
Nuclear Physics B305 [FS23] (1988) 483-496 
North-Holland, Amsterdam 

C O N F O R M A L L Y  INVARIANT S U P E R S Y M M E T R I C  FIELD 

T H E O R I E S  O N  S p x S 1 A N D  S U P E R  p - B R A N E S  

Hermann NICOLAI 

Institut J~r Theoretische Physik, Universitiit Karlsruhe, Karlsruhe, FRG 

Ergin SEZGIN and Yoshiaki TANII 

International Centre for Theoretical Physics, Trieste, Italy 

Received 22 February 1988 

We construct supersymmetric field theories on S p X S 1 for p = 1 ..... 5. These spaces are the 
boundaries of the anti-de Sitter space in (p + 2)-dimensions. These theories are invariant under 
the super extension of the anti-de Sitter group in (p + 2)-dimensions, whose bosonic subalgebra 
is SO(p + 1,2) ¢ SO(N), for N= 1,2,4,8. The anti-de Sitter group SO(p + 1,2) acts as the con- 
formal group on S p X S 1. We conjecture that these theories describe the super p-branes propa- 
gating in AdSp+ 2 x S N-1. The internal space is always one of the parallelizable spheres, namely 
S 1, S 3 o r  S 7. 

1. Introduction 

Some t ime ago [1] we derived the N = 1 supersymmetric  singleton field theory 

f rom the W e s s - Z u m i n o  model in AdS 4 [2]. (We recall that singletons are the most 

f u n d a m e n t a l  representat ion of the anti-de Sitter group SO(3, 2) [3].) This theory was 

formula ted  on  the boundary  of AdS 4 which is S 2 × S 1, in accordance with earlier 

results of refs. [4, 5]. However, in the second half of the previous paper  [1], a mass 

term for the bosonic  singleton and a subtlety in the t runca t ion  of the supersymme- 

try t r ans fo rmat ion  rules were overlooked. The purpose of this paper  is to correct 

these errors and  further extend the results of ref. [1]. Moreover, we are motivated by 

a recent  surge of interest in singletons due to their possible occurrence in supermem- 

branes  [6, 7]. 

One  of the advantages of our t reatment  is that the theory is formulated directly 

on  S 2 X S 1 from the outset, and the action of SO(3, 2) or OSp(NI4  ) can be exhibited 

explicitly. Therefore, we need not  address the problem of how to extend the 

s ingleton actions into the whole of AdS 4. In  this paper we also apply our techniques 

to const ruct  a supersymmetric  double ton  field theory. The double tons  are the most 

f u n d a m e n t a l  representat ions of the anti-de Sitter group SO(6, 2) --- 0*(8)  which were 
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found  in ref. [8]. It was pointed out in ref. [8] that if the N = 4 supersymmetric 

double ton  field theory existed in six dimensions it would contain a two-index 
ant isymmetr ic  tensor field with a self-dual field strength. Therefore, this theory 
would  not  admit  a covariant action. However, we construct  the N = 4 supersymmet-  
ric covariant  field equations, formulated directly on the boundary  of AdS 7 which is 
S S x  S 1. The  N = 2 truncation of  this theory no longer contains the two-index 
ant isymmetr ic  tensor field. Therefore, the N = 2 case does admit  a covariant action 
which we will exhibit. 

So far we have discussed supersymmetric field theories on S 2 x S 1 and S 5 x S 1. In 

fact, in this paper  we will construct  supersymmetric field theories on S p x S ~ for 

p = 1 , . . . , 5 .  These theories are invariant under  the super extension of the anti- 

de Sitter group in ( p  + 2)-dimensions whose bosonic subalgebra is SO(p  + 1, 2) ¢ 

S O ( N )  for N = 1, 2, 4, 8. The anti-de Sitter group SO( p + 1, 2) acts as the conformal  
group on S p x S a. We conjecture that these theories describe the super p-branes  

[9,10] propagat ing  in AdSp+ 2 x S u-~. Note  the interesting feature that the internal 
space is always one of the parallelizable spheres, namely S l, S 3 or S v. 

In  order to put  the results of the following sections in perspective, here we list the 
hierarchy of  the supersymmetric singleton field theories we have constructed, 
together  with their symmetries, and the conjectured relation with super p-branes 

Extended object Spacetime Bosonic symmetries Superalgebra N 

String AdS 3 x S u- 1 SO(2, 2) ¢ SO( N ) OSp( N] 2) 1, 2, 4, 8 
Membrane AdS 4 X S N- l SO(3,2) ¢ SO(N) OSp(NI 4) 1, 2, 4, 8 

3-brane AdS 5 X S 2N 1 SO(4,2) • SO(2N) SU(2,2IN ) 1,2 
4-brane AdS6 × s2N i SO(5,2) ¢ SO(2N) F(4) 2 
5-brahe AdS 7 X S 2N-1 SO(6,2) ¢ SO(2N) OSp(6,2IN) 2 

F(4) is the exceptional subalgebra whose bosonic subalgebra is SO(5, 2) ¢ SU(2). 
(For  a discussion of the super extension of anti-de Sitter groups, see [11].) Note  that 
for N = 2, p = 3,4,5, there is an SU(2) symmetry which commutes  with the 
superalgebra.  In  sects. 2, 3 and 4 we shall describe the supersymmetric field theories 
o n  S 2 X S 1, S 3 x S 1 and S 5 x S i, respectively. The cases for S i x S 1 [12] and S 4 X S 1 

are given in appendix B. General formula for conformal  transformations,  la- 
grangians,  Killing vectors and spinors on S p x S 1 for any p are given in appendix A. 

The  metric on S p X S ~ will always be denoted by h u" In  our conventions { ~,i, 7j } = 
2h  u (i = 0,1 . . . .  , p )  and the signature of  h~j is ( -  + + . . .  + ) .  

2. OSp(N]4)  invariant singleton field theory on S 2 x S l and interactions 

The N = 1 singleton supermultiplet consists of a real scalar (p and a four- 

c o m p o n e n t  spinor ~+. These fields live on S 2 x  S 1 and therefore depend on 



H. Nicolai et al. / Supersymmetric field theories 485 

coordinates (t, 0, q0). In addition to the four-dimensional Majorana condition ~,+ = 
X T C, X+ satisfies the following chirality condition 

73X+=X+ , (2.1) 

which, unlike the usual chirality condition, is compatible with the Majorana 
condition (the matrix 7 3 corresponds to 2i7 i of ref. [1]). The correct free lagrangian 
is given by 

~9o0= l ~ - ( h i J  O i dP O j dp + ¼ dp 2 i ~ + .g i lT i )k + ) , (2.2) 

where hsj is the metric and V'~ is the covariant derivative on 8 2 x 81. The mass term 
was not given in ref. [1] but must be present because of SO(3, 2) invariance. The 
bosonic and fermionic part of eq. (2) are separately invariant under the transforma- 
tions [7] 

8 , ) -  i - ~aB Oiq, +/2A~/~, (2.3) 

aX+= ~2]s ~TiX++ 1 ij , aV'i~jAs"t X++ 2~?AsX + (2.4) 

where the indices A, B assume the values 0,1,2,3,5 and ~* and (~ (a, b = 1,2,3) 05 ab 
are the Killing vectors generating SO(2) x SO(3) transformations while g ( '  ~0a~ 5a are 
conformal Killing vectors on $2× S 1 generating the remaining transformations of 
SO(3,2). The explicit expressions for these may be obtained from the SO(3,2) 
Killing vectors of AdS 4 given in ref. [2] by restricting them to the boundary [7]. In 
obtaining the functions ~2A8 one has to rescale the component of the AdS Killing 
vector in the radial direction by a factor of cos 0, where P = ½~r corresponds to the 
boundary of AdS. The result is given in appendix C. To prove invariance, one only 
needs the relations [7] 

Vi~.B + ~7:~iAB = 4~A~h~j, V'i3i~A8 = - ~2AB, (2.5), (2.6) 

where only f20a, ~sa are different from zero, and eq. (2.6) is a consequence of 
eq. (2.5). 

The combined action (2.2) is invariant under the supersymmetry transformations 

8o~b = - i~_X+,  8oX+= yiOidpT]_+ ldprl+ . (2.7) 

Here, ~ + and ~ obey ~,3~ += _+ 71 + as well as the Killing spinor equations 

( a o -  ½Vo)rl = 0, (V',~- ½y,,y3)rt = 0, (a  = 1,2),  (2.8) 
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which, again, may be derived from the Killing spinors of AdS 4 given in ref. [2]*. 
Eq. (2.8) implies the following S 2 x S 1 covariant equations 

~7i~ __ 1 yi 17 = O. ~yi~+= O, WIT/+ + 2 -- (2.9) 

One can show that the commutator of two supersymmetry transformations (2.7) 
yields the SO(3, 2) transformations, and thus the theory is OSp(411 ) invariant. (This 
is shown in detail for the N = 8 singleton in ref. [7].) We emphasize this remarkable 
property of singletons: although they are formulated on the boundary of AdS, they 
exhibit the full symmetry of the AdS spacetime itself. 

We now turn to the problem of introducing interactions. We first observe that the 
interactions, if any, cannot involve derivative couplings. This is because hi j, e~ and 
X+ have conformal weights - 4 ,  1 and 2, respectively, as can be seen from eqs. (2.3), 
(2.4) and (2.5), and no derivative coupling terms can be written down with correct 
scaling properties; although the S p x Sl-coordinates, and therefore derivatives, have 
zero conformal weight, introduction of each derivative introduces an inverse viel- 
bein with conformal weight 2. Let us consider, then, an arbitrary function F(~), 
which must be separately invariant under eq. (2.3), as eq. (2.2) is already invariant 
by itself. This immediately gives 

g [xfLh-F(~)] =x/-C-hF'(q,)[~iAeOi,+ ~2,4s~] 

= f Z ~ - [ _  F(O) ~7,~8 + F,(O)OI2As], (2.10) 

where we have dropped a total derivative. Substituting eq. (2.5), we get F'(q~)q~ = 
6F(q 0 or F ( ~ ) =  cq, 6, where c is an arbitrary constant. In a similar way, one 
establishes that the only allowed interaction involving the fermions is ~2)t+3,5)t +. 
The supersymmetric extension is obtained by adding the following interaction 
lagrangian 

-~1 = 1 ~ - ( -  c2~6_ 3cqb2~+ys)k+), (2.11) 

to the free lagrangian £*°o, and 

~l~k+ = iCdp3yS~_ , (2.12) 

to the transformation rules given in eq. (2.7). These results agree with those obtained 
by Fronsdal [5] by a different method. For the invariance of the interacting theory, 

* The precise relation is 

= Vl2(coso)- I /a[(cos}o  +sin½o) T/ + ( c o s } p  - s in½p)* /+]  . 

In  ref. [1], the second term, which is nonsingular  in the limit p ~ ~r ,  was incorrectly dropped. 
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the following identity is crucial 
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~.+~,sX+~.+~ = O, (2.13) 

which follows from the Fierz rearrangement and the Majorana and chirality 
properties of X+. 

In the remaining part of this section we consider the construction of singleton 
actions with extended supersymmetry and focus on the case N = 8; the case N < 8 
is completely analogous. The fields ff'~ and 2,~+ now belong to the inequivalent 
spinor representations of 8 s and 8 c of SO(8). The free lagrangian (2.2) is general- 
ized to 

5a ° = _ ½ ¢ C ~ ( h , j  O,q~Aajq~A + ~ ,A  - iXd+yiViXA+) , (2.14) 

while the transformation rules (2.7) now read 

i F i  7-1 ~A[ , = l~I,~( ~ i  oi(~ATJ I -}- 2"t" ' /]+], 3oq )A = - ,~d0- + 30 XA 1,~A__t ~ (2.15) 

where FAI~/ are the SO(8) Clebsch-Gordan coefficients. One can show that eq. (2.14), 
in contrast to eq. (2.2), does not  admit interactions which preserve N - -  8 supersym- 
metry. By SO(3,2) xSO(8)  invariance the only possibilities are (#)A~A)3 and 

q, a + ys^ + . Supersymmetry will fail, however, because 

X~ ~,s ~.~+-q t_ 4= O, (2.16) 

for N = 8. One can easily check that the underlying algebra of eq. (2.15) is OSp(814) 
[7]. 

For  N = 2, remarkably, the following identity holds 

XA7 2~BXc I + 5 + +7/_=0,  A = 1 , 2 .  (2.17) 

Consequently, it turns out that self-interactions are possible for the N = 2 case as 
well - a result first obtained by Sokatchev [15]. In that case, the superspace action 
of ref. [15] in components reads as 

_ _ 1 2 A B  - - A  B +c2(qfl)  3 6c (¢ q ) "  7q~3 )h+~,sh+], (2.18) 

* This can be seen as follows. First, we recall that the derivative couplings are not  allowed due to their 
wrong scaling properties. Next, we observe that, due to the SO(8) Fierz identity, we only need to 
consider terms of the type (q'q0, (ckFlJeP) and (q)FIJxl~). The second term is vanishing because F lJ 
is antisymmetric.  The last term has the correct symmetry property, but  it vanishes due to the duality 
property of F IJKL (modulo a chirality operator) combined with the fact that q~a and X "~ have 
opposite SO(8) chirality. 
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which has the following symmetry 

8~A "--I I B = -t~_o~iB~ + , 

~ k A  0 1  [ i 0 --B .~_ I ~ B  ~ __ ! ~ ) 2 ~ A B ] ~ C  0 1 I , (2.19) = AB~ ' [  iq ) *1- ~ 71- )  - -  2ic(~'4eP ~ 2 / 8C 75~1 - 

where c is an aribtrary constant, ~2 = ~A~BSA~, A = 1,2 and oA81' ( I =  1,2) are two 
of the Pauli matrices. 

For  N > 2, the analog of eq. (2.17) is not satisfied. Therefore it is difficult to write 
down SO(N)  invariant, polynomial interactions for N > 2. Recently, however, it 
was shown [15] that for the N = 4 case, nonpolynomial interactions which are not 
SO(4) invariant are possible. 

The conformal transformations (2.3) and (2.4), the Killing vector equations (2.5) 
and (2.6), the Kilting spinor equations (2.8) and (2.9) have the natural generalization 
to S p × S 1 for any p. The general formulae are given in appendix A. 

3. (SU(2 ,  21N)-invariant doubleton field theories on S 3 × S 1 

The super anti-de Sitter group in five dimensions is SU(2, 2]4). It  was pointed out 
in ref. [13] that this group has a doubleton representation which could be described 
by an N = 4 supersymmetric Yang-Mil ls  theory in four dimensions. Here we will 
show that, it is indeed possible to construct an SU(2, 214 ) invariant Yang-Mil ls  
theory on S 3 × S 1. The theories which we believe to have a connection with 3-branes 
are those which are the N = 2 truncations of this theory. We will describe these 
truncations in this section. The fields of the N = 4 supersymmetric Yang-Mil ls  
multiplet in four dimensions and their reality properties are 

~ a b :  ~a b  __~,)ba ~ a b =  I abed~ (~.)cd)* 
= , ~E q)cd , ~cd  ~-- , 

~+ : complex spinor, "/5~+ = ~ + ,  3/5 = iY0123, 

A i: Maxwell field, i = 0,1, 2, 3 ; a, b = 1 . . . . .  4. (3.1) 

It  is an interesting exercise to show that the SU(2, 2]4) invariant Yang-Mil ls  action 
is 

= 4 (  -- ¼ Oi~ab ~ i~)ab __ 1,4 ~ ,.Kab 4 ~ i j ~  ]"  ~V~bV + i ~ + a Y q T i ~ + - -  ! F  F i J ~  (3.2) 

Apar t  from the SO(4,2)= SU(2,2) and the SU(4) symmetry, this action also 
possesses the following N = 4 supersymmetry 

~d~ab = ~/-~i(~[a)kb+] 1 abcd~ _ ~e a + f l / _ d ) ,  

~ k a + ~  ,/!-_~[io dl)ab~ 1" i j lu a 
V ~ i _ b  ~- ~ ) a b T l + b ' 4 -  ~l '~ l~ijTl+ , 

1 -- a -- a 
8 A  i 7(~/+~yiX++ X+~yi,+).  (3.3) 
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The proof of the SU(2, 2) invariance requires the (conformal) Killing vector equa- 
tions, while the proof of supersymmetry requires the use of the Killing spinor 
equations. These equations are those given in appendix A, for p = 3. It is important 
to recall, however, that the Killing spinors obey the following reality properties 

~+o = n~-o c ,  ~ - a  = ~+oC.T (3.4) 

For completeness, we record the nontrivial part of the commutator algebra which 
can be computed from eq. (3.3) 

[(~Q(,~(1)) ,  ~Q(,I~(2))] = ~S0(4 ,2 ) (~ ,  ~ )  "I- 8su(4)(a) + 8g(v), 

~i= _ ½i~).7inO) _ (1 ~ 2), 

~'~ = li~(2_)an(1 +)  --  li~(2+)a@l_) a --  (1 ~ 2), 

A~= - *iTnt2)a'~(1)2,,l_ ' l + b  - -  1 2 i ~ ( 2 ) a T l ( 1 - )  - -  trace - (1 ~ 2), 

V = ½i~l(2)avi~(1)~A i + ¢~l(2+)~(1)bOab -- ¢~(2_)~'o(l+)t'Oa b . (3.5) 

An N = 2 invariant consistent truncation of this theory is obtained by imposing 
the following conditions 

012 = 0 3 4 =  0 ,  A i =  0 ,  

3 _ 4 
~ + - -  ~ + ~--~ ~ + 3 ~-~ T~ +4 ~-~ 0 .  

~+= X~= 0, 

(3.6) 

Using the indices A = 1, 2 and A = 3, 4, we obtain from eq. (3.2) the following 
N = 2 supersymmetric lagrangian for the hypermultiplet on S 3 × S 1 

ZY=I/-Lh(--½0/OAAO'OAA--½OAAOA,i+i~+Ayi~7iX3+).  (3.7) 

The scalar fields obey the reality condition 

" 0 ~2A~. q//'i = I2ABI2A80B~, 12AB= 12AB = ( -  1 ~ ) ,  idem (3.8) 

The supersymmetry transformation rules are easily obtained from eq. (3.3) by using 
the truncation rules (3.6). The result is 

6XA+ = -¢~: 7i0,¢A~1 , - ~OAA~I+A.  (3.9) 
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The interesting feature of the truncation in the algebra of commutators given in eq. 
(3.5) is that the automorphism group SU(4) breaks down to SU(2) x U(1). Finally, 
we give the consistent N = 1 truncation. To this end, we impose the conditions 

¢1,i = ¢2~ = O, Xa+ = O, 7 -2  = 7+2 = O. (3.10) 

Let us denote the nonvanishing fields and parameters as follows 

~ 1 ~ ,  ~ ) k + ,  ~ 1 --~°l , 7 + 1 - B ÷ -  (3.11) 

Employing eqs. (3.10) and (3.11) in the lagrangian (3.7), we obtain the following 
N = 1 supersymmetric action for the Wess-Zumino multiplet on S 3 x S 1 

~ =  ~ - ~  ( -  Oi~O'~* - ~)~3* n L iX+vivi~k+ ) . (3.12) 

The supersymmetry transformation rules of this lagrangian is obtained from eq. 
(3.9) by using eqs. (3.10) and (3.11). The result is 

3(/) = ~-7 g'_)t + , 3 X + =  -![~,iOiq)a_-~eOfl+. (3.13) 

The automorphism group is now only a U(1). 
The supersymmetric doubleton field theories described above do not allow 

interactions. This is simply due to the scaling properties of the fields and the 
chirality of the spinor. 

4. OSp(6,  2[2N)- invariant  doubleton field theory on S s × S 1 

The anti-de Sitter group in seven dimensions, SO(6, 2), has a doubleton represen- 
tation [8]. The super extension of this anti-de Sitter group is OSp(6, 212N). It was 
pointed out in ref. [8] that if the N = 4 supersymmetric dobleton field theory existed 
in six dimensions it would contain five real scalars, four Majorana-Weyl spinors and 
a two-index antisymmetric tensor field with a self-dual field strength. We will show 
that such a field theory indeed exists, and it lives on the boundary of AdS 7 which is 
S 5 × S 1. 

The fields of the N = 4, d = 7 

¢°(a 

(A 

Bij (i ,  j 

For  the field equations of these 

( V r ' O , -  4)q)" = O, 

1 

doubleton supermultiplet which lives on S 5 × S 1 a r e  

: 1 , 2  . . . . .  5), 

= 1  . . . . .  4 ) ,  

= 0 , 1  . . . . .  5) 

V7XI=AI, 

(self-dual). (4.1) 

fields we have found the following result 

~li~TiXA+= O, 

. . , m .  30L,Bjk  . ( 4 . 2 )  Eijklmn 1-1 , Hijk 
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These equations of motion transform into each other under the action of the 

following supersymmetry transformations 

30 a = i~_FaX+ , 

8X+= y i0,q,-~F ~ 7/_ + 2q, a E ~  + + ~i 'y i jkHijk~ 

8Bij  = ~ "Yij~k + , (4.3) 

where 7/+ are the Killing spinors on S 5 × S 1 which satisfy the equations provided in 

appendix A,  for the case p = 5. In addition, the theory has an SO(6, 2) invariance 

whose transformations can also be found in appendix A. In particular, the field Bij 
is inert under the conformal transformations. The theory is also manifestly SO(5) 

invariant. 
The commutator of two supersymmetry transformations (4.3) yields SO(6, 2 ) ×  

SO(5) and antisymmetric tensor gauge transformations as follows 

[~Q(~(1)),  ~Q(~(2))] = (~SO(6,2)(+, ~p)_i_ +SO(5)(A ) -I- (~g(U) , 

+~= 2i~(2)yql (t> ~2 = ~im(2)- (t) - 1 ~ 2 
, 2 ~ ' 1  " 1+  , 

A ab = 2i~(2)Fab~/~ ) - 1 ~ 2, 

d =  4~(2)y~F%l(t)0 ~ + 4iTl(2)yJ~O)Bji . (4.4) 

The above result admits an N = 2 supersymmetric consistent truncation given by 

0 5 = 0, FsX+= X+, Bi j= 0, Fs~ ±= - 7  + - (4.5) 

Now that the B-field is absent, we can write down a covariant lagrangian. We find 
that the N = 2 supersymmetric doubleton lagrangian is 

£p= _ l f 7 ~  ( oi+a a , , ,  + 40~0~ _ i~t+ yiviX+ ) , (4.6) 

which is invariant under 

80 ~ = i~_F~X+, 8X+= ~,~o,O+r~n_+ 20aF%/+. (4.7) 

Since only the Killing spinors with a negative chirality with respect to the SO(4) 
symmetry are maintained, the automorphism group is now SU(2), i.e. the commuta- 
tor of two N = 2 supersymmetry transformations now yields only an SU(2) as an 
internal symmetry. The theory has additional SU(2) invariance whose transforma- 
tions commute with the superalgebra. 

Finally, we note that both the N = 2 and N = 4 doubleton theories do not admit 
interactions, i.e. the SO(6, 2) invariant 03 interaction does not admit a supersymmet- 
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ric extension. The reason is as for the case of S 3 x S a, namely the scaling properties 
of the fields and the chirality of the spinor. 

5. Comments 

All theories described above, with the exception of the OSp(1 [4) and OSp(214) 
singleton theories, are free. In the OSp(114) theory, it has been argued that 
the singleton states by themselves are very difficult to observe, and shown that the 
two singleton states give rise to infinitely many massless states of all possible integer 
and half integer spin [4,14]. Thus, the interacting singleton theories could be singled 
out as the only relevant ones among all the other singleton or doubleton theories, iJ 
one insists on interpreting them as sort of preon theories. However, there is another 
possible interpretation of these theories which make the free ones useful. This 
possibility can be stated as the conjecture that the supersymmetric field theories on 
S p x S 1 for p = 1 . . . . .  5 describe the super p-branes propagating in AdSp+ 2 x S N 1. 

If this conjecture is true, these theories should be capable of describing interacting 
field theories in AdSp + 2 without introducing interactions in the world volume of the 
super p-brane, in much the same way that string theory as a 2-dimensional 
conformally invariant field theory can describe an interacting quantum field theory 
in a higher dimensional spacetime. 

Our conjecture is motivated by the following observations. First, the super 
extensions of the anti-de Sitter algebras SO(p + 2, 2) exists only for p = 1 . . . . .  5, 
which are precisely the values for which a super p-brane exists. Second, the internal 
symmetry groups of the super AdS algebras are in correspondence with the isometry 
groups of the parallelizable spheres, i.e. S 1, S 3 and S 7, in such a way that the sum of 
the dimension of the anti-de Sitter spacetime and the allowed parallelizable spheres 
is always precisely the critical dimension in which a super p-brane can exist. 

It would be interesting to investigate the possible anomalies in the rigid super 
anti-de Sitter symmetries of these theories (which are the analogs of the super- 
Poincar6 symmetries of the usual superstring theories), in an attempt to narrow 
down the list of candidate theories for a consistent unified description of elementary 
particles at the Planck scale. At present, it is known that the p = 2, N = 8 case is 
anomaly free [7]. 

We would like to thank Eric Bergshoeff, Christian Fronsdal and Emery Sokatchev 
for discussions. E.S. would like to thank the Institute for Theoretical Physics at the 
University of Karlsruhe, where part of this work was done, for hospitality. 

Note added in proof 

After this paper was completed we received a paper by Blencowe and Duff [16] 
where results similar to these of sect. 2 of this paper are obtained, and a possible 
connection between super anti-de Sitter algebras and super p-branes is conjectured. 
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Appendix A 

In this appendix, we shall give the general formulae for the (conformal) Killing 
vectors, spinors, lagrangians and transformation rules for field theories formulated 
on S p x S 1, for any p. 

It is well known that S p admits (p  + 1) conformal Killing vectors. On S p x S ~, 
this number is doubled, and all together there are 2(p + 1) conformal Killing 
vectors generating motions in AdSp+ 2. They obey (the radius of S p is set equal to 1 
for simplicity) 

~Ti~j"~ ~Tj~i= 4 ~ h i j  , WiOi~2 = (1 --p)~2. (A.I ,A.2)  

It is not difficult to show that eq. (A.2) follows from eq. (A.1). 
In order to write down an SO(p + 1, 2)-invariant kinetic term for a scalar field 

living on S p × S t, the scalar field must be assigned a conformal weight (p  - 1), i.e. 

3q~ = ~' O,q~ + ( p - 1) ~q~. (A.3) 

The SO(p + 1, 2)-invariant (up to a total derivative) lagrangian for a free scalar field 
then reads 

~°0= - l ~ [ Z h  [ hiJ OirkO jei, + ¼( p - 1)2@2]. (A.4) 

Given eq. (A.3), the only possible SO(p + 1,2)-invariant interactions are easily 
found to be 

"~1 = ~ 2 ( , + l ) / ( p  1). (A.5) 

The analogs of eqs. (A.3), (A.4) and (A.5) for a spinor living on S p × S 1 are 

&° 0 = Vc-Z-h i)ty'~7~X, G = -~F~XXd~ 2/(p 1}. (A.7,A.8) 

We now turn to a general description of the Killing spinors on S p × S 1. There are 
2 I(p+2)/21 of them. They can be obtained from the Killing spinors of AdSp+ 2 given 
in ref. [2] by restricting them to the boundary. From the usual Killing spinor 
equation on AdSp+ 2 one finds that on S p × S 1 they obey the following equations 

( 3 0 -  ~y0)~ = 0, (~7~ - ½7~y)~/= 0 ( a = l , 2  . . . . .  p ) ,  

where 3' is defined as follows 

p = o d d :  y=-i (p 1)/2"yOYl...yp~--'~p+2 , 

p = e v e n :  Y-Tp+X, 

(A.9, A.10) 

.,/2= 1, (A.11) 

~2= 1. (A.12) 
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Although  for all p the matrix 7 is the Dirac matrix in the spatial radial direction in 

the anti-de Sitter space, for odd p,  7 is the usual criticality operator,  while for even 

p, it is an unusual  one. 

A weaker version of eqs. (A.11) and (A.12) can be cast into an S p × S a covariant 
fo rm which reads 

~7i~-- - -  l~iTJ 4- = O,  "~'~7i3 ~ + + ½( p -- 1) 7/_ = 0. (A.13, A.14) 

Specific internal symmetry representations and the reality properties of  Killing 

spinors should be considered case by case for each p,  and can be found for 
p = 2, 3, 5 in the text, and p = 1, 4 in appendix B. 

Appendix B 

B.1. OSp(N[2) INVARIANT STRING THEORY ON S 1 × S 1 

Fo r  simplicity, let us focus our attention on the case N = 8. The other cases work 

in precisely analogous manner. Using the formulae of  appendix A, for p = 1, and 
the results of  sect. 2 for the N = 8 supersymmetric singleton, we readily find the 
following lagrangian on S 1 × S x [12] 

• -A i A s o =  - o , ,A A - (B.1)  

which is invariant  (up to a total derivative) under  

3 4 / =  -iF,[~iStXA+, 3XA+= FJAT'o/oA~I , . (B.2) 

The indices A, ,4, I label the 8s, 8¢ and 8 v of SO(8), respectively. The Killing spinor 
7/_ is constant .  The conformal  weights of q /  and X d are 0 and 1, respectively. Note  
that  the lagrangian (B.1) is just the usual heterotic string lagrangian in ten dimen- 
sions without  the 32 heterotic fermions. The latter can be added, if desired, without 

spoiling the OSp(812) symmetry. 

B.2. F(4) INVARIANT DOUBLETON THEORY ON S 4 x S 1 

The double ton  multiplet living on S 4 x S 1 consists of  four scalar fields as in eq. 
(3.8), and two 8-component  spinors satisfying the following "chirali ty" and sym- 

plectic Majorana  conditions 

- -A __ A T  ~ xB+~'~t~A " , C T = - C.  (B.3) vsx =x , x + - x + c ,  x+  

N o t e  that the 7 matrices are 8 × 8. With the aid of the formulae of appendix A, for 
p = 4, and the results of sect. 3, which are very similar to the present case, we find 
the following doubleton lagrangian on S 4 × S 1 

9r~AA"K --  i~t+dviv'i?t+d), (B.4) so= - ½riCh(  hij Oiq ~AA Ojq~Ad + Xv vAd 
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which is up to a total derivative invariant under 

~kA+: /T- i 0 --AA 
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The Killing spinors satisfy eqs. (A.9) and (A.10) with the chirality operator "~ = 2/5- 
In addition, we must impose the symplectic Majorana conditions 

~+A = ~/~ AC, n ~ =  OASn+B- (B.6) 

In the commutator of two supersymmetric transformations, one now finds an SU(2) 
as an internal symmetry. This is in accordance with the fact that the exceptional 
F(4) superalgebra has SO(5, 2)® SU(2) as a bosonic subalgebra. The action also 
possesses an SU(2) symmetry which commutes with this superalgebra. Finally, we 
note that the action does not admit interactions which preserve the supersymmetry 
because of the scaling properties of the fields, the "chirality" of the spinor, and the 
symmetry of ~t 7. 

Appendix C 

(CON FO RMA L )  KILLING VECTORS ON S 2 × S 1 

O 0 
= = - : - - ,  

acp 
~23 q- i~3z = ei~° i --  cot 0 , 

O 0 sin ~ 0 
~15 "}- i~1o = e - i t  - i  sin0cos ~ - ~  + cos0cos~v 30 sin0 O~ 

O 3 
~25 + i~20 = e-it  - i sin 0 sin cp~- + cos 0 sin q o ~  + 

cos q0 3 

sin 0 0(p 

( ~35 + i~30 = e - i t  - - i c o s O ~ -  sin0-0~ , 

005  = 0 ,  O12 = 0 ,  023 q- i031  = 0 ,  

015  q- i~10  = -- ½e it s i n  0 COS ¢p, 

025  + iO20 = -- le-itsinO sing), 

035 -t- iO30 = -- ½ e - i t c o s  0 .  

( B . 5 )  
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