOT... We focus on the divergent terms, going like 1/p

near the origin. Since the stress tensor is not expected to be singular, we have
€
0R,, = —— K, + regular terms. (14)
z

Requiring the above equation to be regular near the cone, we get K, = Kz = 0. This is just the

condition of the minimal surface.



There is another method to derive the minimal surface conditions. We call it the ‘cosmic brane

method’. Consider the action

1 €
Stotal = S Sp = — dPzVGR dP~%y.\/g. 15
total EH + 5B 167G n /Reg x + 4GN/ Y9 (15)

In the limit € — 0, we can treat Sp as the action of a probe brane and find its location by minimizing
Sp without back reaction on the bulk fields. This gives exactly the minimal surface.
We have shown how to derive HEE for Einstein Gravity and how to derive the location of the

cone. Now let us try to generalize it to higher derivative gravity.

2.2 Would-be logarithmic terms

According to [19], the metric of regularized cone is

ds® = 62A[dzd2 + 62AT(2dz - zd%)z] + (gij + 2K 452" + Qabijx“xb)dyidyj
+2ie?A(U; + Vo) (2dz — zdZ)dy’ + ..., (16)

where T, gij, Kaij, Qabij; Ui, Vai are independent of z and z, with the exception that Q.zi; = Qz.i;

contains a factor €24, The warp factor A is regularized by a thickness parameter a as A = —5lg(zz+

a?). As we shall show below, the result is independent of the choice of regularization.
The key observation of [I9] is that

€

43’

where z = pe’™. Naively the left hand of eq.(IT) is in order o(¢?). Magically it becomes in or-

der o(e) after regularization. The magic happens because would-be logarithmic divergence gets a %

/ pdpd, Ads Ae P4 = — (17)

enhancement:

1 1
dp—— ~ —. 18
/ Por=pe ™ Be (18)

As we know, the coefficient of a would-be logarithmic divergence is universal (like anomaly). So eq.(I7)
is independent of the regularization. In fact, we can give a very simple proof. It is known that the

following formula is universal
/dzd%eiﬁAazagA = —Te. (19)

This formula is usually used to derive Wald entropy. Performing integration by parts, we get

—TE

/ dzdze P40, A0; A = (20)

which is exactly eq.([T). It should be mentioned that we can drop the boundary terms safely. One

can check that the boundary term is zero after regularization.



2.3 Dong’s formula: HEE for four-derivative gravity

Now let us focus on the four-derivative gravity whose action S(g, R) contains no derivatives of the
curvature. By four-derivative gravity, we means the equations of motion are four order differential
equations. This is the case investigated in [19]. From the regularized metric eq.(Id), we can derive

the curvature with non-vanishing derivatives of A as

Rzgzg = €2A8282A + ceey
Rzizj = 2KZZ-]-6ZA + ...,
R.:.i = ie*2U;0.(20.A) + ..., (21)

where “

... denotes terms without derivatives of A. One can get the other curvatures by exchanging
2,%,i,j and complex conjugate. For the reason will be clear in sect. 3, R.z.; ~ €24U;0.(20.A) ~ 0
actually does not contribute to HEE. Thus, from eqs.(2IIT920), we can derive the HEE as
oL 0%L K.ii Kz
Spr = 2n [ d? ——— +16 e 22
BE " / y\/g[aRzizi + (8RzizlaR2k2l )al ﬁal ] ( )
The first term above is just the Wald entropy, and the second term denotes the anomly of entropy

[19]. It should be stressed that, unlike Kg;;, U; could not appear in the formula of HEE eq.(22]).

Otherwise, it would yield wrong results of entropy for stationary black holes. As we shall show in next

section, R.z.; = i€*U;0.(20,A) indeed do not contribute to HEE.

3 HEE for the most general higher derivative gravity

In this section, we investigate HEE for the most general higher derivative gravity. Firstly, we find
all the possible would-be logarithmic terms. Then we derive a formal formula of HEE for the most
general higher derivative gravity. Finally, we work out the formal formula exactly for some special

cone metrics.

3.1 General would-be logarithmic terms

To start, let us firstly briefly review the squashed cone. According to [19], the general squashed cone

metric is
ds? = e*A[dzdz + AT (2dz — 2dz)?] + 2ie*V;(2dz — 2dZ)dy’
+(gij + Qij)dy'dy’, (23)
where g;; is the metric on the transverse space and is independent of z,z. A = —$lg(2Z + a?) is

regularized warp factor. T, V;, );; are defined as

Pay.oan

oo
T= E E e2MAT ar.an X

n=0 m=0



Qij = Z Qi ay it (24)

Here z,z are denoted by x* and P, . ., is the number of pairs of z,Z appearing in a;...a,. For

n

examplea we have P..; = P.z; = Pz, = 17 P:.:=2and P, .= 0. Expanding T; V;Q to the

second order and using Dong’s notations, we have

T =Ty + Toz® + Ty apz®z’ + 26*ATy .z 22...,
V; = U; + Voz® + Vi apiz®a® + 26*2Vy Lz 22...,

Qij = 2Km'j£[:a + QQ abij,fa,Tb + 2€2AQ1 25ij ZZen-- (25)

How to split W (W denote T,V, Q) into {Wy, W1, ..., Wp} is an important problerrH. Equations of
motion may help to fix this splitting. We leave this problem to future research. In this paper, for
simplicity we keep only the highest order term Wp to illustrate our approach. It does not affect our
main results (eqgs.(@BRT29) and the results in Sect. 4 and Sect. 5) 4.

Using the squashed cone metric (23]), we can calculate the action of most general higher derivative
gravity and then select the relevant terms to derive HEE. Now let us discuss all the possible terms
relevant to HEE.

Let us denote the general derivatives by
d = cmmamor, (26)

where ¢™" are arbitrary constants. Since only o(e) terms contribute to HEE, we only need to consider
terms with at most two A: éA, DADA. For the first case 3A, it is easy to find that only the following
terms contribute to HEE

/dzd22m2"8;n+18?+1/1 = /dde(—l)er"m!n!@zagA

(=)™ hmlnlre. (27)

Equivalently, we have

OMHLONTLA = —red™mOnS (2, 7). (28)

IWe thank Dong and Camps for reminding us this problem.

2Let us focus on the splitting of Q:zij. For simplicity, we set Qg »z;; = 0 in this paper. Calculations show that
Qo 2zij does not appear in the generalized Wald entropy eq.(5). However, it does contribute to the anomaly of entropy.
To be consistent with Wald entropy, Qo »z;; must vanish in the stationary spacetime. This implies Qo »z;; is either
zero or a function of the extrinsic curvature K,;;. Recall that eq.(@) is derived under the condition Kgi5 = 0. Thus
Qo 2zij does not appear in eq.(@) either. Because we only use eq.(@) to resolve the HMS puzzle, so Qg .zi; does not
1Gij contributes to the

2
logarithmic term of EE. And the subleading term Qo .zij ~ o(Kz) is irrelevant with our discussions of Sect. 4.

affect our conclusion in Sect. 5. As we shall show in Sect. 4, only the leading term Q1 .z;; =



These terms contribute to the Wald entropy. Note that the delta function is defined as [ dzdzé(z,z) =
1.
As for the second case ADA, we should focus on the would-be logarithmic terms. That is because

only such terms could gain a = enhancement The only possible terms are

/ dzdzzmz" M AR AePA = / dzdz(—1)"*"m!nlo, Ad; Ae= P4

(—1)m+"+1m!n!%. (29)
Equivalently, we have
AL AGH Ae—PA = —%8;”825(2, 7). (30)

These terms contribute to the anomaly of entropy.

The simplest method to prove eq.(29) is by applying integration by part and dropping the irrelevant
terms such as é@zagAéA, OAOADA and so on. This is the method we used in eq.(29). We can also
prove eq.(29) by using Dong’s method. Recall that A = —£ log(22), we have 29+ A = —§(—1)m 2,

Thus we can derive

2
/pdpzmin(?;”JrlAa?JrlAe*ﬁA = / er"m'n'4p71+5€

1 m+nm|n| E (')
( ) B |O
~ _ m+n+1i ™
(-1) 4Bm.n.. (31)
Here = denotes equivalence after regularization.
It should be stressed that terms contains 9,9;A4, z0,A or z0;A in the second case would not
contribute to HEE,
90.0; ADA = 0,
9(20,A)0A = d(z0:A)0A = 0.

That is because 0,0 A = ( 2+

appear as a whole in the denominator. To cancel a?, we must have €

this is a 7~2 term rather than a would be logarithmic term %r‘e

77, SO 00,05 ADA at least in order e2a2 Note that (a? +r?) always

2
+

. So we can not cancel € and a?

—2— after integration. However

at the same time. Similar for the second case, d(z89.A)DA is also at least in order e2a2. Thus, it
does not contribute to HEE either. Maybe the most quick way to see that 0,0;A4 and z9,A do not
contribute to HEE is by identifying A = —£log(2Z). So we have 80.0:A = 8(z0,A) = 0, which can
not contribute to HEE at all.

Using eqs.([2729), we can derive HEE for most general higher derivative gravity as

SHEE = _aesreg|e:0

s ( S L0 95

=0 32
where a sum over « is implied. Note that, we drop all the D0,0: A terms after one variation of 9, A
in the second term of eq.([B2). This formula applies to the most general higher derivative gravity. It

is one of the main results of this paper. Let us comment on our formula (B2)).



Firstly, the first term of eq.(32]) is the generalized Wald entropy. It should be stressed that not
only R.s.; and its covariant derivative V" R,s,s but aslo many other terms may contribute to the

generalized Wald entropy. For example, we have
szgigj = KgijazagA + (33)

Clearly, the above term contributes to the generalized Wald entropy and is not included in the usual

Wald entropy 5 R55 e"eP?. Note that such new generalized Wald entropy appears only in the dynamic
pvpo

space-time. Thus nothing goes wrong with Wald’s formula which is designed for the stationary black
holes. We shall discuss the generalized Wald entropy in details in the next subsection.

Secondly, the second term of eq.([32) is the anomaly of entropy. In general, it is very difficult
to calculate such terms for the most general higher derivative gravity. Let us play a trick. Setting
A = —$log[zz] and keeping only the would-be logarithmic term %dzdée_BAz—Z, in the action, then
replacing it by %”, we obtain the final result.

1 €2
I - 3 —BaA
SAction = / 2dzdz Ea Cpe po= + ...

2
SAnomaly of entropy = Z Ca ﬂ_ (34)

Thirdly, we have found all the relevant terms with HEE in order O(A) and O(A?). A natural
question is whether terms in higher order O(A™*2) contribute to HEE or not. In general, only would-
be (log p)"*! terms may get an enhancement after regularization. Let us discuss these terms briefly.

Recall that we have

—TE

e P19, A0:A = 75@, z). (35)

Taking the derivatives of the above equation by 8, we can derive

—mnle

n_—BA .
Are? 0. A0zA = o

§(z, 2). (36)

Naively, the left hand side of eq.(36) is in order o(¢"*?). However it becomes in order o(e) after
regularization. Actually, this is the would be (log p)"™* terms. This kind of terms may contribute to
HEE for some crazy regularized cone metrics. However, if we focus on higher derivative gravity with
the regularized cone eq.(23) , only eq.(29) is already enough. That is because the factor e#4 always
appear as an entirety in the regularized metric and the action [19], and A"HAHA terms never appear
separately. Thus only the would-be logarithmic term contribute to HEE of higher derivative gravity.
Based on egs.([Z729), in Sect.4 we shall prove that our formulas of HEE yield the correct universal
logarithmic terms of EE for 4d CFTs and our results agree with those derived by applying the FPS
method [I8]. This can be regarded as a support of the fact that terms in higher order O(A"*?2) do
not contribute to HEE.

To summary, we have found all the would-be logarithmic terms and obtained a formal formula of
HEE for the most general higher derivative gravity. In the next section, we shall work out this formula

exactly for some squashed cone metrics.

10



3.2 HEE for six-derivative gravity

In this subsection, we investigate HEE of six-derivative gravity. By six-derivative gravity, we mean
the equations of motion are six order differential equations. Its action can always be rewritten in the
form S(g,R,VR). We firstly derive the generalized Wald entropy for the general cone metric and
then calculate the anomaly of entropy for some special cone metric.

Let us firstly investigate the generalized Wald entropy. It come from the first term of eq.([32). As
we have mentioned in the above section, in addition to R.z.; and its covariant derivative V,R.z.z,
many other terms may contribute to the generalized Wald entropy. We list all the possible terms

relevant to the generalized Wald entropy below.
R.z.: =€e*0.0:A+ ..,
V.R.:.: = ?40%0:A + ..,
V.R:.z = 2iU;e*20,0:A + ...,
ViR.z.; = 2K3;0.0:A + ...,
V.Rzizj = 2K3;0,0:A+ ... (37)

Using the above formulae, we can derive

OL
SG-wald = QW/ddy\/g[ TR
1 OL
- —0.(y/g——7— .
\/§ (\/Easziziz) Tec
L
OL
+ 2WKZU + c.c
zAlzizj
OL
+ 47(9VR . ‘Kzij—i-C.C } (38)
iflzz25
Take into account that I'Z; = —2iU;, T, = K%, T}, = —2Kz;, we obtain the generalized Wald entropy
as
OL OL OL
Wald = 2w [ ad? - 2 Kij+c.
SG Wald 7T/ y\/g[ aRzZzZ V,u avuRzizi N (aszEiZj ! e C) ]
oL OL
= 2 d? 2 Ksij <€) |- 39
v [ @il s+ 2 g Ko + o) (39)

Remarkably, a new term proportional to the extrinsic curvature K,;; appears in the generalized
Wald entropy. This new term vanishes for stationary black holes and thus is consistent with Wald’s
results. In general, self conjugate terms such as Tg,U;, Q.z;... could not contribute new terms to
the generalized Wald entropy, otherwise it conflicts with Wald entropy for stationary black holes.
That is because, in general, these self conjugate terms are non-zero in stationary spacetime. Indeed,
To,Ui, Q23 do not appear in our generalized Wald entropy eq.(339)) for six-derivative gravity. The
above generalized Wald entropy can be written in a covariant form as

SG-Wald = 27T/ddy\/§[ — MLEWJEPU + 2%[(@0@%71&,, — eﬂ#ea,,) ] (40)

nvpo
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Let us go on to study the anomaly of entropy. Because the general case is quite complicated we

consider some special cone metrics below. Recall that the squashed cone metric is
ds? = e2Adzdz + *AT(2dz — 2dz)?] + 2ie* V;(2dz — 2dZ)dy’ + (gij + Qij)dy'dy’. (41)
For simplicity, we firstly consider the case with zero extrinsic curvature. Thus, we have

T =Ty + Tox® + Topz®z® + ...,
Vi = U + Voz® + Vypga®a® + ...,
Qij = Qabijxafbb =+ ... (42)

Note that there is a factor e24 before Tz, V,z; and Q:zij. Let us calculate R, VR, and select all the
possible terms relevant to HEE. We have

R.z.: = e*0,0:A + ...,

V.R.sz = 24020 A + ...,

VR = 4Q.i;0. A+ ...,

V.R.z.j = —3ie* V,;0, A+ ... (43)

Note that to derive V,R,;.; and V. R,z.;, we have identified 2024 = —0,A and 2°93A = 20,A. In
general, we have z™9™ 1A = (—1)™m!d,A. We can read out these indentities from eq.(29). Using
eqs.(272943), we can derive HEE for six-derivative gravity as
oL 9’L Q22 Qzzhi
S — 2 dd 64 zz1) zZZ
AEE " / y\/g [5R22z5 + (aszzizlaviRikil )al ﬁal
azL ) szivaZk
aszzizlaviRizik @ Boq
L ) VaVar
8sz22zlav2R2z2k a1 Boq

+ 964 ( +cc

+144( ]. (44)

Now let us consider a more complicated case. We set V; = 0 but with general T', );;. For simplicity,
we only investigate a special action, S = f dxP \/@V#RVQMV“R”O‘M. Applying the formulae in the

appendix, we obtain the anomaly of entropy

SAnomaly - 3271'/ddy\/§ |:4Q25ijszij + 8K§inzijZ5ki - 2K2ppK2ijszij
- 2szpKzijQ22ij + 2K2in2ijQz21§) + (KZinZij)2 + szpKquKZinZij
— AK K K MK+ v WKL v W K9 — 40TK i K7
+ Ko KKK 4+ Raje R = 6Quzi KoY — 6Qzz.4 K7 | (45)
Using the above formula, we can calculate HEE of squashed cones [I8] in Minkowski spacetime. The
cylindrical and spherical cone metrics in Minkowski spacetime are given by

22 + z2 242z

ds®> = e*Adzdz + (a*+az+az+ ) + 5 )de? + dz?, (46)
2, 32 245
ds®> = e*Adzdz + (a*+az+az+ Z 48 222) (d6? + sin? 0dp?). (47)
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Applying eq.(@3]), we can derive HEE as

36m2L
SHEE = 7T3 , for the cylindrical cone, (48)
a
19272
SHEE = a—27T7 for the spherical cone. (49)

Note that the generalized Wald entropy is zero for the above cone metrics in Minkowski spacetime.
To summary, we have found a new type of Wald entropy, the generalized Wald entropy, for six-
derivative gravity. This generalized Wald entropy appears in dynamic spacetime and reduces to Wald
entropy for stationary black holes. It would be interesting to study the physical meaning of this
generalized Wald entropy. We leave it to the future work. We also derive the anomaly of entropy for
cone metrics with zero extrinsic curvature. As for non-zero extrinsic curvature, we study a toy model
of six-derivative gravity. In sect. 4, we shall check our results by using the method of Fursaev et al.

We shall also prove that our results give the correct logarithmic term of EE for 4d CFTs.

3.3 HEE for 2n-derivative gravity

We calculate HEE of 2n-derivative gravity in this subsection. By 2n-derivative gravity, we mean
the equations of motion are 2n-order differential equations. Its action can always be rewritten as
S(g,R,VR,...,.V" 2R). In general, the formula of HEE becomes more and more complicated when
higher and higher derivatives are involved. For simplicity, we consider only one special case here.

We choose the cone metric (23] with

(s

n—3

oo
T = ZniBTZ”_Z + 2n73T22 + E 82Apa1”’am Tal___amilfal....fam,
O~
n—3

m=n—2

oo
Vi=2""Vo i+ 2" Ve 5+ E AP am Vo T
~~ (i

n—2 n—2 m=n—1
o0
Qij=2""'Qz..zij + 2" 'Qz..545 + Z Ao Quy it (50)
m=n

n—1 n—1

We call this kind of cone as ‘the highest-order cone’. That is because only the highest-order derivative

of curvature V"~ 2R contributes to the anomaly of entropy in this case. We have

VI 2Ry = (n— DI N)Qx2...2ij0- A+ ...,

n—1
-2
VI 2R, = —iZ Cln 4 1e* Va5 ;0. A+ ...,
n—1 ~—
n—2
-3
V' 2R,z =~ °Tln+ 1)e* Ty 20, A + ...
n—2 Nt
n—3

(51)

In the derivation of the above fromulas, we have identified 2™9™ 1A with (—1)™m!d, A, which can

be read out from eq.(29]).
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Using eqs. 27295ET), we can derive HEE for 2n-derivative gravity as

SL 9L
S = 2n [ d? 4(n —1)I'[n)? iiQz.. 21/ Ba
pe = 2 [ dyyalsy— + A= )T T SR L R
n-— n—1
+ i8(n—2)T[nI0n + 1]( O°L ), Qz..2iiVz. 21/ By + c.
OVE P Runj0VE PRozy ™ RS ST T
n— n—2
(n—1)(n—-3) 92
4 Tl + 1 Ts =/Ba. +c
+ n—2 [n] [n+ ](8vg_2Rzizjavg_2Riziz)OCIQ\_Z"'_/IZ J \Z"'Z//ﬁ 1 +cc
n— n—3
(n—2)2 9 0?L
+ 16——=I'n+1 Ve 21Vs 51./Ba
CESER (avg—QRzgzlav;f‘QRgzzk)al & g g4/ Pen
n— n—2
. (n_g) 2 82L
—18 r 1 \% ijL zZ/ Po .
T (avZ‘QRzgziav;‘*RmZ)m &2 Z 2/ Pan Hec
n— n—3
(n—3)2 ) 9*L
+ 44— Tn+1 Ts..2T5 5/Bay]. 52
(n —2)2 [n+ 1] (3V272R25258V;}72R5252>°‘1 2205 2/8 J (52)

n—3 n—3
As for the general case, the formula of HEE is quite complicated. Like the holographic Weyl
anomaly, it seems very difficult ( if not impossible ) to derive an exact expression. Actually, there is
no need to work it out exactly. Instead, for any given action and cone metric, we can directly use

eqs.(2729) to calculate HEE.

4 Checks of our formulas

In this section, we shall check our the formula of HEE. Firstly, we use the FPS method to derive HEE of
six-derivative gravity and show it in full agreement with our formula derived in sect. 3.2. Secondly, we
prove that our holographic formula yields the correct logarithmic term of entanglement entropy for 4d
CFTs. For simplicity, we only focus on a toy model with the action S = [ da” \/@VHRWBWV“R”""BV

in this section.

4.1 The FPS method

In [I8], Fursaev et al develop a regularization procedure to calculate the integrals of polynomial
curvature invariants on manifolds with squashed conical singularities. By studying the cylindrical and
spherical entangling surfaces in Minkowski spacetime, they obtain a formula of HEE for curvature-
squared gravity. However, they do not show many details about the calculations. In this subsection,
we firstly recover the key point in their derivations and then derive HEE for the six-derivative gravity
S = [dzP \/@VHRWBWV”R”""BV for some cone metrics. For simplicity, we focus on the anomaly of
entropy in this section.

Let us start with regularized cylindrical and spherical cone metrics in Minkowski spacetime.

2 2n 2 2
ds? = %d7'2 +dr® + (a® + 2ar" cos T + $ + %)d¢2 + d2?, (53)
2 2n 2 2
ds® = T—2d72 +dr® + (a® + 2ar" cos T + $ + %)(d6‘2 + sin® 0dg?). (54)
n

14



Here we use the regularized cone metric equivalent to Dong’s [19] and Camps’ [20] but different from
[18]. That means there is a factor €24 before Q.z;; if we transform the above cone metrics (G3I54)
into the form of eq.(23). It should be mentioned that, if we take the FPS ansatz for the regularized
cone, we also get the same results by applying Dong’s method and the FPS method respectively. To
avoid the singularity, we firstly do the integral fOQ "™ dr for an integer n and then analytically continue
n to 1. The key point which does not be pointed out clearly in [I8] is that one only need to select the

would-be logarithmic terms in the integral:
Saction = /drdTZ Cp(n — 1)%rmn=m=t
SAnomaly of HEE =— Z Cm2_7T (55)
' m

For examples, let us derive HEE for the curvature-squared gravity. This is the case investigated in
[18]. Note that the Wald entropy of curvature-squared gravity vanishes in Minkowski spacetime. Thus

we only need to consider the anomaly of entropy. For the cylindrical metric (53)), we obtain

321 2,2 -1 2,.2n—3 L
/d$4\/aRuaﬂvRVa6’y = /dT‘ nr (TL ) " — SHEE = 167‘1’2—,

a a

/ da*VGR,, R = / dTSL"QWQ(”a_ DI S — 4725,

/ dz*VGR? = o(n — 1) = Sypp = 0. (56)
Similarly for the spherical metric (54]), we have

/d:zc‘l\/aleng”aBW = /dr 128n%7%(n — 1)%r?" 3 = Sypp = 6477,

/d:v4\/§RWR“” = /dr 64n’m%(n —1)%r?""3 = Sypp = 3217,

/ dz*VGR? = o(n —1)? = Sppp = 0. (57)

Eqs. (BOET) agree with those of [18].
Let us go on to calculate HEE for the six-derivative gravity S = [ dxP \/@VMRM,@VV”R”O‘BT

After some complicated calculations, we get

16L(—1 + 1)n?72 (40 — 80n + 39n2)r47=5 4 (4 + dn — 3n2)p2n=3)
C T " 3 + ...
a
36721
R (58)
for the cylindrical metric (53] and
g — /dr128(_1 +n)?n?r2(2(1 - n)(gg —5)rdn=5 4 (n? — 4)p2n—3) .
a
19272
T e (59)

for the spherical metric (54)). Compare eqgs.([E8HBEI) with eq.(@8) in sect. 3.2, we find full agreement.

This can be regraded as a double check of our results in sect. 3.2.
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4.2 Logarithmic term of EE for 4d CFTs

In this section, we prove that our formula of HEE yields the correct logarithmic term of EE for 4d
CFTs. This is a nontrivial check of our results. For simplicity, we focus on an example of 6-derivative

gravity in five-dimensional space-time as follows:

S = 16% / d%\/—»(?(]? + %2 +MVLRVER + MV R VR + A3V o Ry pe VO RFVP7).
(60)
According to [33] , the expected logarithmic term of EE for the dual CFTs is
SEE = log(l/é)% /E d*zvVhlaRs — c(Chychpg — k" Pk + %kéakfb)]a (61)
where the central charges a and ¢ is given by [34]
a:%, C:%-l-sﬂ'/\g. (62)

Thus, it is expected that HEE of V#RV“R and VQRWVO‘RW do not contribute to the logarithmic
term, while HEE of VQRWPUVO‘RWP" yields a logarithmic term as

1
— 4)31og(1/6) / B xVh[CUhgehpg — K kyap + ik;akfb]. (63)
b))

As we shall prove below, this is indeed the case.

Let us firstly compute the generalized Wald entropy. Applying the formula ([@0), we get

1
SG-Wald = Z /dpd2y\/ﬁ[ -1+ 2\0R + )\QTLWJDRMU + )\3€#VEPUDRHVPU

+2)\2V°‘RWK¢;(nﬁ#na,, - eﬁﬂem,)

+2)\3V°‘R“’)V”K5PU(nﬁunaV - eﬁuem,) ] (64)

Note that we work in the Euclidean signature. So HEE is different from the Lorentzian one by a
minus sign. The first term of the above equation is just the Bekenstein-Hawking entropy. According

to [33} 18], it gives a logarithmic term as
1 1
log(1/0) ¢ / xvVh[Ry — (Choehpg — k' kyap + 5k:;ak:fb)]. (65)
b

Thus we only need to consider the other terms of eq.([G4]) below.

For asymptotically AdS space-time, we can expand the bulk metric in the Fefferman-Graham gauge
ds® = Guudatde” = L dp? + L gy dvidad 66
S—W:v:v—4p2p pgwxxu ()

(3)

d
o+ h ijlog p) + .... Interestingly,

€3]
g 1]

©) e P
where gij = g,; +pgi; + - +p2(

(0)
(1) 1 (0) R (0)

gij:_m(Rij_mgij)a (67)

can be determined completely by PBH transformation [35, [36] and thus is independent of equations

of motion. However, the higher order terms (fz)ij, (E)ij... are indeed constrained by equations of motion.
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Fortunately, for the logarithmic terms of HEE in 5-dimensional space-time, we only need to expand

the metric to the subleading order (é)ij. Let us define a useful quantity R as

R,uupa = R,uvpcr + (G,quua - G;LUGVp)v

Ry = Ry +dG,,,
R=R+d(d+1). (68)

According to [34], we have

R ~ 0(/)2)7 Rij ~ 0(/))7 Rip ~ O(p)a Rpp ~ 0(1)

R 1. - 1
Ripjp ~ 0o(=), Rpijk ~ o(—
pip (p) pig (p)
. Cyi
Riju = ;“ . (69)

Note that eq.(6T) is used in the derivation of above equations.
Denote the transverse space of the squashed cone by m. The embedding of the 3-dimensional
submanifold m into 5-dimensional bulk is described by X# = X*(0%), where X* = {x%, p} are bulk

coordinates and 0% = {y%, 7} are coordinates on m. We choose a gauge
T=0p, har =0, (70)

where hog is the induced metric on m. Let us expand the embedding functions as
. , ©. .
X(my) = X'(y") + X' (y) 7 + ... (71)

Diffeomorphism preserving the FG gauge (66) and above gauge (0) uniquely fixes a transformation
),
rule of the embedding functions X*(y*, 7) [37]. From this transformation rule, we can identity X*(y*)

with 1&%(y)
(1), 1

X'(y") = 7+ ("), (72)

where k° is the trace of the extrinsic curvature of the entangling surface ¥ in the boundary where

CFTs live. From eq.(T]), we can derive the induced metric on m as

1 1 . 0 1,0 (€))
By = 4—72(1 + Zklk]gijT—i—---), hap = ;(hab—i— oy T + ) (73)
with
(0 @ © (6Y) 1. . .
hav = 0 X'0X7 Gy hap =Gy — Ek%gb?ij. (74)
Thus, we have
© 1
Vh = hﬁ+.... (75)
Using eq.(TIl), we can also derive the extrinsic curvature K of m as
i ;. Ko
ab:( ab_ghab)—i_"' (76)
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Note that all the other components of K" ap are higher order terms which do not contribute to the
logarithmic terms.

Now let us begin to derive the logarithmic term from the generalized Wald entropy eq.(64]). Note
that O ~ o(1) and (e"”,n*") take the same order as G*”. Applying eqs.(EATHTE), we find that,
in addition to the Bekenstein-Hawking entropy, only e*”e¢”’0R,,,,» ~ o(p) in the generalized Wald

entropy eq.(@4) contribute to the logarithmic terms. After some calculations, we can derive

Sc-wald = i / dpd®yV/h[Ase"” " OR o + ..
)
= i/ddey_};[)\ e kl(4p2V \Y kal +pg vanRijk1)+...]
(0
= /d d2 (o) J(O)kz( SCijkl) N ]

o
- —4/dpd2 [ s(R*hI'Cij) + ...]
= —4)slog(l/6) / dzy\/; (h*h**Capeq) +

(77)

It agrees with the expected logarithmic term of EE for 4d CFTs with zero extrinsic curvature eq.(G3)).

In the above derivations, we have used the following useful formulae

- Cijri

Cij Ly ()% (0)kl
J
V,V,Riju = 27

9"V, Vi Rijry = —12-2%

3 02 Cijkt = 2h“°h*Capea, po =0°.  (78)

Now let us go on to compute the logarithmic term from the entropy eq.([@H). Recall that the

squashed cone metric is
ds? = e*Adzdz + *AT(2dz — 2dz)%] + 2ie* V;(2dz — 2dZ)dy" + (gij + Qij)dy'dy’ (79)
with

T="Ty+Toz® + ...,
Vi = Ui + Vo + Vya®a + ...,

Qij = 2Kaij$a + Qabijxafbb + QabcianIb{EC.... (80)

Note that there is a factor 24 before Q.z, Q..z, Q.zz and V.s. It should be stressed that, for asymp-
totically AdS space-time the submanifold m is very close to the boundary, thus we cannot choose

T,V;, Qj freely. Instead, they should approach to the value for AdS. On the leading order, we have

1 1 4
To=—-5, Ui=0, Vo =0, Q.zi5 = §Gz‘j, Qzzij = Kzileé‘v Qz2zi5 = 3

K. 1
12 j (81)

Let us derive the above formulas. For simplicity, we focus on pure AdS below. It is expected that it

gives the leading value of T, V, @ for asymptotically AdS.
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According to [19], we have

Rapea = 12T0eabecd,

Ropei = 3eanVeis

Rapij = 2eap(0:U; — 0;U;) + G (K i Kyit — Kair K1),

Ruij = [eab(0:Uj — 0;U;) + 4G UU;| + GH K ik Kyit — Quabij

Rii = rikj + G(Kaa Ky — Kaij Koni)- (82)

Comparing the above formula with R0 = —GppGro + GoGrp, We get
1

12’

‘/ci = 07

Ty =—

(0:U; — 0;U;) = 0, G* (K oju Kyt — KairKpji) =0,
GaupGij + 4G UiUj + GM K ik Kpit — Qapij = 0,
rikji + GijGri — GuGrj + G (Ko Kpjr — Kaij Kort) = 0. (83)

Let us make a brief discussion. Since F; = 0;U; — 0;U; = 0, we can always set U; = 0 locally. Since
K is in higher order, from the last equation above, we find G;; is the metric of AdSs on leading order.

To derive the leading order of @)..z;;, one need to compute VzR.;.;. To leading order, we have

ViR.izj = —4To K ij + 2K ,,Q g )y — 3Qzzzij + o(K?) =0. (84)

2Zj

Taking into account Ty = —15, Q2215 = 2 Gij, we get Q..zij = %Kzij + o(K?). Now we can calculate

the logarithmic term from the anomaly of entropy.

Without loss of generality, to the leading order, we can choose the cone metric as

1 1 2A 5
ds? = e*A[dzdz — E62A(2dz — zdz)?] + %d/)2
Nav(1 + €2422) + \/p((22 + §222)kzap + (22 + 5222)kzap)

dy®dy® 85
g (85)

where we have replaced K by k by using eq.(76) and k.ap = (kzap — %hub) is the traceless part of
k.qp. Substituting the above squashed cone metric into eqs.(TOTTATTT]), we get

1 _ _
SAnomaly = 16)\3 / dpd2y2_p\/ﬁ[kzabkgb + O(p)]

1
43 log(1/6) /,: A2V h(k kg — 5%%5,) (86)
Combining egs. [GITTRE), we finally obtain the logarithmic term of HEE as
1 1 1
Spr = log(l/d) / d%\/ﬁ[(E)Rg — (g5t AN3)(C Rgehipg — K*Chyap + §k;“k?b)], (87)
b

which exactly agrees with the CFT results eq.(@3]). Now we finish the proof.
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5 Resolution of the HMS puzzle

Hung, Myers and Smolkin find that the logarithmic term of EE derived from the trace anomaly of 6d
CFTs agrees with the holographic result for entangling surfaces with rotational symmetry. However,
mismatch appears when the entangling surfaces have no rotational symmetry even if the extrinsic
curvature vanishes [I5]. We clarify this problem in this section. After considering the anomaly of
entropy from the higher-derivative term C*V2(C; 1, we resolve this problem successfully.

Let us first review the approach of calculating the logarithmic term of EE from the trace anomaly

for 6d CFTs [15, [38]. In six dimensions, the trace anomaly takes the following form

3
(T';) = Bnl, +2AEs, (88)

n=1

where Fg is the Euler density and I; are conformal invariants defined by

L = CpuC™ic,M, .  L=c;"Cc,™C,,"

Is = Cim(V?6, +4R"; — gRa;i)Ojklm . (89)
According to [15, 33, B8], the universal logarithmic term of EE can be identified with HEE of the

trace anomaly. For entangling surfaces with the rotational symmetry, only Wald entropy contribute

to HEE of the trace anomaly (88). Thus, we have

Ser = log(€/6) /d4x\/_ [2# Z B, E” Em+2AE.| (90)
b
where
oI ~ij = jmn il =~ = 1 iklm ~Jj ~ 1 ij
6Ri;kl‘€]€kl = 3(0] kalnaijEkl—ZCkl i G35 + —OW Cijkl) ;
oI s o ) 5
aRUle gig, = 3 (Cklmn Omn” Eij Ert — O’Lklm Ojklm gi + = CZJk Cijkl> , (91)
s iz, — o(ocM 4am,cmmt — S peim) s 5, — 4k Ry, g
8Rijkl Kkl = m 5 ij €kl ik g]l

. 12
+4 0 I Gk — C”kl Cijkt -

The above result can be reliably applied for entangling surfaces with rotational symmetry. However,
Myers et al find that it is inconsistent with the holographic result for entangling surfaces with zero

extrinsic curvature but without a rotational symmetry. Assuming the conditions
Kaij = 07 Rabci = 36(11)‘/07; - O, (92)

they derive the holographic result for Einstein gravity as

1 1w )

1 ..
SHEE—27r10g5€5 /d"‘x\/_[zh” G+ (h” ”)2_1 g ;W% g gAY (93)

8
The mismatch between holographic result eq.(@3) and CFT result eq.(@0) becomes

AS = 4w Bslog / dzvh ( Cpn CmmRlgLtat — Cpt O G (94)
b))
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20" S C™ G Gy — 20" S C™ T g

Although eq.(@4) is derived in the case of Einstein gravity, Myers et al argue that it can be applied
to the general case.

Now let us discuss the origin of the mismatch. First of all, as argued by Myers et al, the holographic
results are the correct ones. Thus, something goes wrong with the CFT results. As we shall show
below, some contributions are ignored in the CFT calculations. Following the assumption eq.(02), we
focus on the cone metric @) with K,;; = Vo = 0. According our formula eq.(52), in addition to the
Wald entropy, a new term proportional to Q2 also contribute to HEE

82L szi 'Qiikl
_ d J
5 = / d y\/_[ zzzz + 64(8szzizlav2REkil )al ﬁal ] ’ (95)

when the derivative of curvature is included in the action. Since only Is ([8Y) contains such terms

C*N2Cj11, so the mismatch AS should be proportional to Bs. This explains the proposal of Myers
et al that AS ~ Bjs. Now let us calculate the contribute from CijleQCijkl = —VmCijlemCijkl
exactly. Applying the formula (@5), we can derive the contribution ignored in eq.(@0) as

AS; = 1287B3logd / d*aevVi(Q..ijQs: "), (96)

where Qapij = Qabij — %gij is the traceless part of Qapij-

Substituted the cone metric [@Il) with K;; = Vo = 0 into eq. ([@4]), we obtain
AS = 1287 B3 log § / AR (Qrs; Osn ), (97)
)

which is exactly the same as eq.(@6). Thus taking into account the contributions from the higher-

derivative term C*'V2C, 1, the CFT results exactly match the holographic ones.

6 Conclusions

In this paper, we investigate HEE for the most general higher derivative gravity. In particular, we
find a new class of generalized Wald entropy. It appears in the general higher derivative gravity and
reduces to Wald entropy for stationary black holes. We also find all the possible would-be logarithmic
terms which contribute to the anomaly of entropy. Combining the generalized Wald entropy and the
anomaly of entropy together, we obtain a formal formula of HEE for the most general higher derivative
gravity. We work out this formula exactly for 2n-derivative gravity for some interesting cone metrics.
We prove that our formula yields the correct universal term of entanglement entropy for 4d CFTs.
This is a strong support of our results. As another check, we use the FPS method to derive HEE of
six-derivative gravity and get full agreement. As an important application of our formulae, we solve
the HMS puzzle that the logarithmic term of entanglement entropy derived from Weyl anomaly of
CFTs does not match the holographic result even if the extrinsic curvature vanishes. We find that
such mismatch comes from the contributions of the derivative of the curvature. Taking into account

such contributions carefully, we find that the CFT result match the holographic one exactly.

21



Acknowledgements

R. X. Miao is supported by Sino-Germann (CSC-DAAD) Postdoc Scholarship Program. W. Z. Guo
is supported by Postgraduate Scholarship Program of China Scholarship Council. We thank Miao Li
for his encouragement and support. We are grateful to School of Astronomy and Space Science at
Sun Yat-Sen University for hospitality where part of the work was done. We thank Stefan Theisen,

Ling-Yan Hung and Tadashi Takayanagi for valuable comments and discussions.

A Useful formulas

In the section, we list some formulas which would be useful for the calculations of HEE for six-

derivative gravity. Applying these formulas, we compute HEE for some toy models of six-derivative

gravity.
Vz Rzizj = 2Kzij628zA - [2azAKgiszkj
— 250 A(K, (Qasty — 2K Kzng) + (i 6 )], (98)
Vs Rzizj = 282A(VgKZ” + 4ZU5KZW) + 12’L'282A‘/55Kzij

+ [223ZAszj (QiUszsi + " (0; K215 + 05 Kz1p — 01K z5i) — QVZKgnk) + (i < j)}(99)

Vz Rzizi = _3ie2AazA‘/zi
+ 2ie* 20, A(K., Vo, — K, Vi), (100)
V= R.z.i = —2iU;*40.0; A, (101)
Vi Rzizj = _2Kzijaz62A - 2K2iszkjazA
— 220, AK 1 (Qsz1:9" — 2K " K2 00), (102)
Vz Rziij = _2azAK2inKznj
— 228ZA(szan2ni — 2K5mnK2niszj), (103)
Vz Rziij = 26ZAK2jnKzni
— 20, A(K,;"Qzznj + K" Kz Kopi) — (i 45 j) (104)
Vs Reije = 20.A0;K i + 4iU; K i, + Ko7

+ 220,A|3iK;; Ve + 2iU K 1 Kzij — (i 5 §) — 2K, KL ym
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+ ngm(aiszm + aszim - aszik) - (.7 < k)7 (105)

Vi Raije = 4e 0, A(Kaj Ko — KanKaij)
+ 4672A28ZA(Qgglezij - szlezik)- (106)
AV Rikjl = 4672A8ZA(KZUK2M + Kiinzkl)
467?20, A(K .ijQzzm + KonQzzi) — (j ¢ k), (107)
Vz Rzizj = 2KzijazazA + BZA(4QZZU - 8KzilKle)

— *420,A| - 24T K ij +1i(0;Vai + 0:Vay)

— 2iUl(8szli + 0 K5 — 0 K.j;) — Qi‘/zk’yfj

— 8UNU;Keki + UiK i) + 4 24 (k. Quzi + K ;' Q2z15)

— Qe — 16K K Ky (108)
Applying the above formulas and egs.(Z729), let us compute the anomaly of entropy for some toy

models.

For Ly = v7,R<y" R, we obtain
Sanomaty = 167 / dyd\/g[za[tr(Kng)]? + K2K2 - 2Kngtr(Kng)}, (109)
For Ly = </, R, 7" RPY, we get
Sanomaly =  —47 / dyd\/§[4OTKzK5 — 6K2%trK2 + 2K, K-tr(K.K;) — 2Q.:K. K-

~K2K2 - 8trK*trK? — 8tr(K.Q.:) K> + 18tr(K2K,)K,
—8K tr(Qs:K,) + 8tT(Kz2)Q22 + 4K§sz —40Q,.Qzz
+4QZZEKE — S(tTKng)Q — StT(KszKgKg) — 8tT(KzK2KZK5)
— VEU) Kz v(y)l Kg — 2Rzkinzk/i/j/gkjgkljlgii, + (Z < 2) R (110)

where K, = ¢¥ K,ij, tr(K,Kp) = ginM-lejl, Qab = 9 Qapij, ete.
For Ly = V, Ryap, V*R"*P7| we have
SAnomaly = 3277/ddy\/§ |:4Q25ijszij + 8KginzijZ5ki - 2K2ppK2ijszij
- 2szpKzijQ22ij + 2K2in2ijQz21§) + (KZinZij)2 + szpKquKZinZij
— 4K K KK+ VWKL v W K — 40T K, K.Y

+ KK VKoK 4 R RS — 6Q..20 K57 — 6Qzz.i K 7. (111)
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