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We compare a recently derived, resummed high post-Newtonian accuracy effective-one-body (EOB)
quadrupolar waveform to the results of a numerical simulation of the inspiral and merger of an equal-
mass black-hole binary. We find a remarkable agreement, both in phase and in amplitude, with a maximal
dephasing which can be reduced below �0:005 gravitational-wave cycles over 12 gravitational-wave
cycles corresponding to the end of the inspiral, the plunge, the merger, and the beginning of the ring-down.
This level of agreement is shown for two different values of the effective fourth post-Newtonian parameter
a5, and for corresponding, appropriately flexed values of the radiation-reaction resummation parameter
vpole. In addition, our resummed-EOB amplitude agrees to better than the 1% level with the numerical-
relativity one up to the late inspiral. These results, together with other recent work on the EOB-numerical-
relativity comparison, confirm the ability of the EOB formalism to accurately capture the general-
relativistic waveforms.
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I. INTRODUCTION

The gravitational-wave (GW) signals emitted by coales-
cing black-hole binaries are among the most promising
targets for the currently operating network of ground-based
detectors GEO/LIGO/VIRGO. The most useful part of the
waveform for detection comes from the most relativistic
part of the dynamics, around the coalescence, i.e. the last
few cycles of the adiabatic inspiral, the plunge, and the
merger. It is crucial for GW detection purposes to have
available a large bank of ‘‘templates’’ that accurately rep-
resent the GW signals radiated by these binaries. The
construction of faithful1 GW templates for coalescing bi-
naries comprising spinning black holes (with arbitrary
masses m1, m2 and spins S1, S2) is a nontrivial task. In
view of the multidimensionality of the corresponding pa-
rameter space, state-of-the-art numerical simulations can-
not densely sample this parameter space. It is therefore
urgent to devise analytical methods for computing (as a
function of the physical parameters m1, m2, S1, S2) the
corresponding GW waveforms. Here we continue the pro-
gram of constructing, within the effective-one-body (EOB)
method [2–5], high-accuracy analytic waveforms describ-
ing the GW signal emitted by inspiralling and merging
binary black holes with arbitrary masses and spins. The

EOB method was the first to provide estimates of the
complete waveform (covering inspiral, plunge, merger,
and ring-down) of a coalescing black-hole binary, both
for nonspinning systems [3] and for spinning ones [6].

Numerical relativity (NR) recently succeeded in giving
us access to reliable information about the dynamics and
radiation of binary black-hole coalescences [7–18]. This
opens the possibility of comparing the EOB predictions to
NR results.

The comparison between the EOB approach and NR
results has been recently initiated in several works [19–
24]. These recent comparisons have been done using two
different versions of EOB waveforms. The works of
Buonanno et al. [19,20,23] use a restricted waveform, as
proposed in the first EOB paper [3], but with an improved
matching to the ring-down (similar to the one used in [25])
making use of three quasinormal modes. By contrast, the
recent works of Damour and Nagar [22,24] use a new,
resummed high post-Newtonian (PN) accuracy2 EOB
quadrupolar waveform. This improved EOB waveform
has been shown to exhibit a remarkable agreement, both
in phase and in amplitude, with NR waveforms in two
separate physical situations: (i) inspiral and coalescence
of small-mass-ratio (nonspinning) systems [22] (compar-
ing it to waveforms computed by means of numerical
simulations of test particles, with an added radiation-

1Following the terminology of [1], we recall that ‘‘effectual
templates’’ are templates exhibiting large overlaps with an exact
signal after maximizing over all (kinematical and dynamical)
parameters, while ‘‘faithful’’ ones are so ‘‘close’’ to an exact one
that they have large overlaps for values of the dynamical
parameters which are very close to the real ones (‘‘small
biases’’).

2This high-PN accuracy can be called 3�2-PN because it
includes not only the known comparable-mass 3PN waveform
corrections, but also the test-mass limit of the 4PN and 5PN
waveform amplitude corrections. See [24] for details and
references.
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reaction force, moving in black-hole backgrounds [26])
and (ii) inspiral (up to a limiting GW frequency
�0:14=M) of an equal-mass (nonspinning) system [24]
(comparing it to recently published results of a high-
accuracy inspiral simulation [18]).

The present paper is a continuation of the general pro-
gram of constructing, within the EOB approach, high-
accuracy, faithful analytic waveforms describing the
gravitational-wave signal emitted by inspiralling and co-
alescing binary black holes. Here we shall consider the
coalescence signal emitted by a nonspinning equal-mass
binary black-hole system. We shall compare the phase and
the amplitude of the new resummed 3�2-PN-accurate EOB
quadrupolar waveform of [22,24] to a numerical-relativity
simulation of a coalescing black-hole binary performed at
the Albert Einstein Institute (AEI).

This comparison will confirm the ability of the EOB
approach to provide accurate analytical representations
of NR waveforms. We note that the recent work [23]
had already shown the ability of the analytically less
accurate restricted3 EOB waveforms to provide rather
accurate approximations to NASA-Goddard NR coales-
cence waveforms for several different mass ratios
(m1=m2 � 1, 3=2, 2, and 4). More precisely, Ref. [23]
found, in the equal-mass case, an EOB/NR dephasing of
�� 0:03 GW cycles over 15 GW cycles. Concerning the
amplitude, the latter reference does not quantify the
restricted-EOB/NR difference, but one can read from
Fig. 21 of [18] that the difference between the restricted
PN (or EOB) amplitude and the Caltech-Cornell inspiral
NR one is �7%. By contrast, the present paper will show
that the new, resummed waveform exhibits a significantly
smaller dephasing �� 0:005 GW cycles over 12 GW
cycles, and, most remarkably, exhibits an excellent agree-
ment in amplitude, both during the inspiral (where it is
better than the 1% level) and the ring-down. This good
result is obtained by making use (as proposed in several
previous works [5,23,24,27,28]) of the natural flexibility of
the EOB approach.

An alternative approach to the construction of analytical
templates to model (nonspinning) coalescing binary black
holes with arbitrary mass ratios has been recently proposed
in Refs. [29,30].

This paper is organized as follows: In Sec. II we briefly
describe the numerical simulation, whose results we use in
the following. In Sec. III we spell out the features of the
EOB waveform that we shall use. The main section is
Sec. IV where we compare the new, resummed-EOB wave-
form to NR data. We also include a comparison where we
use the less accurate restricted EOB waveform, and sim-
pler quasinormal-mode (QNM) matching, used in some of
the previous EOB works [3,19,20,23]. The paper ends with
some conclusions.

II. BRIEF DESCRIPTION OF THE NUMERICAL
SIMULATION

The numerical simulations have been carried out with
the CCATIE code [31], a three-dimensional finite-
differencing code developed at the Albert Einstein
Institute and at the Center for Computation and
Technology (CCT) of the Louisiana State University. The
code is based on the CACTUS Computational Toolkit [32]
for the solution of the Einstein equations in a finite-size
domain covered with a Cartesian rectangular grid. The
main and new features of the code have been recently
discussed in Ref. [31], and here we briefly recall the
most important ones only.

The Einstein equations are formulated as an initial-value
problem via a conformal and traceless ‘‘3� 1’’ decompo-
sition. The spacetime geometry is decomposed into (i) the
3-metric of spacelike slices, (ii) the extrinsic curvature of
those slices, and (iii) the lapse and shift. See [31] for the
explicit form of the equations. The lapse function is
evolved using the ‘‘1� log’’ slicing condition [33], while
the shift is evolved using the hyperbolic ~�-driver condition
discussed in Ref. [34], but with the difference that advec-
tion terms have been added following the experience of
[8,35], and are required for correct advection of the punc-
tures in ‘‘moving-puncture’’ evolutions.

Spatial differentiation of the evolution variables is per-
formed via straightforward finite differencing using fourth-
order accurate centered stencils for all but the advection
terms for each variable, which are instead upwinded in the
direction of the shift. Vertex-centered adaptive mesh re-
finement is employed using nested grids via the CARPET

infrastructure [36], with a 2:1 refinement for successive
grid levels, and the highest resolution concentrated in the
neighborhood of the individual horizons. Individual appar-
ent horizons are located every few time steps during the
time evolution [37], which is obtained via a ‘‘method of
lines’’ and with a fourth-order accurate Runge-Kutta time
integrator.

The simulations were performed on a domain with outer
boundaries located at4 768Mc, and a grid structure consists
of nine mesh-refinement levels, the finest of which has a
spatial resolution of h � 0:02Mc. Simulations with lower
resolution (i.e., with h � 0:024Mc and h � 0:03Mc) have
also been carried out to validate the consistency of the
results. An important feature of the CCATIE code is the
possibility of employing two distinct methods for the
calculation of the gravitational radiation produced. The
first method uses the Newman-Penrose curvature scalar
 4, with respect to a suitable frame at the extraction radius.
An alternative method measures the metric of the numeri-
cally generated spacetime against a fixed background at the

3Here ‘‘restricted’’ refers to a waveform h / �2=3e�2i�.

4We denote by Mc the internal length and mass units used in
the code (with G � c � 1). Be aware that Mc slightly differs
from M � m1 �m2 (see below).
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extraction radius, and determines the gauge-invariant
Regge-Wheeler-Zerilli-Moncrief functions (see Ref. [38]
for a review and references). Both methods have been
systematically studied in Ref. [31], where they were also
compared and shown to yield essentially identical results,
both in terms of their asymptotic scaling properties (e.g.,
the peeling theorem), and in terms of the polarization
amplitudes h� and h�. The analysis carried out here
used as basic NR data the gauge-invariant (Zerilli-
Moncrief) metric perturbations. These were extracted on
(NR) coordinate 2-spheres with (NR) coordinate radii
RNR � 60Mc up to RNR � 120Mc, with a separation of
10Mc between two adjacent observers. The analysis car-
ried out below uses, as an approximate asymptotic ampli-
tude, the metric perturbation extracted at RNR � 120Mc.

The initial data for the black-hole binary are obtained by
a Brill-Lindquist [39] construction, where the additional
asymptotically flat end of each wormhole is compactified
into a single point, the so-called puncture [40]. This ap-
proach explicitly uses the Bowen-York extrinsic curvature
and solves the Hamiltonian constraint equation numeri-
cally (as detailed in Ref. [41]), after having chosen the
free parameters for the puncture initial data.
Quasicircularity of the initial orbit can then be obtained
by specifying the puncture parameters in terms of an
effective-potential method [42] as discussed in [31].
However, the assumption of ‘‘quasicircularity’’ (in the
sense of [42]) at the (rather small) initial separations
frequently used in numerical-relativity simulations has
the drawback of introducing a small but nonzero amount
of eccentricity. To compensate for, or reduce, this effect,
other approaches have been suggested recently. One of
these is based on an iterative minimization procedure
where, throughout a series of simulations with slightly
different initial black-hole configurations, the eccentricity
is measured and minimized [43]. A simpler and rather
effective approach has been proposed in Ref. [44], and
consists of specifying the initial puncture parameters as
the end state of a binary system whose evolution is deter-
mined, starting from a large separation, via the solution of
the Taylor-expanded 3PN-accurate equations of motion
[6,45,46].

Here we have essentially followed this latter prescription
and considered, in particular, the initial data denoted by
E11 in Table I of [44], that have been shown there to reduce
the eccentricity to e < 0:002. More specifically, our initial

black holes have a coordinate distance D � 11Mc, mo-
menta in the radial and tangential directions of Pr �
�7:094 12� 10�4Mc and Pt � 0:090 099 3Mc, and a
puncture mass parameter of 0:487 035Mc, leading to initial
individual black-hole masses m1 � m2 � 0:499 821Mc,
and thus a total mass of the binary system M �
m1 �m2 � 0:999 642Mc. Overall, the simulation covers
about �1600M of the final evolution of the binary, thus
comprising 8 orbits and about 16 GW cycles.

The mass and spin of the final black hole have been
computed through two different methods yielding, how-
ever, very similar results: (i) by using the isolated/dynami-
cal horizon formalism [47,48], where a proper rotational
Killing vector is searched on the final apparent horizon to
measure the spin, and the horizon area is used for comput-
ing the black-hole mass (see Sec. IV D of Ref. [31] for
details); (ii) by performing a fit of the dominant quasinor-
mal mode5 of the complex ring-down waveform. This fit
was performed by a nonlinear least-squares Gauss-Newton
method, using exp���t� �� as a parameter-dependent
template [with two complex parameters (�, �)], and an
appropriate time interval during the ring-down (chosen by
minimizing the post-fit residual). (For a discussion of
methods for QNM fitting, see Refs. [49–51].) Then, from
the best-fit value of � (i.e., the QNM dominant complex
frequency ��2220), we computed the values of the mass and
dimensionless spin parameters of the final black hole by
using the interpolating fits given in Appendix E of
Ref. [52]. The results of these two methods are denoted
as �Mhor; jhor� and �Mring; jring�, respectively.

The most relevant properties of the binary system are
summarized in Table I. The difference (which is & 1%)
between the quoted values of the final black-hole parame-
ters might come, in part, from inaccuracies in the interpo-
lating fits of Ref. [52]. In the following we will use, in our
EOB-matching procedure, the ring-down-fitted black-hole
parameters �Mring; jring� (so that the dominant complex
frequency will be guaranteed to have the best possible
value).

III. EOB METHOD AND WAVEFORM

We shall not review here in detail the EOB method [2–
5], which has been described in several recent publications,

TABLE I. For two different grid spacings h (first column), from left to right the columns report the following: initial ADM mass
(scaled by M � m1 �m2) and ADM angular momentum of the spacetime (scaled by M2); final mass (scaled by M) and dimensionless
spin parameter jf � Jf=M

2
f of the merged black hole computed using the isolated/dynamical horizon formalism and from the fit of the

ring-down; and dominant (quasinormal-mode) complex frequency of the ring-down.

h=M MADM=M JADM=M
2 Mhor

f =M jhor
f Mring

f =M jring
f M��2220

0.024 0.990 484 0.991 803 0.951 531 0.687 142 	 	 	 	 	 	 	 	 	

0.020 0.990 484 0.991 803 0.951 611 0.686 916 0.959 165 0.684 639 0:085 475� i0:551 040

5In the notation introduced in Sec. III below, the dominant
mode corresponds to the labels ��; ‘; ‘0; m; n� � ��; 2; 2; 2; 0�.
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notably Refs. [23,24]. We shall only indicate the EOB
elements that are crucial for the present study. For detailed
definitions of the EOB ingredients we refer to the recent
paper [24] that we follow, except when otherwise indicated
below.

Before entering the details of our EOB implementation,
let us recall that Ref. [24] proposed a methodology for
improving the waveform implementation of the EOB phi-
losophy based on understanding, element by element, the
physics behind each feature of the waveform, and on
systematically comparing various EOB-based waveforms
with ‘‘exact’’ waveforms obtained by numerical-relativity
approaches. The first step of the methodology consisted in
studying the small-mass-ratio limit, � 
 m1m2=M

2 � 1,
in which one can use the well controllable ‘‘laboratory’’ of
numerical simulations of test particles (with an added
radiation-reaction force) moving in black-hole back-
grounds. Historically, this laboratory has been important
in understanding/discovering several key features of GW
emission near black holes, a notable example of this being
the work of Davis, Ruffini, and Tiomno [53] who discov-
ered the transition between the plunge signal and a ringing
tail when a particle falls into a black hole. The recent study
of inspiralling and merging small-mass-ratio systems [22]
led to introducing (and testing) the following improve-
ments in EOB dynamics and waveforms: (i) an improved
analytical expression for the [�‘;m� � �2; 2� even-parity
Zerilli-Moncrief ] waveform ��e�22 which includes a resum-
mation of the tail effects, and a 3�2-PN-accurate ‘‘non-
linear’’ amplitude correction, (ii) the inclusion of
nonquasicircular (NQC) corrections to the waveform,
(iii) the inclusion of nonquasicircular corrections to radia-
tion reaction, and (iv) an improved treatment of the match-
ing between the plunge and ring-down waveforms which
takes into account a new understanding of the importance
of the number of QNMs, the sign of their frequencies, and
the length of the interval on which the matching is done.
The resulting improved implementation (when �� 1) of
the EOB approach yielded very faithful waveforms whose
amplitude and phase agreed remarkably well with the exact
ones: in particular, the EOB phasing differed from the
exact one by less than �1:1% of a cycle over the whole
process.

The program initiated in [22] was pursued in [24] where
the comparable-mass version of the improved, resummed
3�2-PN-accurate waveform was compared with the re-
cently published inspiral simulation of the Caltech-
Cornell group [18]. It was found that, by exploiting the
combined flexibility in a5 and vpole, one could reach a
remarkable phase agreement, better than 0.001 GW cycles
over 30 GW cycles. Here, we shall similarly exploit the
flexibility in a5 and vpole to best fit the AEI merger
waveform.

Let us recall that the EOB approach is a nonperturba-
tively resummed analytic technique which consists of sev-

eral different elements:
(i) A Hamiltonian Hreal describing the conservative part

of the relative two-body dynamics. The key ingre-
dient of this Hamiltonian [defined in Eqs. (13) and
(14) of [24]] is the ‘‘radial potential’’ A�r�.6 This
radial potential is defined, at n-PN order, as the (1, n)
Padé resummation [4] of its Taylor (i.e. usual PN)
expansion [written in Eq. (15) of [24]].

(ii) A radiation-reaction force F ’ (denoted F̂ ’ after its
rescaling by 1=�), which is defined as a Padé re-
summation [1] of its Taylor expansion. See Eq. (17)
of [24] where fDIS is the P4

4 Padé resummation of
�1� v=vpole�F̂

Taylor�v;��. The coefficients of F̂Taylor

in Eq. (18) of [24] have been derived in Refs. [54–
59]. We shall also consider at the end, following
Ref. [22], the possibility of modifying F ’ by a
nonquasicircular correcting factor, Eq. (13).

(iii) Improved ‘‘post-post-circular’’ dynamical initial
data (positions and momenta) as advocated in
Sec. III B of [24]. To explain the improved construc-
tion of initial data let us introduce a formal book-
keeping parameter " (to be set to 1 at the end) in front
of the radiation reaction F̂ ’ in the EOB equations of
motion. One can then show that the quasicircular
inspiralling solution of the EOB equations of motion
formally satisfies

 p’ � j0�r� � "2j2�r� �O�"4�; (1)

 pr� � "�1�r� � "3�3�r� �O�"5�: (2)

Here, j0�r� is the usual circular approximation to the
inspiralling angular momentum as explicitly given
by Eq. (4.5) of [3], while the order " (‘‘post-
circular’’) term �1�r� is obtained by (i) inserting
the circular approximation p’ � j0�r� on the left-
hand side (l.h.s.) of Eq. (10) of [21], (ii) using the
chain rule dj0�r�=dt � �dj0�r�=dr��dr=dt�,
(iii) replacing dr=dt by the right-hand side (r.h.s.)
of Eq. (9) of [21], and (iv) solving for pr� at the first
order in ". This leads to an explicit result of the form
(using the notation defined in Ref. [21])

 "�1�r� �
�
�ĤĤeff

�
B
A

�
1=2
�
dj0

dr

�
�1
F̂ ’

�
0
; (3)

where the subscript 0 indicates that the r.h.s. is
evaluated at the leading circular approximation "!
0. The post-circular EOB approximation �j0; �1�was
introduced in Ref. [3] and then used in most of the

6Except when said otherwise, we henceforth systematically
scale dimensionful quantities by means of the total rest mass
M 
 m1 �m2 of the binary system. For instance, we use the
dimensionless EOB radial coordinate r 
 REOB=M, with G � 1.
Note also that � 
 �=M with � 
 m1m2=M.
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subsequent EOB papers [6,19,21,23,23,26]. The
post-post-circular approximation (order "2), intro-
duced in Ref. [24] and used here, consists of
(i) formally solving Eq. (11) of [21] with respect to
the explicit p2

’ appearing on the r.h.s., (ii) replacing
pr� by its post-circular approximation (3), (iii) using
the chain rule d�1�r�=dt � �d�1�r�=dr��dr=dt�, and
(iv) replacing dr=dt in terms of �1 (to leading order)
by using Eq. (9) of [21]. The result yields an explicit
expression of the type p2

’ ’ j2
0�r�
1� "

2k2�r�� of
which one finally takes the square root. In principle,
this procedure can be iterated to get initial data at any
order in ". We found that the post-post-circular

initial data �j0

�������������������
1� "2k2

p
; �1� are sufficient to lead

to negligible eccentricity when starting the integra-
tion of the EOB equations of motion at radius r �
15.

(iv) An improved, resummed ‘‘inspiral-plus-plunge’’
(hereafter abbreviated as ‘‘insplunge’’) waveform7

of the form

 

�
c2

GM

�
�insplunge

22 �t� � �4

������
�
30

r
��r!��2fNQC

22 F22e�2i�;

(4)

where ��t� is the EOB orbital phase, � � _� is the
EOB orbital frequency, and r! 
 r 1=3 is a modified
EOB radius, with  being defined in Eq. (22) of
Ref. [25]. The factor F22 is a resummed, 3�2-PN-
accurate complex amplitude correction valid during
the (adiabatic) inspiral, and fNQC

22 is an extra complex
correcting factor, aimed at taking care (in an effec-
tive way) of various nonquasicircular effects during
the plunge. F22 is defined in Eqs. (5)–(11) of [24],
with f22 being the (3, 2) Padé resummation of fTaylor

22
[see also Ref. [60] for an independent derivation of
the nonresummed, 3PN-accurate (2, 2) waveform].

(v) A ring-down waveform

 �ringdown
22 �t� �

X
N

C�Ne
���N t �

X
N

C�Ne
���N t; (5)

where the label N actually refers to a set of indices
�‘; ‘0; m; n�, with �‘;m� � �2; 2� being the
Schwarzschild-background multipolarity degrees of
the considered (Zerilli-Moncrief-type) waveform

�‘m � h‘m, with n � 0; 1; 2; . . . being the ‘‘overtone
number’’ of the considered Kerr-background quasi-
normal mode (n � 0 denoting the fundamental
mode), and ‘0 the degree of its associated spheroidal
harmonics S‘0m�a�; ��. In addition ��N � ��N � i!�N
refers to the positive/negative complex QNM fre-
quencies (��N > 0 and !�N > 0 indicate the inverse
damping time and the oscillation frequency of each
mode, respectively). The sum over ‘0 comes from the
fact that an ordinary spherical harmonics Y‘m��;��
(used as an expansion basis to define �‘m) can be
expanded in the spheroidal harmonics
S‘0m�a�; ��eim� characterizing the angular depen-
dence of the Kerr-background QNMs [61].

(vi) An improved way of matching the inspiral-plus-
plunge waveform to the ring-down one, on a �2p�
1�-tooth ‘‘comb’’ �tm�p	;tm��p�1�	; . . . ;tm�
	;tm;tm�	; . . . ;tm�p	�, of total length �t � 2p	,
which is centered around some ‘‘matching’’ time tm.
Below we will fix the integer p to the value p � 2,
corresponding to five matching points.

(vii) Finally, we define our complete EOB matched wave-
form (from t � �1 to t � �1) as

 

�EOB
22 �t� 
 ��tm � t��

insplunge
22 �t�

� ��t� tm��
ringdown
22 �t� (6)

where ��t� denotes Heaviside’s step function. Note
that, if one wanted to have a C1 transition between
the two waveforms, one could replace ��t� tm� by
one of Laurent Schwartz’s well-known smoothed
step functions (or ‘‘partitions of unity’’) �"��t�
tm�=�2p	��.

Let us now state the specific choices made here for the
various EOB ingredients just recalled. Some of these
choices correspond to various ways of ‘‘flexing’’ the
EOB formalism (in the sense of Ref. [27]).

(i) We ‘‘flex’’ the currently known 3PN-accurate EOB
Hamiltonian [4,45] by introducing an (effective)
4PN Hamiltonian parameter a5, parametrizing an
additional contribution �a5�=r

5 in the main EOB
radial function A�r�. This parameter has already been
introduced (under varying notations) in several pre-
vious works [5,23,24,27,28].

(ii) Similarly, the EOB radiation-reaction force [defined
by Eq. (17) of [24]] is ‘‘flexed’’ by allowing the
Padé-resummation parameter vpole to differ from
the ‘‘standard’’ value vDIS

pole��� advocated in [1].
In addition, we shall also briefly explore another
physically natural flexibility in the radiation reac-
tion, which was introduced (and shown to be physi-
cally needed for faithfulness) in [22]: the
multiplication of the radiation reaction by a NQC
correction factor fNQC

RR ; see Eq. (13) below.

7Here, as before, we work with a metric-level (‘‘h’’), rather
than curvature-level (‘‘ 4’’), waveform. However, we normalize
here this metric waveform in the same ‘‘Zerilli-Moncrief’’ way
as in the test-mass work [22]. This differs simply by a numerical
factor from both the usual tensor-spherical harmonics �‘;m�
metric amplitude h‘m and the related metric variables Q�;�‘m
extracted from the NR evolution [31]: Rh‘m�������������������������������������������
�‘�2��‘�1�‘�‘�1�

p
���e�‘m�i��o�‘m��

1��
2
p �Q�‘m�i

R
t
�1Q

�
‘m�t

0�dt0�.
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(iii) To define precisely the ‘‘insplunge waveform’’ (4)
we need to specify the following:

(a) The argument x�t� used in the f22 ‘‘brick’’
within F22 [see Eq. (10) of [24]]. We shall
use here x � �2=3 where � is the EOB orbital
frequency.

(b) The Padé resummation of the Taylor expan-
sion fTaylor

22 of f22. As in [24] we shall use a P3
2

Padé.
(c) The definition of the NQC correction factor

fNQC
22 . To do this we follow the rationale ex-

plained in [22]. For convenience, we choose
(as suggested in footnote 9 of [22]) a factor-
ized complex NQC factor

 fNQC
22 �

�
1� a

p2
r�

�r��2 � 


�
exp

�
�ib

pr�
r�

�
;

(7)

in which a (denoted a0 in the cited footnote)
affects only the modulus, and b (alias b0) only
the phase. To ease some technical problems
during the ring-down linked to the fact that
��t� tends exponentially towards zero as t!
�1, we have added a (‘‘cutoff’’) constant 
 to
the first denominator �r��2. As discussed in
[22], one can a priori analytically determine a
‘‘good’’ value of the NQC-modulus parameter
a by requiring that the modulus of the full
EOB insplunge waveform (4) be maximum
at the ‘‘EOB light ring,’’ i.e. when the EOB
orbital frequency � reaches a maximum.
Reference [22] mentioned that, in the �� 1
limit, this requirement implied a � 1=2
(when 
 � 0). We found, by numerically ex-
ploring the modulus of �insplunge

22 �t�, that the
same value, a � 1=2 (together with 
 �
0:12), can be used in the case � � 1=4 con-
sidered here. Concerning the NQC-phase pa-
rameter b we simply choose b � 0. [Note that
the comparable-mass resummed-EOB wave-
form of [24] uses a refined estimate for the
additional phase 	22 of �insplunge

22 �t� compared
to the one used in [22].]

(iv) Concerning the choice of QNMs, we recall that the
discussion of the physical excitation of QNMs in
[22] (see the summary in Fig. 4 there) suggested
that it is sufficient to use only positive-frequency
QNMs in the ring-down waveform (5). This is
what we shall do here as well.
A new feature of the comparable-mass case (with
respect to the small � limit) is the ‘‘mixing’’ between
various ‘0 QNMs (with ‘0 � ‘) that can enter a given
�‘;m� multipolar wave. This mixing is due to the

‘‘a! coupling’’ terms in the separated Teukolsky
equations and has been discussed in [19,61].
However, as emphasized in [19], this coupling has
only a small effect on the �‘;m� � �2; 2� waveform.
We shall neglect it and consider only the (positive-
frequency) QNM modes having the same values of
�‘;m� as the considered multipolar waveform h‘m
[i.e. (2, 2) in the present paper].
On the other hand, contrary to other recent imple-
mentations of the EOB approach [19,20,23], we shall
use a matching comb with five teeth (p � 2) and five
(positive-frequency) QNMs ��‘mn��

�
‘mn� i!�‘mn,

with ‘ � 2, m��2, and n�0, 1, 2, 3, 4. To esti-
mate the values (as functions of the mass and spin of
the final black hole) of the damping time and the
oscillation frequency of each mode, we did the fol-
lowing: (i) for the first three modes we used the
approximate fitting formulas given in Appendix E
of Ref. [52]; while, (ii) for the fourth and fifth modes
(i.e. n�3, 4) we noticed that the graphic results of
[62] (notably his most relevant Fig. 4) exhibit an
approximate linearity of the complex QNM fre-
quency ��‘mn as a function of the overtone number
n. (Indeed, the corresponding points in the complex
� plane are approximately aligned.) We then ex-
ploited this approximate linearity to express the
needed n�3 and n�4 complex frequencies as lin-
ear combinations of the above-discussed n�1 and
n�2 ones.

(v) Concerning the matching, on a multitoothed comb,
of the inspiral-plus-plunge waveform to the ring-
down one, we need to specify the two parameters
defining such a comb, namely, the central ‘‘match-
ing’’ time tm, and the spacing between the teeth of
the comb: 	 � �t=4.8 In conformity with the basic
idea proposed in the original EOB paper [3], we
choose as central matching time tm the so-called
‘‘EOB light-ring crossing’’ time, i.e., the EOB dy-
namical time when the EOB orbital frequency �
reaches its maximum. See [22] for a detailed dis-
cussion of why such a choice is physically preferred.
Concerning the choice of the comb spacing 	, we
expect from [22] that a value of order 	 �
�7:2M�=4 � 1:8M will be good. Below, we shall
explore values near this one.

IV. COMPARING THE NR WAVEFORM TO EOB
ONES

As explained in Sec. II, the basic NR data that we shall
consider are a time series giving the quadrupolar [�‘;m� �
�2; 2�, Zerilli-Moncrief-normalized] metric waveform �NR

22

8Note that in [22] we used the letter 	 to denote the full width
�t of the comb.
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as a function of the NR time variable9 tNR (measured in
units of M 
 m1 �m2). �NR

22 �tNR� is a complex number.
The NR results consist of the real and imaginary parts of
�NR

22 . It is, however, more convenient to decompose the
complex waveform in modulus (or amplitude) and phase,
say,

 �NR
22 �tNR� � ANR

22 �tNR� exp��i�NR
22 �tNR��: (8)

The 2� ambiguity in the phase is fixed by starting with
the principal value of the argument of �NR

22 at the beginning
of the NR simulation, and then keeping track of the 2�
turns as the waveform continuously unfolds.

One can then compute the GW frequency as a function
of time by (numerically) differentiating the GW phase

 !NR
22 �tNR� �

d�NR
22

dtNR
: (9)

[It can equivalently be obtained by computing the imagi-
nary part of the logarithmic time derivative of �NR

22 �tNR�.]
As emphasized in [24], another useful diagnostic of GW

radiation is the GW phase acceleration � � d!=dt �
d2�=dt2 considered as a function of the GW frequency
!. However, because of the presence of some additional
high-frequency wiggles in � and ! in the NR data, we
shall not consider here the phase-acceleration curve ��!�.
Instead, we shall directly compare the numerical GW
amplitude, phase, and frequency to their analytical, EOB
counterparts.

The integration of the basic EOB dynamical equations
(written in [24]) gives, for each chosen value of the EOB
‘‘flexibility parameters’’ (notably a5 and vpole), several
important time series, and notably (i) the EOB orbital
frequency ��tEOB�, where tEOB is the EOB dynamical
time scale (measured in units of M), and (ii) the new,
resummed matched 3�2-PN-accurate quadrupolar EOB
waveform �EOB

22 �tEOB�; then, from the latter, one can define
(as for the NR case) the corresponding EOB amplitude
AEOB

22 �tEOB�, EOB phase �EOB
22 �tEOB�, and EOB frequency

!EOB
22 �tEOB�. To compare the NR and EOB phase time

series �NR
22 �tNR� and �EOB

22 �tEOB�, one needs to shift, by
additive constants, both one of the time variables and one
of the phases. In other words, we need to determine � and�
such that the ‘‘shifted’’ EOB quantities

 t0EOB � tEOB � �; �0EOB
22 � �EOB

22 � � (10)

‘‘best fit’’ the NR ones. One convenient way to do so is first
to ‘‘pinch’’ the EOB/NR phase difference at two different
instants (corresponding to two different frequencies). More
precisely, one can choose two NR times tNR

1 , tNR
2 , which

determine two corresponding GW frequencies10 !1 �
!NR

22 �t
NR
1 �, !2 � !NR

22 �t
NR
2 �, and then find the time shift

��!1; !2� such that the shifted EOB phase difference,
between !1 and !2, ��EOB��� 
 �0EOB

22 �t0EOB
2 � �

�0EOB
22 �t0EOB

1 � � �EOB
22 �t

EOB
2 � �� ��EOB

22 �t
EOB
1 � �� is

equal to the corresponding (unshifted) NR phase difference
��NR 
 �NR

22 �t
NR
2 � ��

NR
22 �t

NR
1 �. This yields one equation

for one unknown (�), and (uniquely) determines a value
��!1; !2� of �. (Note that the !2 ! !1 � !m limit of this
procedure yields the one-frequency matching procedure
used in [18].) After having so determined �, one can
uniquely define a corresponding best-fit phase shift
��!1; !2� by requiring that, say, �0EOB

22 �t0EOB
1 � 


�EOB
22 �t

0EOB
1 � � � � �NR

22 �t
NR
1 �.

Having so related the EOB time and phase variables to
the NR ones, we can straightforwardly compare all the
EOB time series to their NR correspondents. In particular,
we can compute the (shifted) EOB–NR phase difference

 �!1;!2�EOBNR
22 �tNR� 
 �0EOB

22 �t0EOB� ��NR
22 �t

NR�: (11)

In the following we will choose two matching instants (and
corresponding frequencies) that take place during late in-
spiral and plunge, namely, tNR

1 � 999:72, tNR
2 � 1494:94

corresponding to !1 � 0:068 15, !2 � 0:2457 (all ex-
pressed in M units).

To numerically implement the EOB/NR comparison we
need to choose some values for the various ‘‘flexibility
parameters’’ of the EOB framework. We have summarized
above what these parameters are, and we have already
indicated the values we chose for some of them. Among
the remaining ones that need to be chosen, the two most
crucial ones are a5 and vpole. Recently, Damour and Nagar
have shown, by using some of the data published in [18],
that the inspiral waveform (for GW frequencies smaller
than about 0:14=M) could be remarkably well matched by
the EOB one if one chooses values of a5 and vpole follow-
ing the rather precise correlation plotted in the upper panel
of Fig. 3 in [24]. Here, as we are exploring a different
physical regime (late inspiral, plunge, and coalescence,
with GW frequencies mostly larger than about 0:1=M),
and comparing to a different set of numerical data, we
shall not a priori impose the precise correlation between a5

and vpole found in [24]. However, we shall make use of
some previous results suggesting a preferred range for the
values of a5. On the one hand, Ref. [23] showed that the
faithfulness (in the sense of Sec. VI A of [27]) of (re-
stricted) EOB waveforms against NASA-Goddard NR co-
alescence waveforms was largest when a5 belonged to
some rather wide interval (which also depended on the
considered mass ratio). See Fig. 2 (right panel) in [23] from
which one might conclude that a5 lies probably between
�10 and�100. Buonanno et al. then chose a5 � 60 as the

9As mentioned in Sec. II, we use the waveform extracted at a
(coordinate) radius RNR � 120Mc ’ 120M, and tNR is the time
of the ‘‘observer’’ located at the latter radius.

10Alternatively, one can start by giving oneself !1, !2 and
determine the NR instants tNR

1 , tNR
2 at which they are reached.
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‘‘best-fit’’ value. On the other hand, Ref. [24] found that the
phase agreement between (resummed) EOB waveforms
and a rather long inspiral NR waveform was at its best
when a5 lied in a similarly wide interval (between�10 and
�80) centered around a5 � 40. In view of these results we
shall focus, in the following, on two representative values
of a5, namely, a5 � 25 (representative of the leftward side
of preferred a5 values), and a5 � 60 (representative of the
rightward side of preferred a5 values, and chosen as best
value by [23]). We have also checked that the values of a5

between 25 and 60 lead (with an appropriate choice of
vpole) to results that are at least as good as the ones we shall
exhibit below.

A. Comparing NR to resummed EOB for a5 � 25

At this stage we have essentially fixed all the flexibility
of the EOB formalism apart from the choices of vpole, and
of the comb spacing 	. Among these two parameters, only
the former one, vpole, is important for getting a very accu-
rate phase agreement between EOB and NR. When a5 �
25, we found (by trial and error) that11 vpole � 0:6241
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FIG. 1 (color online). Comparison between EOB and NR waveforms for a5 � 25 and vpole � 0:6241: frequencies (top-left panel),
phase difference (top-right panel), amplitudes (bottom-left panel), and real parts (bottom-right panel) of the two gravitational
waveforms. The vertical line at tNR � 1509 locates the maximum of (twice) the orbital frequency � (alias the EOB light ring) and
indicates the center of our matching comb (whose total width is indicated by the two neighboring vertical lines in the top-left panel).
The vertical dashed line at tNR � 1482 indicates the crossing time of the adiabatic LSO orbital frequency (�LSO � 0:1003).

11Though we did not investigate thoroughly what ‘‘error bar’’
can be put on such a ‘‘best’’ value of vpole, the numerical studies
that we performed indicate that a change of �2 on the last (i.e.
fourth) digit that we quote is sufficient to entail a visible worsen-
ing of the phase difference ��EOBNR

22 .
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(together with 	 � 1:7Mf which is, however, less crucial)
yields an excellent EOB/NR agreement. We exhibit our
results in the four panels of Fig. 1.

The top-left panel of Fig. 1 compares the NR GW
frequency both to the (matched) EOB GW frequency and
to twice the orbital frequency. The time axis is tNR, and/or
(see above) t0EOB � tEOB � � (with � � �2032M for the
present case). The vertical lines on the right indicate the
center and the outlying ‘‘teeth’’ of our matching comb,
which is, as explained above, centered on the maximum of
the EOB orbital frequency (also called EOB light ring).
The interval between the two vertical lines [last stable orbit
(LSO) and EOB light ring] defines the ‘‘plunge.’’ The
dashed vertical line on the left (at tNR � 1482) indicates
the crossing time of the adiabatic last stable orbit (!-LSO
in the sense of [3]). Note that the three frequencies are
initially close to each other, but that, later, 2� separates
from !NR

22 and !EOB
22 , which continue to be in very close

agreement, except for a slight discrepancy around merger,
which, within the EOB approach, is conventionally sup-
posed to take place at the maximum of �. Note also the
good agreement between the EOB GW frequency during
the ring-down plateau and the average of the NR one. As
discussed in Sec. II the values for the mass and dimension-
less spin of the final black hole that we used (together with
[52]) to compute the QNMs frequencies are Mring

f �

0:959 165M, jring
f � 0:684 639.

The top-right panel of Fig. 1 shows the EOB-NR phase
difference, Eq. (11) (pinched at the two instants, tNR

1 , tNR
2 ,

given above). It is remarkable that the (two-sided12) EOB-
NR phase difference over the time interval �639M; 1524M�
(which covers about 12 GW cycles of inspiral, plunge, and
early ring-down) is smaller than about � 1

2 0:068 radians,
which corresponds to �0:005 GW cycles.

The bottom-left panel of Fig. 1 compares the NR GW
amplitude to the resummed 3�2-PN-accurate EOB one. It
also shows the orbital frequency � as an aid to locate the
merger. One notices a very good agreement between the
two amplitudes. During the interval �1100M; 1400M� the
fractional EOB-NR amplitude difference varies between
�1% and �1%. After tNR � 1400M, this fractional dif-
ference increases from �1% to a maximum of �18%
(reached at tNR ’ 1509M) and then decreases to take val-
ues of order �5% during the observationally relevant part
of the ring-down. Note also that the NR equal-mass am-
plitude (divided by �, i.e. by�) time series is qualitatively,
and even quantitatively, very similar to the corresponding
NR test-mass amplitude time series shown in Fig. 3 of [22].
For instance, the value of the maximum amplitude is�0:3

in both cases. A similar qualitative, but not quantitative,
parallelism exists for the two corresponding frequency
time series (the � � 1=4 frequency leveling off at a higher
‘‘plateau’’).

Finally, the bottom-right panel of Fig. 1 compares the
real parts of the NR and EOB waveforms. The two vertical
lines delimit the interval between the LSO and EOB light
ring. Again the agreement between the two waveforms is
impressive. Note that this last panel shows only the late
inspiral, plunge, and ring-down. From the panel showing
the phase difference, one can gather that the agreement
stays as impressive over a much longer time span of order
1000M (essentially from tNR � 500M to the end of ring-
down).

B. Comparing NR to resummed EOB for a5 � 60

Let us now consider our second representative value of
the effective 4PN radial potential parameter, a5 � 60. As
before, we chose 	 � 1:7Mf . We also selected the same
phase pinching interval as above. Then, by trial and error,
we found that vpole � 0:5356 yields an excellent EOB/NR
agreement.13

We exhibit our results in the four panels of Fig. 2, which
are entirely parallel to those of Fig. 1. The remarkable level
of EOB/NR agreement that we get now, when a5 � 60, is
rather close to the one that we got above when a5 � 25. At
this stage, there is no rationale for saying that either value
of a5 is preferred over the other (though a5 � 25 yields
somewhat better results). Some partial numerical tests that
we performed suggest that this conclusion extends to (at
least) all values of a5 between 25 and 60.

Some of the numbers quantifying the EOB/NR agree-
ment are as follows:

(i) The (two-sided) EOB-NR phase difference over the
time interval �500M; 1550M� (which covers about
13 GW cycles of inspiral, plunge, and most of the
ring-down) is smaller than about � 1

2 0:13 radians,
which corresponds to �0:01 GW cycles.

(ii) During the interval �1100M; 1400M� the fractional
EOB-NR amplitude difference varies between
�0:8% and �0:55%. After tNR � 1400M, this frac-
tional difference increases from �0:55% to a maxi-
mum of �23% (reached at tNR ’ 1511M) and then
decreases to take values of order �6% during the
observationally relevant part of the ring-down.

C. Contrasting resummed EOB with restricted EOB,
for a5 � 60, by comparing NR to a standard restricted-

EOB waveform

Finally, we wish to illustrate the importance (for reach-
ing a high level of accuracy) of the various ingredients used

12As the reference level of any phase difference �� is arbitrary,
it is convenient to use a ‘‘middle’’ reference level such that
���t� varies between �" and �" over the considered interval.
We refer to �" � �1=2
max���� �min����� as the two-
sided phase difference.

13Note that this best value of vpole (for a5 � 60 and � � 1=4)
happens to be numerically close to the best fitting vpole ’ 0:53
value that Ref. [24] found in the test-mass limit �! 0.
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in our present, resummed version of EOB (using a time-
extended ‘‘comb matching’’ to 5 QNMs) by comparing NR
to the type of simpler implementation of the EOB frame-
work used in [23]. Using again a5 � 60 (which was chosen
as best value in [23]), we compare NR to the following
implementation of EOB:

(i) We use for vpole the standard value vDIS
pole��� advo-

cated in [1].
(ii) We use (as originally proposed in Ref. [3]) the

following (Newtonian-order and Kepler-law-
assuming) restricted quadrupole waveform,

 �NK
22 �t� � �4�

������
�
30

r
�2=3 exp��2i��; (12)

without any explicit PN (F22) corrections, nor any
NQC (a, b) corrections.

(iii) We use only 3 (positive-frequency) QNMs.
(iv) And, we match the plunge and ring-down waveforms

in a very small interval (	=Mf � 0:2 instead of our
preferred 1.7) around the maximum of the orbital
frequency. (Indeed, the matching of the two wave-
forms and their derivatives at a sharply defined mo-
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FIG. 2 (color online). Comparison between EOB and NR waveforms for a5 � 60, vpole � 0:5356: frequencies (top-left panel), phase
difference (top-right panel), amplitudes (bottom-left panel), and real parts (bottom-right panel) of the two gravitational waveforms.
The vertical line at tNR � 1510 locates the maximum of (twice) the orbital frequency � (alias the EOB light ring) and indicates the
center of our matching comb (whose total width is indicated by the two neighboring vertical lines in the top-left panel). The vertical
dashed line at tNR � 1487 indicates the crossing time of the adiabatic LSO orbital frequency (�LSO � 0:1081).
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ment is equivalent to considering the 	! 0 limit of
our comb-matching technique.)

The results of such a coarser EOB implementation are
shown in Fig. 3 (which is parallel to the previous two
figures). By contrasting Fig. 3 with Fig. 2 (which used
the same value of a5), we see that

(i) the EOB frequency agrees less well with the NR
one than before, especially around the matching
point. Note, in particular, that the post-matching
analytical frequency jumps up from the maximum
(doubled) orbital frequency significantly more verti-
cally than before, thereby decoupling too soon

from the exact frequency, and accruing a larger
dephasing than before (because of the too-localized
matching, and—to a lesser degree—the use of only
3 QNMs).

(ii) The EOB-NR (maximal) phase difference over the
same time interval �500M; 1524M� is about 2.2 times
larger than before. One now ends up with a phase
difference of � 1

2 0:29 radians, i.e. 0.023 GW cycles
over about 13 GW cycles. The top-right panel of
Fig. 3 illustrates the fact that matching with 5 QNMs
(dashed line) reduces the dephasing accumulated
during the transition from merger to ring-down.
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FIG. 3 (color online). Comparison between the EOB restricted waveform approximation, Eq. (12), and NR for a5 � 60 and vpole �
vDIS

pole�� � 1=4� � 0:6907: frequencies (top-left panel), phase difference (top-right panel), amplitudes (bottom-left panel), and real
parts (bottom-right panel) of the two gravitational waveforms. The vertical line at tNR � 1510 locates the maximum of (twice) the
orbital frequency � (alias the EOB light ring) and indicates the matching time. The vertical dashed line at tNR � 1490 indicates the
crossing time of the adiabatic LSO orbital frequency (�LSO � 0:1081).
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(iii) The modulus of the analytical waveform is now
distinctly larger than the NR one during the inspiral
(because of the lack of PN corrections).

(iv) The modulus also exhibits a more significant dis-
crepancy (� 35%) with the NR one at the end of the
plunge (because of the use of the Kepler-law-
assuming / �2=3, which, as pointed out in [25],
tends to overestimate the amplitude).

(v) Note also that one visually notices these differences
at the level of the GW waveforms.

(vi) The same resummed-EOB/restricted-EOB compari-
son was done in [22], in the �� 1 case, with similar
conclusions.

In spite of these relative blemishes, note, however, that
this ‘‘coarser’’ EOB-type implementation still succeeds in
following the phase of the exact signal to �0:023 GW
cycles over about 13 GW cycles.

Note that the corresponding EOB/NR agreement exhib-
ited in Fig. 4 of Ref. [23] seems to be somewhat better14

than the one exhibited by our Fig. 3. This difference might
have several origins, notably, (i) a difference in the accu-
racy of the NR data,15 and (ii) a difference in the procedure
used to best shift time and phase between EOB and NR
data.

V. CONCLUSIONS

We have compared a recently proposed, resummed 3�2-
PN-accurate EOB waveform to the result of a numerical
simulation of a coalescing equal-mass binary black hole
performed at the Albert Einstein Institute. We find a re-
markable agreement, both in phase and in amplitude, be-
tween the new EOB waveform and the numerical data.
More precisely, we find that the maximal dephasing be-
tween EOB and NR can be reduced below �0:005 GW
cycles over the last �900M (corresponding to about 12
GW cycles plus ring-down ones) of the simulation. This
level of agreement was exhibited for two representative
values of the effective 4PN parameter a5, namely, a5 � 25
and a5 � 60, and for a corresponding, appropriately flexed
value of the radiation-reaction resummation parameter
vpole. In addition, our resummed-EOB amplitude agrees
to better than the 1% level with the NR one up to the late
inspiral.

We have also compared the NR data to a coarser imple-
mentation of the EOB approach (restricted waveform,
standard vDIS

pole, instantaneous matching to 3 QNMs). The
EOB/NR agreement is slightly less good in this case,
though the phase agreement remains quite good (�
0:023 GW cycles over the last�1000M of the simulation).

Let us point out a notable feature of our results. In the
recent work of Damour and Nagar [24], the same re-
summed 3�2-PN-accurate EOB waveform was compared
to a long, very accurate equal-mass inspiral simulation of
the Caltech-Cornell group [18]. It was found that an ex-
cellent EOB/NR agreement was obtained when a5 and
vpole were following the rather precise correlation plotted
in the upper panel of Fig. 3 of Ref. [24]. Let us denote this
correlation as a5 ! vbest inspiral

pole �a5�. In the present paper,
we similarly found that the EOB/NR agreement was at its
best when, for a given a5,16 vpole was taking a rather

precise corresponding best-fit value, say, vbest insplunge
pole �a5�.

In particular, we found vbest insplunge
pole �25� � 0:6241 and

vbest insplunge
pole �60� � 0:5356. On the other hand, the results

of [24] yield vbest inspiral
pole �25� � 0:5340 and

vbest inspiral
pole �60� � 0:4856. The differences between these

sets of values are vbest insplunge
pole �25� � vbest inspiral

pole �25� �

0:0901 and vbest insplunge
pole �60� � vbest inspiral

pole �60� � 0:0500.
Note also that the ‘‘best insplunge’’ vpole values are in
between the ‘‘best inspiral’’ ones and the originally advo-
cated [1] one vDIS

pole�� � 1=4� � 0:6907. This finding will
deserve further investigation in the future. At this stage we
can only speculate on the various possible origins of this
difference: (i) it might be due to the fact that, not having
access to the original NR data of [18], Damour and Nagar
had to rely on rather coarse measurements extracted from
published figures; (ii) it might be due to systematic errors
in the NR data of [18]; (iii) it might alternatively come
from systematic errors in the NR data used in the present
paper; (iv) it might come from the fact that the best-fit
F ’�vpole� is not a uniform approximation (as a function of
frequency) to the exact radiation reaction (see, in the �!
0 limit, the bottom panels of Fig. 1 in [24]), and finally,
(v) it might come from some ‘‘missing physics’’ in the
resummed-EOB waveform explored here. There are sev-
eral candidates for this missing physics. One suggestion
(which follows the original suggestion of [5]) is that one
might need to consider still higher (uncalculated) PN con-
tributions to the radial EOB potential17 A�u� � 1� 2u�
2�u3 � a4�u

4 � a5�u
5 � a6�u

6 � 	 	 	 where u � 1=r.
Another suggestion is that NQC corrections to radiation
reaction might modify the phasing during late inspiral and
plunge. As an example, we have looked at this possibility.

14The reader should, however, keep in mind that in Fig. 4 of
Ref. [23] the EOB-NR phase difference is divided by 2�
compared to the one shown in our Fig. 3.

15The data used in [23] did not benefit from the reduction in
eccentricity used in the data considered here.

16Though we did not explore all possible values of a5, we
sampled intermediate values between the representative a5 val-
ues we picked and convinced ourselves that the same conclusion
held for them.

17For simplicity, we consider only linear-in-� higher PN con-
tributions. If the need arises (and the fact that the unequal-mass
EOB/NR comparisons of [23] seem to exhibit a strong depen-
dence on the mass ratio might suggest it) one can easily add in a
nonlinear � dependence.
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More precisely, following [22], we can introduce a new
flexibility parameter �aRR18 such that the radiation-reaction
force is multiplied by a correction factor fNQC

RR given by

 fNQC
RR �

�
1� �aRR

p2
r�

�r��2 � 


�
�1
: (13)

Such a factor will be very close to 1 during the inspiral (and
therefore will be negligible in the EOB comparison to the
Caltech-Cornell data), but will start being significantly less
than 1 (if �aRR > 0) during the late inspiral and plunge,
which are of interest for the comparison to the presently
considered data. And indeed, we have found that by choos-
ing a value �aRR ��40 (and 
 � 0:12 as in the waveform
NQC factor considered above) we could, when a5 � 25,
obtain an excellent EOB/NR fit by using the ‘‘best inspi-
ral’’ value vbest inspiral

pole �25� � 0:5340 (instead of the above

vbest insplunge
pole �25� � 0:6241). This issue needs to be further

investigated by using the most accurate possible data cov-
ering both inspiral and plunge. We hope to come back to it
in the future.

Finally, we think that the present work, taken in con-
junction with other recent works on the EOB/NR compari-
son, confirms the ability of the EOB formalism to
accurately capture the general-relativistic waveforms.
The present work has also shown that the recently proposed
resummed 3�2-PN-accurate waveform is important for
defining analytical EOB waveforms that faithfully repre-
sent (both in phase and in amplitude) the waveforms
emitted by equal-mass coalescing (nonspinning) black-
hole binaries.
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