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Abstract
The F-statistic is an optimal detection statistic for continuous gravitational
waves, i.e., long-duration (quasi-)monochromatic signals with slowly-varying
intrinsic frequency. This method was originally developed in the context of
ground-based detectors, but it is equally applicable to LISA where many signals
fall into this class of signals. We report on the application of a LIGO/GEO
F-statistic code to LISA data-analysis using the long-wavelength limit (LWL),
and we present results of our search for white-dwarf binary signals in the first
Mock LISA Data Challenge. Somewhat surprisingly, the LWL is found to be
sufficient—even at high frequencies—for detection of signals and their accurate
localization on the sky and in frequency, while a more accurate modelling of
the TDI response only seems necessary to correctly estimate the four amplitude
parameters.

PACS numbers: 95.85.Sz, 95.75.Pq, 95.75.−z, 97.80.−d

1. Introduction

The Mock LISA Data Challenge (MLDC) [1] has the purpose of encouraging the development
of LISA data-analysis tools and assessing the technical readiness of the community to perform
gravitational-wave (GW) astronomy with LISA. The first round of the MLDC was released
in June 2006 [2], the submission deadline was in December 2006 and a report summarizing
the submitted results has been published [3]. The challenges consisted of several data sets
containing different types of simulated sources and LISA noise. The three types of sources are
white-dwarf binary signals (WD), coalescing supermassive black holes (SMBHs) and extreme
mass-ratio inspirals (EMRIs).

The data analysis of LISA poses a few specific difficulties not encountered in ground-
based detectors: the signal (reduced) wavelength is typically not long compared to the
arm length of the detector, so the long-wavelength limit (LWL) does not generally apply.
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Furthermore, in order to cancel the dominating laser-frequency noise, one has to analyse
intricate algebraic combinations of time-delays between spacecraft instead of simple ‘strain’,
an approach known as time-delay interferometry (TDI). Another difficulty stems from the
large number of detectable sources in the LISA bandwidth, which complicates their separate
detection and parameter estimation, usually referred to as the ‘confusion problem’.

Most of the relevant signals in LISA (WD, SMBH, EMRI) will be long-lasting (of the order
of a year) and are (quasi-)monochromatic with slowly-varying intrinsic frequency f (τ); in
this sense they belong to the class of continuous GWs. In the case of ground-based detectors,
the typical sources of continuous GWs are spinning neutron stars with non-axisymmetric
deformations. One of the standard tools developed for these searches is the F-statistic [4],
which is an optimal detection statistic (in the sense of the Neyman–Pearson lemma) based
on matched filtering. We have restricted our searches in the first MLDC to WD-binary
signals, which are very similar to GWs from spinning neutron stars, which have a very little
intrinsic frequency evolution ḟ (in fact, here it was ḟ = 0) and constant orientation and
polarization. Contrary to the approach used in [5, 6], we use an F-statistic code developed
for the continuous-wave search in LIGO/GEO, with only minimal modifications to adapt it to
LISA. In particular, we use the LWL at all frequencies, which turns out to work surprisingly
well even at high frequencies where the reduced wavelength is comparable to the LISA arm
length.

2. Methods and pipeline

2.1. Continuous gravitational wave signals

A system with an oscillating mass quadrupole moment emits GWs described, far from the
source, by the metric perturbation

h
↔ = A+ cos(φ0 + φ)e

↔
+ + A× sin(φ0 + φ)e

↔
×, (1)

where e
↔

+ = �ex ⊗ �ex − �ey ⊗ �ey and e
↔

× = �ex ⊗ �ey + �ey ⊗ �ex are the polarization basis
tensors constructed from a right-handed basis {�ex, �ey, �ez} with �ez pointing in the direction
of propagation of the wave, described by the ecliptic latitude β and longitude λ, and
�ex and �ey along the principal polarization axes. In an inertial reference frame, such as
the solar-system barycentre (SSB), the phase of this (quasi-)periodic signal can be written
as φ(τ) = 2π

∫ τ

τref
f (τ ′) dτ ′, in terms of the (slowly-varying) intrinsic GW frequency

f (τ) = f (τref) + ḟ (τref)�τ + · · ·, where τref is a reference time at which the frequency
and spindown parameters are defined, and �τ ≡ τ − τref . The WD signals in the first MLDC
were restricted to have a constant intrinsic frequency, i.e., f (τ) = f . This is a realistic
assumption at low frequencies f ∼ 1 mHz, but at higher frequencies f ∼ 10 mHz one would
probably have to include one derivative ḟ (e.g., see [5]) in an actual search on LISA data. In
the case of a binary system for which orbital evolution due to GW emission can be neglected,
the principal polarization axes are found by taking the unit vector �ex to lie in the orbital
plane and �ey in the hemisphere containing the orbital angular momentum. The polarization
amplitudes are A+ = h0(1 + cos2 ι)/2 and A× = h0 cos ι, where h0 is usually referred to
as the amplitude of the GW and ι is the inclination angle between the propagation direction
�ez and the normal to the orbital plane. In order to separate the sky position {β, λ} from the
source polarization, it is useful to consider a polarization basis associated only with the sky
position; this is done by defining a right-handed orthonormal basis {�eξ , �eη, �eζ } with �eζ = �ez

as the propagation direction, �eξ lying in the ecliptic plane and �eη in the northern hemisphere.
The alternative polarization basis is then ε

↔
+ = �eξ ⊗ �eξ − �eη ⊗ �eη and ε

↔
× = �eξ ⊗ �eη + �eη ⊗ �eξ ,
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Figure 1. LISA configuration and TDI conventions used.

and the principal polarization axes of the GW are determined by the angle ψ from �eξ to �ex ,
measured counter-clockwise around �ez = �eζ , i.e.,

e
↔

+ = ε
↔

+ cos 2ψ + ε
↔

× sin 2ψ,

e
↔

× = −ε
↔

+ sin 2ψ + ε
↔

× cos 2ψ.
(2)

In terms of this alternative polarization basis, the GW tensor can be written as

h
↔

(τ ) =
4∑

µ=1

Aµh
↔

µ(τ), (3)

where the four amplitude parameters {Aµ} are

A1 = A+ cos φ0 cos 2ψ − A× sin φ0 sin 2ψ,

A2 = A+ cos φ0 sin 2ψ + A× sin φ0 cos 2ψ,

A3 = −A+ sin φ0 cos 2ψ − A× cos φ0 sin 2ψ,

A4 = −A+ sin φ0 sin 2ψ + A× cos φ0 cos 2ψ,

(4)

while the tensors {h↔µ} depend on the frequency f (τ) and the sky position {β, λ}, namely

h
↔

1(τ ) = ε
↔

+ cos φ(τ), h
↔

2(τ ) = ε
↔

× cos φ(τ),

h
↔

3(τ ) = ε
↔

+ sin φ(τ), h
↔

4(τ ) = ε
↔

× sin φ(τ).
(5)

Note that the geometrical conventions for the amplitude parameters used here are consistent
with the LIGO/GEO conventions for continuous GWs (e.g., [7]), but differ from the
LISA/MLDC conventions [3, 8]. The translation into MLDC conventions is given as follows:
‘Amplitude’ ≡ h0/2, ι → π − ι, ψ → π/2 − ψ and φ0 → φ0 + π .

2.2. LISA response in the long-wavelength limit

The LISA design consists of three spacecraft with laser links between each pair, in a geometry
illustrated in figure 1. The MLDC data were generated by two different programs: synthetic
LISA [9] simulates a detector output consisting of Doppler shifts of the LISA lasers due to a
relative motion of the spacecraft, while LISA simulator [10] simulates the phase differences
between laser light following different paths between the spacecraft. In both cases, the
underlying variables are combined with appropriate time shifts to form TDI observables
which cancel the (otherwise dominating) laser frequency noise [5, 11, 12]. One choice of such
TDI quantities is the set of three observables {X, Y,Z}, which were used to publish the data
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of the first MLDC. These observables, which can be thought of as representing the output of
three virtual ‘detectors’ I, are related to the gravitational wave h

↔
through somewhat involved

expressions depending on the frequency and propagation direction of the wave. However, in
the LWL approximation, in which the reduced wavelength c/(2πf ) is assumed to be large
compared to the distance between the spacecraft, i.e., f � 10 mHz, the responses can be
approximated (assuming L1 ≈ L2 ≈ L3 ≈ L) as

XsynthLISA = −4L2

c2
d
↔

X:
¨
h
↔

, XLISAsim = −2L

c
d
↔

X :
˙
h
↔

, (6)

where ‘:’ denotes the contraction of both tensor indices and d
↔

X ≡ (�n2 ⊗ �n2 − �n3 ⊗ �n3)/2 is
the usual LWL response tensor for a GW interferometer with arms �n2 and �n3. The analogous
expressions for Y and Z are obtained by cyclic permutations of the indices 1 → 2 → 3 → 1.
We define an associated scalar ‘strain’ for each of the detectors I = X, Y,Z as

hI (t) ≡ d
↔

I (t) : h
↔

(τ (t)). (7)

The timing relation τ(t) accounts for the Doppler effect caused by the orbital motion of the
detector, namely τ(t) = t − �r · �ez/c, where �r(t) is the position of the detector with respect to
the SSB and �ez is the propagation direction of the GW. Note that in the LWL approximation,
we can assume that all virtual detectors follow the same trajectory �r(t) corresponding to the
barycentre of the three spacecraft.

The input to our search code consists of Fourier-transformed data stretches of duration
TSFT, the so-called short Fourier transforms (SFTs), which is a common data format used within
the LIGO Scientific Collaboration for continuous-wave searches (e.g., see [7]). The time
baseline TSFT has to be chosen sufficiently short such that the noise-floor can be approximated
as stationary and the rotation and acceleration of the detector can be neglected. For LISA
we chose TSFT = 7 days, while in LIGO/GEO (where the rotation of the Earth dominates
the acceleration) this is typically TSFT = 30 min. Approximating the detector tensor d

↔
I as

constant during TSFT, we can Fourier-transform (6) to obtain

h̃X(f ) = 1

(4πf L/c)2
X̃synthLISA(f ), h̃X(f ) = i

4πf L/c
X̃LISAsim(f ). (8)

We use h̃I (f ) as our SFT input data, and so we can run the same pipeline on data from the
LISA simulator and synthetic LISA, with only a different ‘calibration’ (8) used to generate the
SFTs. The noise contributions to X, Y and Z are correlated, therefore it is often convenient to
work with the TDI variables X and Y − Z instead, which are statistically independent. This
is a straightforward generalization, using the response tensor d

↔
Y−Z = d

↔
Y − d

↔
Z . Note that X

and Y − Z generally have different noise levels, but this is properly taken into account in the
multi-detector F-statistic.

2.3. The F-statistic method

The F-statistic was originally developed in [4] and extended to the multi-detector case in
[5, 13, 17]. A generalization to the full TDI framework for LISA was obtained in [5], but here
we follow the simpler route of working in the LWL approximation, which allows for a more
direct application of existing LIGO/GEO codes to LISA data analysis.

Combining the scalar strain (7) with expression (3) for the GW tensor, we can write the
strain signal hI at detector I as

hI (t) =
4∑

µ=1

AµhI
µ(t) (9)
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in terms of the four basis functions
hI

1(t) = aI (t) cos φ(τ(t)), hI
2(t) = bI (t) cos φ(τ(t)),

hI
3(t) = aI (t) sin φ(τ(t)), hI

4(t) = bI (t) sin φ(τ(t)),
(10)

where we defined the antenna-pattern functions aI ≡ d
↔

I : ε
↔

+ and bI ≡ d
↔

I : ε
↔

×. The functions
{hI

µ} depend on the sky position {β, λ} and the frequency f (τ) of the source. We see that the
signal parameters separate into two classes: (i) the four amplitude parameters A ≡ {Aµ} given
in (4) and (ii) the Doppler parameters θ ≡ {β, λ, f, ḟ , f̈ , . . .}. We model the output xI (t)

of detector I as a superposition of a stationary Gaussian noise nI (t) and a signal hI (t;A, θ).
Following the notation of [13, 14], we write the different data streams xI (t) as a vector x(t),
and we define the standard multi-detector scalar product as

(x|y) =
∑
I,J

∫ ∞

−∞
x̃I∗(f )S−1

IJ (f )̃yJ (f ) df, (11)

where x̃ is the Fourier transform, x∗ denotes complex conjugation and {S−1
IJ (f )} are the

elements of the inverse of the noise-power matrix. We search for a signal by seeking the
parameters {A, θ} which maximize the log-likelihood ratio

L(x;A, θ) = (x|h) − 1
2 (h|h) = Aµ(x|hµ) − 1

2A
µ(hµ|hν)Aν, (12)

with an automatic summation over the repeated amplitude indices µ, ν. Defining

xµ(θ) ≡ (x|hµ) and Mµν(θ) ≡ (hµ|hν), (13)

we see that L is maximized for given θ by the amplitude estimatorAµ

cand = Mµνxν , whereMµν

is the inverse matrix of Mµν . Thus, the detection statistic L, maximized over the amplitude
parameters A, is

F(x; θ) ≡ 1
2xµMµνxν, (14)

which defines the (multi-detector) F-statistic.

2.4. Analysis pipeline

Our analysis was based on standard LAL/LALApps software [15] developed for the search of
continuous GWs with ground-based detectors, in particular the codeComputeFStatistic v2,
which implements the multi-detector F-statistic (14). Only minor modifications were
necessary to adapt this code to the analysis of LISA data using the LWL approximation.
All white-dwarf binary signals in the first MLDC had constant intrinsic frequency f , so
the set of Doppler parameters to search over consisted of θ = {β, λ, f }. We performed a
hierarchical search that first runs single-detector searches on each of the TDI variables I, looks
for coincident local maxima of 2F , and in the last step performs a multi-detector F-statistic
search to establish the parameters of each candidate signal. Our initial analysis submitted as an
MLDC entry [3] used the TDI variables X, Y and Z as three ‘detectors’, assuming for simplicity
that their correlation matrix SIJ (f ) is diagonal. However, given that the corresponding noises
are correlated, we subsequently re-ran the search using the uncorrelated TDI variables X and
Y − Z, which was used for the results presented here (but did not result in any significant
changes in the results). Whether I ranges through {X, Y,Z} or {X, Y − Z}, the structure of
the pipeline is the same.

(i) Perform a wide-parameter F-statistic search on each data stream I over a template grid
of the Doppler parameters {β, λ, f }. The grid was chosen as isotropic in the sky, with an
angular mesh size dα = √

2m/(2πf Rorb/c), with the orbital radius Rorb = 1 AU and a
mismatch of m = 0.3. The frequency spacing used is df = √

12m/(πT ), where T = 1 y
is the observation time. These step sizes were computed from the orbital metric [14].
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Table 1. Recovery of the Doppler parameters in challenge 1.1.1: �f is the frequency error and
φsky is the angle between the recovered and true sky positions. Frequency f and sky position
{β, λ} were accurately determined even at the highest frequencies.

Challenge f (mHz) β (rad) λ (rad) �f (nHz) φsky (mrad)

1.1.1a 1.1 0.95 5.07 1.7 34.8
1.1.1b 3.0 −0.09 4.63 0.8 7.1
1.1.1c 10.6 −0.11 4.66 0.2 4.4

(ii) Keep only the candidates which are local maxima of 2F (above some threshold) and
which are coincident with consistent Doppler parameters in all detectors I.

(iii) Perform a more finely-gridded multi-detector search around each candidate to increase
the accuracy of the parameter estimation.

(iv) Classify each candidate as primary if it has the highest 2F-value within �f = 1.4 ×
10−4f , and as secondary otherwise.

The last step arises from the empirical observation that a given signal will have secondary
‘false’F-statistic maxima at frequencies within roughly ∼10−4f but at different sky positions.
Only primary candidates were reported, while the secondary candidates were discarded. This
is a limitation of our pipeline: given two signals very close in frequency but at different sky
positions, it cannot distinguish the peak at the true sky position of the ‘fainter’ source from
a secondary maximum of the ‘brighter’ one. This problem is seen particularly in challenges
1.1.4 and 1.1.5 with signals clustered very densely in frequency.

3. Results

3.1. Challenge 1.1.1: isolated binaries

This challenge consisted of three separate data sets, each containing one WD signal at an
unspecified sky position and within a given frequency band: in challenge 1.1.1a at ∼1 mHz, in
challenge 1.1.1b at ∼3 mHz and in challenge 1.1.1c at ∼10 mHz. Note that the LWL is only a
good approximation for f � 10 mHz, and we therefore expect it to deteriorate significantly in
challenges 1.1.1b and 1.1.1c. Nevertheless, in each of the three cases our pipeline recovered
a single primary candidate, and the Doppler parameters were determined with very good
accuracy, as summarized in table 1. The apparent improvement in the Doppler accuracy seen
in table 1 is due to statistical fluctuations. Running this search on a larger number of sources
(such as in challenge 1.1.2) reveals no clear trends. The recovery of the amplitude parameters
A is illustrated in figure 2, comparing the estimated 4-vector Acand to the 4-vector Akey of the
injected parameters. The amplitude 4-vectors A live in a space with constant metric tensor
Mµν given in (13), so the norm is |A|2 ≡ AµMµνAµ. The two vectors Acand and Akey

define a plane, and so we can plot them in two dimensions, with the horizontal and vertical
components

A‖ = Akey · A
|Akey| , A⊥ =

∣∣∣∣A − A‖
Akey

|Akey|
∣∣∣∣ , (15)

where the inner product is calculated using the metric Mµν . These components are shown in
figure 2, and we see that the agreement of the amplitude parameters deteriorates substantially
for higher frequencies, where the LWL approximation breaks down.

If the deviation is caused by noise alone, then the difference �A ≡ Acand −Akey between
the amplitude vectors has zero mean, i.e., E[�A] = 0, and covariance E[�Aµ�Aν] = Mµν ,
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Figure 2. Recovery of amplitude parameters in challenges 1.1.1a (left), 1.1.1b (middle) and 1.1.1c
(right). Each plot compares the recovered amplitude 4-vector Acand to the injected signal 4-vector
Akey, shown in the plane defined by the two vectors. Gaussian fluctuations would lead to a
separation of the endpoints of the order |�A| ∼ 2. The breakdown of the LWL with an increasing
frequency leads to larger errors, affecting both the orientation and the magnitude of the recovered
amplitude vector.

where E[. . .] denotes the expectation value. The magnitude of this difference, |�A| =√
�AµMµν�Aν , would have variance E[|�A|2] = MµνMµν = 4. Therefore, |�A|/2

measures the difference between the two amplitude vectors in terms of the number of standard
deviations. It is also instructive to compare the magnitude of the recovered versus the injected
amplitude vector. The magnitude |Akey| of the injected signal is equivalent to the optimal
signal-to-noise ratio (SNR). Note, however, that |Acand|2 is a biased estimator for |Akey|2,
namely

E[|Acand|2] = E[2F] = 4 + |Akey|2. (16)

Therefore, we use the following measure for the error in the norm of the recovered amplitude
vector Acand:

εA ≡ |Acand|2 − |Akey|2 − 4

2|Akey|2 , (17)

which is unbiased, i.e., E [εA] = 0. The standard deviation of |Acand|2 is 2(2 + |Akey|2)1/2 ≈
2|Akey|, and so the expected error εA from noise alone would be E [εA] ≈ |Akey|−1. Table 2
summarizes the errors in the amplitude parameters for the three challenge data sets in terms of
|�A|/2, the relative difference εA of the norms and the angle φA between the recovered and
the injected amplitude vectors, given by

φA = cos−1

( Acand · Akey

|Acand||Akey|
)

. (18)

We see in table 2 that the amplitude errors are larger than that would be expected from noise
fluctuations alone, especially at higher frequencies, which is consistent with the breakdown of
the LWL.

3.2. Challenge 1.1.2: verification binaries

In challenge 1.1.2, the sky position and frequency of 20 ‘verification binaries’ were given,
while the amplitude parameters of the injected signals were unknown. We therefore performed
a targeted F-statistic search at each of the specified sets of Doppler parameters, and found
the maximum-likelihood estimators Acand for the amplitude parameters. Figure 3 illustrates
the discrepancies between the recovered Acand and the injected amplitude parameters Akey, in
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Figure 3. Recovery of amplitude parameters in challenge 1.1.2. Left: all 20 signals are recovered
with |Acand| � 8.5, but the errors |�A|/2 are substantially larger than the expected standard
deviation of unity for all but the smallest frequencies. Top right: the angle φA between the true
and recovered amplitude vectors grows with frequency, and is always larger than its expected
standard deviation of |Akey|−1. Bottom right: the norm of the recovered amplitude vector is within
the expected range of |Akey|−1 for much of the frequency band, but begins to show a deficit for
f > 5 mHz.

Table 2. Errors in the recovered amplitude parameters in challenge 1.1.1: as seen in figure 2,
the angle φA between Acand and Akey grows with increasing frequency, and there is an increasing
deficit in the magnitude |Acand| with respect to the SNR |Akey|, as quantified by εA. The absolute
error in |�A|/2 from the Gaussian noise would be expected to be ∼O(1), while for εA and φA it
would be |Akey|−1.

Challenge f (mHz) |Akey|−1 εA φA |�A|/2

1.1.1a 1.1 0.020 0.005 0.059 1.5
1.1.1b 3.0 0.027 −0.020 0.527 9.6
1.1.1c 10.6 0.007 −0.306 2.207 108.7

terms of |�A|, εA and φA. Again we see that our recovered amplitude parameters differ from
the injected ones by more than that would be expected from the Gaussian noise alone, and that
the agreement deteriorates at higher frequencies.

3.3. Challenge 1.1.3: resolvable binaries

Challenge 1.1.3 was a blind search on data containing 20 white-dwarf binary signals across
the LISA band. As shown in figure 4, we recovered 17 of the 20 signals with good frequency
and sky accuracy. The three missed signals were at frequencies ‘close’ to recovered sources,
but not within the frequency coincidence window of 1.4×10−4f , and there is some indication
that the Doppler parameters of those sources were slightly compromised.

3.4. Challenges 1.1.4 and 1.1.5: source confusion

In challenges 1.1.4 and 1.1.5, many sources were injected into a small frequency band in
order to illustrate the source confusion problem, namely 45 signals within [3, 3.015] mHz
in challenge 1.1.4 and 33 signals within [2.9985, 3.0015] mHz in challenge 1.1.5. As shown
in figure 5, our pipeline ‘found’ signals all across the band, namely 25 signals in challenge
1.1.4 and only 5 signals in challenge 1.1.5, but many of them were far removed in sky position
from any true signal. Many additional signals were missed within the frequency coincidence
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Figure 4. Doppler parameter recovery in challenge 1.1.3: errors in sky position (left figure) and
frequency (right figure) as functions of frequency. The width of the frequency coincidence window,
i.e., 1.4 × 10−4f , is too small to be seen on this scale, so no error bars are shown on the found
injections. The three missed signals (long vertical lines) all fall close to the recovered signals, but
outside of all coincidence windows.

Figure 5. Doppler parameter recovery in challenges 1.1.4 (top row) and 1.1.5 (bottom row): errors
in sky position (left column) and frequency (right column) as functions of frequency. Each of the
‘missed’ injections falls within the coincidence window of a recovered signal, and would therefore
have been rejected as a secondary maximum. The dashed lines in the top-right plot show the
maximum possible frequency recovery error, namely the width of the coincidence window. In both
challenges, source confusion causes our pipeline to find a candidate at every possible frequency,
including one false alarm at f = 3.0022 mHz in challenge 1.1.4.

window, presumably because they were mistaken for secondary maxima of the ‘found’ signals.
The results of this challenge illustrate a known limitation of the pipeline used here: it cannot
distinguish multiple signals too close together in frequency.
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4. Conclusions

Using the F-statistic in the long-wavelength limit approximation, we found that the estimation
of the four amplitude parameters {Aµ} deteriorates significantly with increasing frequency,
as would be expected from the breakdown of the LWL. However, the detection of signals
and the estimation of the Doppler parameters (frequency and sky position) does not seem
to be affected by the use of the LWL, even at frequencies as high as f ∼ 10 mHz. This
somewhat surprising result suggests the following ‘hierarchical’ search strategy: start with
a fast F-statistic code using the LWL to detect signals and localize them in Doppler space,
then use a more accurate (and computationally expensive) modelling of the TDI responses to
estimate the amplitude parameters.

We are planning to study these findings in a more systematic way using a larger number
of signals. More work is required to deal with ‘source confusion’, i.e., signals that lie within
a frequency window O(10−4f ). Secondary maxima in parameter space due to a signal
cannot be easily distinguished from primary maxima corresponding to other signals within
this frequency window. One popular strategy consists of successively ‘removing’ detected
signals from the data, which also eliminates its associated secondary maxima, and allows one
to re-run the search for the next-loudest candidates. An alternative approach might consist of
a classification of candidates into equivalence classes consistent with the same signal, either
by using the metric or a suitable global correlation criterion analogous to the ‘circles in the
sky’ [16] present for short observation times.
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