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Introduction

Numerical ITG-turbulence studies in an electrostatic two-fluid framework show, that the

structure and intensity of zonal flows, poloidalE ×B-flows with zero poloidal and toroidal

mode numbers, affects radial heat transport in confinement plasmas. At the same time the zonal

flow evolution is governed by the turbulence generated Reynolds stress pattern setting up an

equilibrium state between the zonal flows and the turbulence. A stress response functional that

predicts the evolution and scale of zonal flows is derived andvalidated from synthetic flow

measurements.

Time-evolution of zonal flows
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Figure 1: Zonal flow patterns. Light/Dark color represents

flow in/against the ion-diamagnetic drift direction andts ≡
2πqR/cs. Upper/lower plot: self-consistent flow/initially

stretched flow.

The framework for the ITG-

turbulence studies is an electro-

static, large aspect ratio, circular

geometry, two-fluid model with

the approximation of adiabatic

electrons where parallel heat con-

ductivities are chosen to agree

with damping rates of kinetic

phase mixing [1]. Since gyro-

kinetic turbulence studies qualita-

tively reproduced the zonal flow

behavior of the fluid approach it

was justified to do further analy-

sis in the fluid framework which

is computionally more practical.

A characteristic zonal flow pat-

tern can be observed in self consistent turbulence studies of the core region, fig. 1. The time-

development of the zonal flow velocity is shown in the color coded upper figure. As the flows

appear to repel each other and boundary conditions allow propagation out of the computational

domain, a change in radial scale can be observed but only within highly constrained limits.

Below a certain threshold new flows grow maintaining the characteristic pattern. The lower
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figure, fig. 1, shows the zonal flow evolution of a modified turbulent state with a stretched

self-consistent initial flow pattern. As this radial scale appears not to be one of a zonal-flow-

turbulence equilibrium state, the flow immediately starts to decay into a pattern of characteristic

scale length. Turbulent states modified with initial flow ramps, eliminating immediate harmonic

generation, self-consistently decay into the characteristic pattern indicating instability growth

as the primary scale generating mechanism.

Generation of zonal flow scale

The force balance for the zonal flow velocityυθ driven by a total Reynolds stressR is

∂tυθ =−∂rR. (1)

The deterministic zonal flow behavior observed in fig. 1 suggests, that the stress is a functional

of the flow and the intensityI of the turbulence. Since the stressR is the result of a flux surface

average of the turbulence equations it must retain the form invariances of the original equations.

This restricts the set of possible terms in the functional tothe shearing rateu≡ ∂rυθ , combina-

tions of powers ofu and higher derivatives thereof with an odd total number of flow derivatives

per term.

Based on observations a total stress response functional must describe the growth and sat-

uration of zonal flows as well as a dominant robust radial scale. A candidate functional with

constantsα,β ,γ,δ > 0 is

R= I
[
αu

(
1−βu2)− γ∂ 2

r u−δ∂ 4
r u

]
. (2)

Rescaling with the turbulence intensityI is attributed to the proportionality of the local turbu-

lence level and the stress. For small shearing rates only thelinear term is dominant and thus

α describes the linear growth rate of the zonal flows. As the shearing rate increases, the non-

linear second term becomes more dominant leading to a flow saturation whenβu3 & u. Both

the higher derivatives of the shearing rate are necessary toincorporate the damping of smallest

scales as well as the characteristic zonal flow scale.

An estimate for growth rateΓ(kr ,u) of the zonal flows can be derived using a mean-field

theory approximation of∂ru3 ≈ 3
〈
u2
〉

∂ru.

Γ(kr ,u) = Ik2
r

(
α(1−3β

〈
u2〉)+ γk2

r −δk4
r

)
(3)

An appropriate radial average is denoted by〈. . .〉. For small values of
〈
u2
〉

the growth rateΓ

has only two positive real roots inkr . They define the region of initial zonal flow growth. The

lower limit for growth is zero and the upper limit is defined bytheδk4
r term setting the smallest
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scale limit beyond which no zonal flows driven by ITG-turbulence exists. At the threshold of
〈
u2
〉
= 1/3β another real root appears pushing the lower limit for zonal flow growth away from

zero towards higherkr with any further increase of the shearing rate.

kr

G

Figure 2: Proposal of zonal flow growth rateΓ with

respect tokr . The dashed line depicts a higher shear-

ing rateu than the continuous line.

Figure 2 illustrates the saturation

mechanism at a finite zonal flow scale.

With an increasing shearing rate the re-

gion of growth gets more and more con-

fined as the upper and lower growth

limits move closer together until satu-

ration at
〈
u2
〉 sat

= (γ2+4αδ )/12αβδ

with a finite zonal flow scalek sat
r =

√
γ/2δ . For amplitudes

〈
u2
〉
>
〈
u2
〉 sat

all flows are damped. The stability and scale generation of the momentum balance, eq. (1), with

the stressR, eq. (2), has further been verified numerically.

A stress response functional based on wave-kinetic theories and discussed in [3] is quite

similar to (2) withδ = 0 andγ < 0.

R= I
[
α∂rυθ

(
1−β (∂rυθ )

2
)
+ γ∂ 2

r υθ

]
(4)

This functional, eq. (4), already reproduces stress patterns for supplied self-consistent flow pat-

terns. However, numerical solutions show that the only stable solution is a flow with the largest

scale accommodated by the domain. The one scale contained ineq. (4) is therefore insufficient

to describe the zonal flow saturation at a characteristic scale. This behavior is explained by the

missing third real positive root in a growth rate approximation for eq. (4) using the aforemen-

tioned approximation. For the stress, eq. (4), the lower limit of growth remains atkr = 0 for any

flow amplitude indicating that the second scale in eq. (2) is indeed necessary.

To validate the response functional, eq. (2), turbulence studies with two superimposed fixed

synthetic flows are used. The primary flow has a ramp profile with a constant shearing rate,

located in the self-consistently damped region, to set up a turbulence level close to a zonal-

flow-turbulence equilibrium state. The secondary sinusoidal flows of different radial scales are

perturbatory with comparatively small amplitudes such that their stress contributions from their

shearing ratesus areαs(kr)us. The intend is to measure thekr -dependence of their growth rate

γm = k2
r αs(kr) and compare it with the approximationΓ, eq. (3).

Common analysis techniques, e.g. least-squares approximations, proved to be inadequate to

separate and extract the deterministic fractions of the contributions. However, analysis of stress

responses in single flow studies allow construction of an ”a priori” covariance estimator for
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unwanted contributions including random fluctuations. In the two-flow studies this estimator

is now used to minimize the variance of the stress response caused byus with respect to the

unwanted contributions produced by other sources.

The measurements ofαs(kr) confirm that two scales are indeed necessary. Initially zonal

flows of allkr grow but with increasing shearing rate smallkr are damped. Any further increase

of the primary shearing rate pushes the lower limit of the growth region towards higherkr while,

at the same time, the upper limit decreases. For an even higher primary shearing rateαs< 0, thus

all kr are damped. The overall behavior ofαs(kr)k2
r is very similar to the growth rate estimate

(3). This shows that functional (2) indeed describes the zonal flow evolution and intrinsic scale.

Conclusions

Based on form invariance requirements and self-consistentflow observations a response func-

tional incorporating a characteristic radial scale for thetotal Reynolds stress was constructed,

eq. (2). The functional generates the scale by further and further constraining the region of

zonal flow growth from both the higher and lowerkr side with increasing shearing rate until

saturation at a characteristic scale. Turbulence studies with synthetic flows were used to mea-

sure thekr -dependence of the stress response. The measurements verified that the constructed

response functional indeed describes the zonal flow time-evolution and scale generation. Coef-

ficient dependency analysis on plasma parameters will lead to further insights on the formation

of internal transport barriers in fusion devices.
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