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In quantum field theory the “normal ordering” of operators is routinely used, which amounts to
shuffling all creation operators to the left. Potentially confusing is the occurrence in the literature of
normal-ordered functions, sometimes called “Wick transforms.” In this paper, we introduce the
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I. INTRODUCTION

Normal ordering was introduced in quantum field theory
by Wick in 1950 to avoid some infinities in the vacuum
expectation values of field operators expressed in terms of
creation and annihilation operators.1 The simplest example
of such infinities can be discussed starting from only nonrel-
ativistic quantum mechanics and the simple harmonic oscil-
lator; an infinite number of harmonic oscillators make up a
free quantum field. �The reader who wishes a quick reminder
of some basic quantum field-theoretical concepts may find
comfort in Appendix A�.

In addition to the usual concept of quantizing by promot-
ing fields to operators, modern quantum field theory uses
functional integrals as basic objects. In the functional inte-
gral formalism we calculate physical quantities such as scat-
tering cross sections and decay constants by integrating over
some polynomials in the fields and their derivatives �see, for
example, Refs. 2 and 3�. In the examples considered here, the
fields we want to integrate are equivalent to functions on
spacetime. As mentioned, a first step toward removing infini-
ties and giving mathematical meaning to calculations in the
operator formalism is normal ordering. The analog of this
ordering for functional integrals is called the “Wick trans-
form”.

In this paper we introduce the reader to an interesting con-
nection, which is usually not discussed in introductory treat-
ments of quantum field theory, among normal ordering, Wick
transforms, and Hermite polynomials. We will also be con-
cerned with some basic questions that are usually glossed
over, i.e., what does the functional integral really mean? Al-
though a complete answer is not known and beyond the
scope of this paper, we intend to give some flavor of the first
steps toward addressing this question and how the Wick
transform has been put to work in this regard.

The paper is organized as follows: We will use the har-
monic oscillator to exhibit the connection between Wick-
ordered polynomials and the familiar Hermite polynomials.
Then we turn to Wick transforms in the functional integral
formalism of field theory, where we show that there is again
a connection with Hermite polynomials. Several approaches
to Wick transforms are compared and shown to be equiva-
lent. In passing, we observe how the standard quantum field
theory result known as “Wick’s theorem” follows directly in

this framework from well-known properties of the Hermite
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polynomials. Finally, we provide a brief example of how the
Wick transform can be utilized in a physical application.

II. WICK OPERATOR ORDERING

A. Simple harmonic oscillator

The Hamiltonian operator for the simple harmonic oscil-
lator in nonrelativistic quantum mechanics has the form:

H = 1
2 �P2 + Q2� , �1�

where we have, as usual, hidden Planck’s constant �, the
mass m, and the angular frequency � in the definitions of the
dimensionless momentum and position operators,

P �
1

��m�
p̂, Q ��m�

�
q̂ , �2�

so that

�P,Q� = − i . �3�

If we define the creation and annihilation operators a† and a
by

a† =
1
�2

�Q − iP� , �4�

a =
1
�2

�Q + iP� , �5�

so that

�a,a†� = 1, �6�

we find that

H = 1
2 �P2 + Q2� = 1

2 �a†a + aa†� = a†a + 1
2 . �7�

The eigenvalues of this Hamiltonian operator �see for ex-
ample, Ref. 4� satisfy the sequence:

En = n + 1
2 , n = 0,1,2, . . . . �8�

In particular, the ground state energy �or zero-point energy�,
which is the lowest eigenvalue of the Hamiltonian, is non-
zero:

H�0� = 1 �0� . �9�
2
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This zero-point energy has observable physical conse-
quences. As an illustration, it is possible to measure the zero-
point motion of the atoms in a crystal by studying the dis-
persion of light in the crystal. Classical theory predicts that
the oscillations of the atoms in the crystal, and therefore also
dispersion effects, cease to exist when the temperature is
near absolute zero. However, experiments demonstrate that
the dispersion of light reaches a finite nonzero value at very
low temperatures.

In quantum field theory a free scalar field can be viewed as
an infinite collection of harmonic oscillators as described in
Appendix A. If we proceed as before, each oscillator will
give a contribution to the zero-point energy, resulting in an
infinite energy, which seems like it could be a problem.

One way to remedy the situation is to define the ground
state as a state of zero energy, which can be achieved by
redefining the Hamiltonian. We subtract the contribution of
the ground state and define a Wick-ordered �or normal-
ordered� Hamiltonian, denoted by putting a colon on each
side, by

:H: = : 1
2 �a†a + aa†�: � 1

2 �a†a + aa†� − 1
2 	0�a†a + aa†�0�

� a†a . �10�

In this example the definition of Wick ordering can be
thought of as a redefinition of the ground state of the har-
monic oscillator.

In the last equality in Eq. �10� we see that all creation
operators end up on the left. A general prescription for Wick
ordering in quantum field theory in a creation/annihilation
operator formalism is “Permute all the a† and a, treating
them as if they commute, so that in the end all a† are to the
left of all a.” The resulting expression is the same:

:H: = a†a . �11�

B. Wick ordering and Hermite polynomials

The first connection between Wick ordering and Hermite
polynomials arises when we study powers of the �dimension-
less� position operator Q. For the harmonic oscillator the
eigenvalue of Q2 gives the variance of the oscillator from
rest. We have Q= �a†+a� /�2, but to avoid cluttering the
equations with factors of �2, we will study powers of just
�a†+a�:

�a† + a�2 = a†2 + a†a + aa† + a2, �12a�

=a†2 + 2a†a + a2 + �a,a†� , �12b�

=:�a† + a�2: + �a,a†� , �12c�

=:�a† + a�2: + 1 �by Eq. �10�� . �12d�

If we arrange terms in a similar way for higher powers of
�a†+a�, we find:

�a† + a�3 = :�a† + a�3: + 3�a† + a� , �13a�

�a† + a�4 = :�a† + a�4: + 6:�a† + a�2: + 3. �13b�

We can summarize the results using the notation a†+a=q,

q2 = :q2: + 1, �14a�

3 3
q = :q : + 3:q: , �14b�
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q4 = :q4: + 6:q2: + 3. �14c�

Because we can recursively replace normal-ordered terms on
the right by expressions on the left that are not normal-
ordered �for example :q2: can be replaced by q2−1�, we can
also invert these relations:

:q2: = q2 − 1 = He2�q� , �15a�

:q3: = q3 − 3q = He3�q� , �15b�

:q4: = q4 − 6q2 + 3 = He4�q� , �15c�

where the polynomials Hen�q� are a scaled version of the
more familiar form of the Hermite polynomials Hn:

Hen�x� = 2−n/2Hn�x/�2� . �16�

In some of the mathematical physics literature, the Hen are
often just called Hn. Some of the many useful properties are
collected in Appendix B for easy reference �a more complete
collection is given in Ref. 5, for example�.

Because of the relation between operator Wick ordering
and Hermite polynomials, the literature sometimes defines
“Wick ordering” in terms of Hermite polynomials:

:qn: � Hen�q� . �17�

Although q is an operator composed of noncommuting op-
erators a and a†, this alternative definition naturally general-
izes to Wick ordering of functions. We will explore this idea
in the next section.

One reason that the connection to Hermite polynomials is
not mentioned in the standard quantum field theory literature
is the fact �which was also Wick’s motivation� that the
normal-ordered part is precisely the part that will vanish
when we take the vacuum expectation value. The traditional
way to define normal-ordering, the one given at the end of
Sec. II A �“put a† to the left of a”�, yields for powers of q:

:qn: = 

i=1

n �n

i
��a†�n−iai, �18�

which vanishes for any nonzero power n when applied to the
vacuum state �0�.

In other words, because we know that normal-ordered
terms vanish upon taking the vacuum expectation value, we
may not be interested in their precise form. However, if the
expectation value is not taken in vacuum �for example, in a
particle-scattering experiment�, this part does not vanish in
general, and there are many instances where the actual
normal-ordered expression itself is the one of interest.

III. FUNCTIONAL INTEGRALS AND THE WICK
TRANSFORM

Most contemporary courses on quantum field theory dis-
cuss functional integrals �sometimes called path integrals;
however, only in nonrelativistic quantum mechanics do we
really integrate over paths�. In a functional-integral setting,
the counterpart of the Wick ordering in the operator formal-
ism is the Wick transform. This transform applies to func-
tions and functionals. It can, like its quantum-mechanics
counterpart �Eq. �17��, be defined by means of Hermite poly-
nomials. But first, we briefly skip ahead and explain why

such a transform will prove to be useful.
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A. Integration over products of fields

In the functional integral formalism, physical quantities
such as scattering cross sections and decay constants are cal-
culated by integrating over some polynomial in the fields and
their derivatives. The algorithmic craft of such calculations is
described in textbooks such as those of Peskin and
Schroeder2 and Ryder.3 Although there are examples of
physical effects that can be studied with functional integral
methods but not with ordinary canonical quantization,6 in the
scope of this paper we can only give examples of some re-
sults that can be derived more quickly or transparently using
functional integrals.

The polynomials we will consider in this section are those
of Euclidean fields �fields defined on four-dimensional Eu-
clidean space R4�. Similar formalisms exist for Minkowski
fields �fields defined on spacetime� with minor changes in the
equations �see for example, Ref. 2�. Because functional inte-
grals over Minkowski fields are less mathematically devel-
oped than integrals over Euclidean fields, we shall restrict
our attention to Wick transforms of functions and functionals
of Euclidean fields—primarily polynomials and exponen-
tials. The Wick transform, like the Hermite polynomials, has
orthogonality properties that turn out to be useful in quantum
field theory. First, we have to introduce a few mathematical
concepts.

1. Gaussian measures

Here, our aim is to specify the notation and to briefly
remind the reader how to integrate over Euclidean fields,
without going into too much detail. The standard mathemati-
cal framework to perform such integration is the theory of
Gaussian measures in Euclidean field theory.7,8

As a first try, we might define a field in the functional
integral as a function � on R4. Fields in the functional inte-
gral might seem like functions at first glance, but can pro-
duce divergences that cannot, for instance, be multiplied in
the way that functions can. A more useful way to regard a
quantum field in the functional integral formalism is as a
distribution � acting on a space of test functions f:

��f� � 	�, f� , �19�

where the bracket 	,� denotes duality, that is, � is such that it
yields a number when applied to a smooth test function f . In
many situations the distribution � is equivalent to a function
�, which means this number is the ordinary integral:

	�, f� = 

R4

d4x��x�f�x� . �20�

A familiar example of a distribution is the Dirac distribution
�=�, for which we have

��f� = 	�, f� = f�0� . �21�

Just like a function, � in general belongs to an infinite-
dimensional space. To be able to integrate over this space
�not to be confused with the integral in Eq. �20�, which is
an ordinary integral over spacetime� we need a measure,
some generalization of the familiar d4x in the ordinary
integral in Eq. �20�. To this end, we need to introduce the
covariance. Given the action of the theory, we readily
calculate the classical equations of motion, extract the dif-

ferential operator D, and invert it to find the covariance C.

67 Am. J. Phys., Vol. 76, No. 1, January 2008
In general, the covariance is a positive continuous nonde-
generate bilinear form on the space of test functions. A
simple example is the covariance for a free Klein–Gordon
field,

C�f ,g� =
 d4xd4yf�x�DF�x − y�g�y� , �22�

where DF is the textbook Feynman propagator �see Ref. 2 for
example�. In the following we will often encounter the co-
variance at coincident test functions, here denoted as C�f , f�.

To get to the point, a Gaussian measure d�C is defined by
its covariance C as



Y

d�C���exp�− i	�, f�� = exp�− 1
2C�f , f�� , �23�

over a space Y of distributions �.
For comparison, the usual Gaussian measure on Rd is de-

fined by,9

1

�2��d/2

Rd

ddx

�det D�1/2e−�1/2�Q�x�e−i	x�,x� = e−�1/2�W�x��, �24�

where 	x� ,x�Rd =x��x� is the duality in Rd with x�Rd and
x��Rd, Q�x� is a quadratic form on Rd,

Q�x� = D��x�x� = 	Dx,x�Rd, �25�

and W�x�� is a quadratic form on Rd

W�x�� = x��C��x�� = 	x�,Cx��Rd, �26�

such that

DC = CD = 1. �27�

In the more familiar Rd case �Eq. �24��, the combination of
the standard measure and kinetic term corresponds to the
measure d�C we introduced earlier. That is,
ddx / �det D�1/2e−1/2Q�x� is analogous to d�C���. The explicit
separation of d�C into ddx / �det D�1/2 and e−1/2Q�x� will turn
out to be unnecessary for our discussion. By defining the
measure d�C through Eq. �23�, we have not even specified
what such a separation would mean.

The covariance at incident points can be expressed as the
following integral, obtained by expanding Eq. �23�:

C�f , f� =
 d�C���	�, f�2. �28�

The integral on the left-hand side of Eq. �23� is the generat-
ing function of the Gaussian measure; let us denote this in-
tegral by Z�f�. By successively expanding Eq. �23�, the nth
moment of the Gaussian measure can be compactly written
as

� 
 d�C���	�, f�n = �− i
d

d	
�n

Z�	f��
	=0

= ��n − 1� ! ! C�f , f�n/2 n even

0 n odd,

�29�

where n ! ! =n�n−2��n−4�¯ is the semifactorial. For conve-
nience, we introduce the following notation for the average

with respect to the Gaussian measure �C:
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	F���f����C
�
 d�C���F���f�� . �30�

Note the difference between the brackets 	 ��C
used for the

average and the brackets 	,� used for duality.

2. Wick transforms: Definitions

We can use this set of definitions to define a Wick trans-
form of functionals of fields. Our goal is to provide some
idea of how to address the difficult problem of making sense
out of products of distributions and integrals of such prod-
ucts. These products are ubiquitous in quantum field theory,
although their exact meaning is not usually discussed in in-
troductory textbooks. To simplify the calculations, we define
the Wick transform of a power ��f�n�	�n , f� so as to sat-
isfy an orthogonality property with respect to Gaussian inte-
gration. We recall the orthogonality properties of Hermite
polynomials �Appendix B� and the definition �Eq. �17�� and
define the Wick transform in terms of Hermite polynomials:

:��f�n:C = C�f , f�n/2Hen� ��f�
�C�f , f�

� . �31�

Note that this definition depends on the covariance C, and
that there is no analogous dependence in the analogous
harmonic-oscillator definition �Eq. �17��.

The orthogonality of two Wick-transformed polynomials
is expressed by


 d�C���:��f�n:C:��g�m:C = �m,nn ! �	��f���g���C
�n.

�32�

An entertaining problem is to prove Eq. �32�, which we will
do in Sec. III A 3 �paragraph 2�.

The Wick transform can also be defined recursively by the
following equations:10

:��f�0:C = 1, �33a�

�

��
:��f�n:C = n:��f�n−1:C, n = 1,2, . . . , �33b�


 d�C���:��f�n:C = 0, n = 1,2, . . . , �33c�

where the functional derivative with respect to a distribution
is

�

��
��f� = f . �34�

Let us check that the Wick transform :��f�n:C defined by Eq.
�33� is the same as the Wick transform given in terms of
Hermite polynomials in Eq. �31�. This equivalence is to be
expected, because the Hermite polynomials satisfy similar
recursion relations, but it is a useful problem to check that it
works. To begin, we establish a property of Wick exponen-
tials.
Let :exp�
��f��:C be the formal series:
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:exp�
��f��:C � 1 + 
:��f�:C + 1
2
2:��f�2:C + . . . ,

�35�

where normal ordering is defined by Eq. �33�.
Problem 1. Show that

:exp�
��f��:C =
exp�
��f��

	exp�
��f����C

. �36�

Solution. We can evaluate the right-hand side of Eq. �36� by
expanding the numerator and denominator in a power series
and dividing one power series by the other.


k=0

�
bkx

k


k=0

�
akx

k
=

1

a0


k=0

�

ckx
k, �37�

where cn+ 1
a0


k=1
n cn−kak−bn=0. A comparison of the resulting

series, term by term, to the power series expansion of the
left-hand side proves Eq. �36�.

Problem 2. Show the equivalence of Eqs. �33� and �31�.
Solution. We can explicitly calculate the denominator in

Eq. �36�:

	exp�
��f����C
=
 d�C���exp�
��f��

=
 d�C���

n


n

n!
��f�n �38a�

=

n


2n

n!

 d�C�����f�2n, �38b�

�by Eq. �29��

=exp�1

2

2C�f , f�� . �by Eq. �28��

�38c�

Thus, from Eq. �36� we find

:exp�
��f��:C = exp�
��f� − 1
2
2C�f , f�� . �39�

If we multiply the power series expansions11 of exp�
��f��
and exp�1 /2
2C�f , f�� and compare the result term by term
to the series expansion of the left-hand side of Eq. �39�, we
obtain

:��f�n:C = 

m=0

�n
2�

n!

m ! �n − 2m�!
��f�n−2m�−

1

2
C�f , f��m

.

�40�

We rewrite Eq. �40� as

:��f�n:C = C�f , f�n/2 

m=0

�n
2�

�− 1�m n!

2mm ! �n − 2m�!

�� ��f�
�C�f , f�

�n−2m

, �41�

use the expression �B1� for the defining series of the Hermite

polynomials given in Appendix B and recover Eq. �31�.
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3. Wick transforms: Properties

Many properties of Wick-ordered polynomials can be con-
veniently derived using the formal exponential series. For
simplicity, we assume that all physical quantities that we
wish to calculate �for example, scattering cross sections� are
written with normalization factors of 1 /C�f ,g�, which in ef-
fect lets us set the coincident-point covariance to unity:
C�f , f�=1. The covariance can be restored by comparison
with Eq. �41�. The properties in which we are interested are
useful problems:

Problem 3. Show that :exp���f�+��g��:C

=exp�−	��f���g���C
� : exp���f��:C : exp���g��:C.

Solution.

:exp���f��:C:exp���g��:C, �42a�

=exp���f� + ��g��exp�− 1
2 �	��f�2��C

+ 	��g�2��C
�� ,

�42b�

=:exp���f� + ��g��:C exp�	��f���g���C
� , �42c�

where we have used Eq. �39� in the first equality, and, after
completing the square in the second factor of Eq. �42b�,
again in the second equality. Dividing both sides of Eq. �42�
by the second factor in Eq. �42c� completes the proof.

Problem 4. Show that 	:��f�n:C :��g�m:C : ��C

=�nmn ! 	��f���g���C

n

Solution. If we take the expectation value of both sides of
Eq. �42�, we find

	:exp���f��:C:exp���g��:C��C
= exp�	��f���g���C

�

�43�

using Eq. �33�. Expanding the exponentials on both sides and
comparing term by term completes the proof.

Problem 5. Show that :��f�n+1:C=n :��f�n−1:C

−��f� :��f�n:C.
Solution. This recursive relationship is a consequence of

the equivalence of Wick-ordered functions and Hermite
polynomials. The expression follows from the recursion re-
lation for Hermite polynomials given in Appendix B.

Problem 6. The definition of Wick transforms given in Eq.
�33� can be generalized to several fields in a straightforward
manner. We quote here some results without proof �details
can be found in Ref. 10�. The reader may find it interesting to
check that it works:

:��f1� . . . ��fn+1�: = :��f1� . . . ��fn�:��fn+1�

− 

k=1

n

C�fk, fn+1�:��f1� . . . ��fk−1�

���fk+1� . . . ��fn�: �44�


 d�C���:��f1� . . . ��fn�: = 0, �45�


 d�C���:��f1� . . . ��fn�::��g1� . . . ��gm�: = 0
for n � m . �46�
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These latter multifield expressions reproduce, within this
functional framework, what is usually referred to as Wick’s
theorem in the creation/annihilation-operator formalism. In
this formalism it takes some effort to show this theorem;
here we find it somewhat easier by relying on familiar prop-
erties of the Hermite polynomials.

B. Wick transforms and functional Laplacians

We can also define Wick transforms of functions by the
following exponential operator expression, which is conve-
nient in many cases �for example in two-dimensional quan-
tum field theory settings, such as in Refs. 12 and 13�:

:�n�x�:C � e− 1
2


C�n�x� , �47�

where the functional Laplacian is defined by


C =
 d4xd4x�C�x,x��
�

���x�
�

���x��
, �48�

which, again, depends on the covariance C.
Instead of proving Eq. �47�, which is straightforward, we

just illustrate the equivalence of definition �47� and definition
�31� for the common example of a �4 power for which the
definition becomes

:�4�y�:C = exp�−
1

2

 d4xd4x�C�x,x��

�

���x�
�

���x��
��4�y� .

�49�

We expand the exponential and find

:�4�y�:C = �4 + �−
1

2
��
 d4xd4x�C�x,x��

�
�

���x�
�

���x��
��4�y�

+
1

2!
�−

1

2
�2�
 d4xd4x�C�x,x��

�
�

���x�
�

���x��
�2

�4�y� . �50�

All higher terms in the expansion are zero. We can now
evaluate each term separately. The second term is the integral


 d4xd4x�C�x,x��
�

���x�
�

���x��
�4�y�

=
 d4xd4x�C�x,x��
�

���x�
4�3�y���x� − y� , �51a�

=
 d4x,C�x,y�12�2�y���x − y� = 12�2�y� , �51b�

if the covariance is normalized to unity. We use this result in
the term:


 d4xd4x�,C�x,x��
�

���x�
�

���x��
12�2�y�

= d4xd4x�C�x,x��
�

24��y���x� − y� , �52a�


���x�
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=24
 d4xC�x,y���x − y� = 24, �52b�

with the same normalization of the covariance. We collect
these results with the appropriate coefficients from the ex-
pansion:

:�4�y�:C = �4�y� −
1

2
· 12�2�y� +

1

2!

1

22 · 24, �53a�

=�4�y� − 6�2�y� + 3 = He4���y�� , �53b�

which completes the example.

C. Further reading

Although we hope to have given some flavor of some of
the techniques and ideas of quantum field theory
mathematical-physics style, we have given only a few ex-
amples and demonstrated some simple identities. For more
on the mathematical connection between Wick transforms on
function spaces and Wick-ordering of annihilation and cre-
ation operators, we recommend Refs. 7 and 8. For readers
more interested in fermions than the scalar fields we have
discussed, we recommend Ref. 14 as an introduction to Wick
ordering.

D. An application: Specific heat

In this section we discuss an example of a physical appli-
cation of some of the results we have discussed. By using the
connection Eq. �31� between the Wick transform and Her-
mite polynomials, we show how standard properties of those
polynomials can be exploited to simplify certain calcula-
tions.

Consider the familiar generating function of Hermite poly-
nomials �but for the scaled polynomials Eq. �16��:

ex
−
2/2 = 
 Hen�x�

n

n!
. �54�

This generating function gives a shortcut to calculations in
two-dimensional quantum field theory, where normal order-
ing is often the only form of renormalization necessary. An
important issue is the scaling dimension of the normal-
ordered exponential :eip�:, where p is a momentum. �The
real part of this operator can represent the energy of a system
where � is the quantum field.� In other words, the question is
if we rescale the momentum p→�p, equivalent to a rescal-
ing x→�−1x in coordinate space, how does the operator
:eip�: scale? Because an exponential is dimensionless, we
might guess that the answer is that it does not scale at all,
that is, the scaling dimension is zero. This answer is not so
due to quantum effects induced by the normal ordering. In
terms of the functional integral we can easily calculate the
effect of the normal-ordering �here, the Wick transform�:

:eip�:C = 

n=0

�
1

n!
�ip�n:�n:C, �55a�

=

n=0

�
1

n!
�ip�nCn/2Hen��/�C� = e

1
2

p2Ceip�, �55b�

where we used the definition Eq. �31� and the generating

function Eq. �54�. The covariance C is a logarithm in two
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dimensions; that is, the solution of the two-dimensional
Laplace equation is a logarithm. To regulate divergences
when p→�, we introduce a cutoff � for the momentum,
which makes C=ln �. If we substitute this result into Eq.
�55b�, we obtain

:eip�: = �p2/2eip�. �56�

Thus the anomalous scaling dimension, usually denoted by
�, is �= p2 /2 for the exponential operator. This result is im-
portant in conformal field theory �see for example Ref. 15�.
Here the p2 /2 comes from the 
2 /2 in the generating func-
tion Eq. �54�.

How could such a quantum effect be measured? Consider
the two-dimensional Ising model with random bonds �Ref.
13, p. 719�. This model is the familiar Ising model, but the
coupling between the spins is allowed to fluctuate, that is, the
coupling becomes a space-dependent Euclidean field. The
energy of the system is described by �the real part of� the
exponential operator :eip�:. The anomalous dimension in Eq.
�56� leads to an expression for the specific heat �see Ref. 13,
Eq. �356��, where the derivation is given using renormaliza-
tion group methods. The specific heat is in principle directly
measurable as a function of the temperature, or more conve-
niently, as a function of �= �T−Tc� /Tc, a dimensionless de-
viation from the critical temperature. The renormalization
group description predicts a double logarithm dependence on
� that could not have been found by simple perturbation
theory; it uses as input the result from Eq. �56�.

Admittedly, the telegraphic description in the previous
paragraph does not do justice to the full calculation of the
specific heat in the two-dimensional Ising model with ran-
dom bonds. Our purpose here is only to show how the Wick
transform reproduces the quantum effect in Eq. �56�, and
then to give some flavor of how this effect is measurable.

IV. CONCLUSION

We have shown that the scope of normal ordering has
expanded to settings beyond the original one of ordering
operators and we have discussed an interesting connection to
Hermite polynomials, which is usually not mentioned in
courses on quantum field theory. Several different definitions
of Wick ordering of functions have been discussed and their
equivalence established.

From a physics point of view, Wick ordering is part of the
process of renormalization, which systematically removes in-
finities from a theory �that is, removes infinite terms from the
perturbation expansion of the functional integral�. In general,
Wick ordering needs to be supplemented by additional rules
for renormalization �see for example, Ref. 2� From a math-
ematics point of view, Wick ordering is helpful to make
sense of the polynomials of fields that are integrated over in
the functional integral.

For a deeper understanding and further applications of
these ideas, the interested reader is invited to consult the
cited literature, which is a selection of texts we have found
particularly useful. In particular, for the physics of functional
integrals we recommend Ref. 7. For a more mathematically
oriented treatment we have found Ref. 8 to be quite useful.
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APPENDIX A: WICK-ORDERING OF OPERATORS
IN QUANTUM FIELD THEORY

We briefly remind the reader how the need for Wick or-
dering arises in the operator formulation of quantum field
theory. All of this material is standard and can be found in
introductory books on quantum field theory �for example,
Ref. 2�, albeit in lengthier and more thorough form. We set
�=1 throughout.

Consider a real scalar field ��t ,x� of mass m defined at all
points of four-dimensional Minkowski spacetime and satis-
fying the Klein-Gordon equation:

� �2

�t2 − �2 + m2���t,x� = 0. �A1�

The differential operator in parenthesis is one instance of
what we call D in the text. The classical Hamiltonian of this
scalar field is:

H =
1

2

x

����t,x��2 + ����t,x��2 + m2�2�t,x�� , �A2�

where � is the variable canonically conjugate to �, �
=�� /�t. We can think of the first term as the kinetic energy
and the second as the shear energy. This classical system is
quantized in the canonical quantization scheme by treating
the field � as an operator, and imposing equal-time commu-
tation relations:

���t,x�,��t,x��� = 0, �A3a�

���t,x�,��t,x��� = 0, �A3b�

���t,x�,��t,x��� = i�3�x − x�� . �A3c�

The plane-wave solutions of the Klein–Gordon equation are
known as the field modes, uk�t ,x�. Together with their re-
spective complex conjugates uk

*�t ,x� they form a complete
orthonormal basis. Hence, the field � can be expanded as

��t,x� = 

k

�akuk�t,x� + ak
†uk

*�t,x�� . �A4�

The equal time commutation relations for � and � are then
equivalent to

�ak,ak�� = 0, �A5a�

�ak
†,ak�

† � = 0, �A5b�

�ak,ak�
† � = �kk�. �A5c�

These operators are defined on a Fock space, which is a
Hilbert space made of n-particle states �n=0,1 , . . . �. The
normalized basis ket vectors, denoted by ��, can be con-
structed starting from the vector �0�. The vacuum state �0�
has the property that it is annihilated by all the ak operators:

ak�0� = 0, ∀ k . �A6�

In terms of the frequency �k=c��k�2+m2, the Hamiltonian

operator obtained from Eq. �A2� is
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Ĥ =
1

2

k

�ak
†ak + akak

†��k = 

k
�ak

†ak +
1

2
��k, �A7�

where in the last step we used the commutation relations
from Eq. �A5c�. A calculation of the vacuum energy reveals
a potential problem:

	0�Ĥ�0� = 	0�0�

k

1

2
�k = 


k

1

2
�k → � , �A8�

where we have used the normalization condition 	0 �0�=1.
This infinite constant can be removed as described in the
text.

Propagation amplitudes in quantum field theory �and
hence scattering cross sections and decay constants� are
given in terms of expectation values of time-ordered prod-
ucts of field operators. These time-ordered products arise in
the interaction Hamiltonian of an interacting quantum field
theory. The goal is to calculate propagation amplitudes for
these interactions using time-dependent perturbation theory
familiar from quantum mechanics. To leading order in the
coupling constant, these products can be simplified, and the
zero-point constant energy removed by using Wick’s theo-
rem.

The way Wick ordering is applied in practice to calcula-
tions in quantum field theory is through Wick’s theorem,
which gives a decomposition of time-ordered products of
field operators into sums of normal-ordered products of field
operators �again, we refer to Ref. 2�. Wick’s theorem appears
in the functional-integral formulation of the theory in Sec.
III A 3.

APPENDIX B: PROPERTIES OF Hen„x…

Here we list a few useful properties of the scaled Hermite
polynomials. More properties can be found in Ref. 5.

Defining series:

Hen�x� = 

m=0

�n
2�

�− 1�m n!

m ! 2m�n − 2m�!
xn−2m, �B1�

where �n /2� is the integer part of n /2.
Orthogonality:



−�

�

dxe−x2/2Hen�x�Hem�x� = �mn
�2�n ! . �B2�

Generating function:

exp�x
 − 1
2
2� = 


n=0

�

Hen�x�

n

n!
. �B3�

Recursion relation:

Hen+1�x� = xHen�x� − nHen−1�x� . �B4�

The first five polynomials are

He0�x� = 1, �B5a�

He1�x� = x , �B5b�

He2�x� = x2 − 1, �B5c�

3
He3�x� = x − 3x , �B5d�
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He4�x� = x4 − 6x2 + 3. �B5e�
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