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ABSTRACT

Determining the final spin of a black hole (BH) binary is a question of key importance in astrophysics.
Modeling this quantity in general is made difficult by the fact that it depends on the seven-dimensional space
of parameters characterizing the two initial black holes. However, in special cases, when symmetries can be
exploited, the description can become simpler. For BH binaries with unequal masses but with equal spins which
are aligned with the orbital angular momentum, we show that the use of recent simulations and basic but exact
constraints derived from the extreme mass-ratio limit allow us to model this quantity with a simple analytic
expression. Despite the simple dependence, the expression models very accurately all of the available estimates,
with errors of a couple of percent at most. We also discuss how to use the fit to predict when a Schwarzschild
BH is produced by the merger of two spinning BHs, when the total angular momentum of the spacetime “flips”
sign, or under what conditions the final BH is “spun up” by the merger. Finally, we suggest an extension of the
fit to include unequal-spin binaries, thus potentially providing a complete description of the final spin from the
coalescence of generic BH binaries with spins aligned to the orbital angular momentum.

Subject headings: black hole physics — gravitational waves — relativity — stars: statistics

Online material: color figures

1. INTRODUCTION

The determination of the final spin of a BH binary is a
question of key importance in astrophysics. Modeling this in
general is made difficult by the fact that it depends on the
seven-dimensional space of parameters characterizing the two
initial BHs. However, in special cases, when symmetries can
be exploited, the description can be much simpler.

Several recent studies have shed light on the remnant of the
merger process. Using conservation principles, Hughes &
Blandford (2003) argued that mergers rarely lead to rapidly
rotating objects. Gonzalez et al. (2007a) numerically evolved
a sequence of nonspinning unequal-mass BHs, arriving at de-
tailed estimates of the radiated energy and angular momentum.
In a series of papers (Koppitz et al. 2007; Pollney et al. 2007;
Rezzolla et al. 2007) we have studied the parameter space of
mergers of equal-mass BH binaries whose spins are aligned
with the orbital angular momentum but otherwise arbitrary.
The findings agree well with independent numerical evolutions
(Campanelli et al. 2007; Herrmann et al. 2007), as well as more
recent studies of models with initial spins up to 2J/M p 0.8
(Marronetti et al. 2007). An important result of these studies
has been the determination of simple (quadratic) fitting for-
mulas for the recoil velocity and spin of the merger remnant
as a function of the initial BH parameters (Rezzolla et al. 2007).

A number of analytical approaches have been developed over
the years to determine the final spin of a binary coalescence
(Damour 2001; Buonanno & Damour 2000; Buonanno et al.
2006; Damour & Nagar 2007; Boyle et al. 2007). Very recently,
an interesting method, inspired by the dynamics of a test par-
ticle around a Kerr BH, has been proposed for generic binaries
(Buonanno et al. 2007a, hereafter BKL07). The approach as-
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sumes that the angular momentum of the final BH is the sum
of the individual spins and of the orbital angular momentum
of a test particle on the last stable orbit of a Kerr BH with the
same spin parameter as that of the final BH.

Here we combine the data obtained in recent simulations to
provide a phenomenological but analytic estimate of the final
spin in a binary BH system with arbitrary mass ratio and spin
ratio, but in which the spins are constrained to be parallel to
the orbital angular momentum. Our numerical simulations have
been carried out using the CCATIE code (Pollney et al. 2007).
In addition to the data presented in Rezzolla et al. (2007) we
add three simulations of equal-mass, high-spin binaries and
three simulations of unequal-mass, spinning binaries (see Table
1). Other data are taken from unequal-mass, nonspinning bi-
naries (Gonzalez et al. 2007a; Berti et al. 2007; Buonanno et
al. 2007b) and from equal-mass, spinning binaries (Rezzolla et
al. 2007; Marronetti et al. 2007); all of the Albert-Einstein-
Institut (AEI) data are summarized in Table 1. To avoid the
possible contamination from the errors associated with high-
spin binaries reported by Marronetti et al. (2007) we have not
considered binaries with initial spin reported in2FJ/M F ≥ 0.75
the literature (Campanelli et al. 2007; Marronetti et al. 2007).
We have, however, considered estimates of high-spin binaries
(see Table 1), for which we know that the spins remain essen-
tially constant prior to merger, with changes of less than

(Pollney et al. 2007), and that are very well captured by0.5%
the fit.

2. METHODS AND RESULTS

We start by considering the final spin as a function ofa fin

the two free variables in the problem: the symmetric mass ratio
and the spin of the initial BHs2n { M M /(M � M ) a {1 2 1 2

, i.e., . (Note that a is dimen-2 2J/M a { J /M p a (a, n)fin fin fin fin

sionless and not the angular momentum per unit mass.) By
construction and , where isa p a p a a/FaF p �L/FLF L1 2
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TABLE 1
Initial Parameters of the New Binaries Computed at the AEI

Binary a n x/M J̃ afin
fitafin

FErrorF
(%)

t8 . . . . . . . . �0.5840 0.2500 3.1712 2.432 0.4955 0.4981 0.53
ta8 . . . . . . . �0.3000 0.2500 3.7078 3.000 0.5941 0.5927 0.23
tb8 . . . . . . . �0.8000 0.2500 3.8082 2.200 0.4224 0.4227 0.08
tb8l . . . . . . �0.8000 0.2500 4.8600 2.400 0.4266 0.4227 0.92
p1 . . . . . . . �0.8000 0.1580 3.2733 0.336 0.0050 0.0046 9.89
p2 . . . . . . . �0.5330 0.1875 3.3606 1.872 0.2778 0.2794 0.57
p3 . . . . . . . �0.2667 0.2222 3.4835 2.883 0.5228 0.5216 0.23

Note.—The different columns contain the initial spin a, the symmetric mass
ratio n, half of the initial separation , the dimensionless initial1x/M p (x � x )2 1 2

angular momentum , the numerical and fitted values for , andJ̃ p J/(mM) afin

the corresponding relative error.

Fig. 1.—Global dependence of the final spin on the symmetric mass ratio
and on the initial spins as predicted by expression (5). Squares refer to nu-
merical estimates while circles to the EMRL constraints. [See the electronic
edition of the Journal for a color version of this figure.]

the orbital angular momentum. We next express as a third-a fin

order polynomial of n and a,

2 3 2 2a p s � s a � s a � s a � s a n � s anfin 0 1 2 3 4 5

2 3�t an � t n � t n � t n . (1)0 1 2 3

Expression (1) is a lowest-order Ansatz. It intends to capture
the behavior of a function known exactly only in the extreme
mass-ratio limit (EMRL) and which has support from numerical
simulations in two restricted regimes, i.e., n p 1/4, 0 ≤

and . A priori there is noFaF � 0.75 0.16 � n ≤ 1/4, a p 0
reason to believe that the proposed fit will capturea (n, a)fin

the general behavior well, but in fact it does.
Given the available numerical estimates, it is possible to

calculate the coefficients – and – by simply performings s t t0 5 0 3

a two-dimensional (2D) least-squares fit to the data. This, how-
ever, would require a lot of care and is likely to lead to in-
accurate estimates. This is because the space of parameters
presently accessible to numerical simulations is rather small.
Reliable results are in fact available only for spins FaF � 0.8
and mass ratios and thus corresponding toq { M /M � 0.252 1

. However, it is possible to exploit exact results whichn � 0.16
hold in the EMRL, i.e., for , to constrain the coefficientsn p 0
in expression (1). It is worth emphasizing that the EMRL results
are not only exact, but also in regimes that numerical relativity
simulations cannot probe. More specifically, we can exploit
that in the EMRL the final spin cannot be affected by the
infinitesimally small BH. In practice, this amounts to requiring
that

a (a, n p 0) p a, (2)fin

which constrains four of the six coefficients:

s p s p s p 0, s p 1. (3)0 2 3 1

Additional but nonexact constraints can also be applied by
exploiting the knowledge, near the EMRL, of the functional
dependence of on the mass ratio. A convenient way ofa fin

doing this is suggested by BKL07, and within this approach
we perform a Taylor expansion of for and determinea n K 1fin

that

′ ′� �F F F Fa p 2( 3/3 � 1), a p 2 3,(ap1, np0) (ap0, np0)fin fin

′ �F Fa p 2(1 � 19 15/45), (4)(ap�1, np0)fin

where . The coefficients in equation (1) are then′a { �a /�nfin fin

, , and� � � �s p 3(19 5 � 75)/45 t p 2 3 t p [ 3(15 �4 1 0

. While this may seem a good idea, it leads to�19 5) � 90]/45
bad fits to the data. We believe this is due to two distinct
reasons: (1) the lack of accurate numerical data for near-ex-
treme BHs, i.e., , which therefore leads to incorrectFaF ≈ 1
estimates of the coefficients; (2) expressions (4) are analytic
but not exact and should be used with caution. There are, in
fact, deviations from analyticity in n as , and as revealedn r 0
by the presence of integer powers of during the transition1/5n
between the last stable orbit and the plunge (see Buonanno &
Damour 2000). In the case of nonspinning binaries ( ), ita p 0
is now possible to verify that the deviations are indeed very
small (Damour & Nagar 2007), but this check is not possible
for very large spins. In view of this and to make the minimal
number of assumptions, we retain the analytic estimate only
for the coefficient , so that equation (1) has five out of 10t1

coefficients constrained analytically,

2 2 2 3�a p a � s a n � s an � t an � 2 3n � t n � t n . (5)fin 4 5 0 2 3

Determining the remaining five coefficients from a least-
squares fit to the available data yields

s p �0.129 � 0.012, s p �0.384 � 0.261,4 5

t p �2.686 � 0.065, t p �3.454 � 0.132,0 2

t p 2.353 � 0.548, (6)3

with surprisingly small residuals and large error bars only for
. The functional behavior of expression (5) and the positions5

of the numerical data points are shown in Figure 1.
In the following we discuss the properties of the proposed

fit, providing evidence that it represents a very accurate de-
scription of the available estimates, and discuss how to use it
to make astrophysically interesting predictions.

1. The estimate for the final spin in the case of equal masses
and the comparison with available data and estimates is made
in Figure 2. The top panel shows the numerical estimates (cir-
cles for the AEI data [Rezzolla et al. 2007] and stars for the
FAU-Jena data [Marronetti et al. 2007]), the BKL07 estimate,
and our 2D fit through equation (5). The bottom panel shows
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Fig. 2.—Top: Comparison of the numerical data with the 2D fit through eq.
(5) in the case of equal-mass binaries, ( ). Open circles indicate then p 1/4
AEI data (Rezzolla et al. 2007), stars the FAU-Jena data (Marronetti et al.
2007), a long-dashed line the BKL07 data, and a short-dashed one the fit.
Bottom: Residuals between the different estimates and the fit. [See the elec-
tronic edition of the Journal for a color version of this figure.]

Fig. 3.—Top: Comparison of the numerical data with the 2D fit through eq.
(5) in the case of nonspinning binaries. Open circles indicate the Jena data
(Berti et al. 2007), stars the Goddard data (Buonanno et al. 2007b), a long-
dashed line the quadratic EOB fit (Damour & Nagar 2007), and a short-dashed
line our 2D fit. Bottom: Residuals between the different estimates and the 2D
fit. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 4.—Top: Set of initial spins and mass ratios leading to a final
Schwarzschild BH, i.e., . The two curves refer to the BKL07a (a, n) p 0fin

estimate (long-dashed curve) and to the 2D fit (short-dashed curve). Indicated
with a star is a numerical example leading to . Bottom: Comparisona p 0.005fin

between the BKL07 prediction (symbols) and the 2D fit (solid, dashed, and
long-dashed lines) near the EMRL. Different curves refer to different values
of n and the match is complete for . [See the electronic edition of then p 0
Journal for a color version of this figure.]

the residuals between the different estimates and the 2D fit;
these are always of a few percent only and become larger for
the BKL07 estimate when .a � 0

2. Despite the cubic dependence assumed in equation (1),
equation (5) is only quadratic with a. When , it con-n p 1/4
firms what was obtained recently (Rezzolla et al. 2007), in-
dicating that, for equal-mass binaries, the next order will be 4.

3. Using equations (5) and (6) we estimate that the mini-
mum and maximum final spins for an equal-mass binary are

and , respectively.a p 0.3502 � 0.03 a p 0.9590 � 0.03fin fin

4. For nonspinning binaries, expression (5) is cubic in n,
and a comparison with the available data and the estimate from
the effective-one-body (EOB) approach combined with test-
mass limit predictions for the ring-down (Damour & Nagar
2007) are shown in Figure 3. In particular, the top panel shows
the numerical values (empty circles for the Jena data [Berti et
al. 2007] and stars for the Goddard data [Buonanno et al.
2007b]), a long-dashed line for the quadratic EOB 1D fit (Dam-
our & Nagar 2007) and a short-dashed line for our 2D fit.
(Because it is very similar to the EOB estimate, we have not
shown the BKL07 prediction.) The residuals in are shown in
the bottom panel.

5. A physically useful condition that can be deduced from
the 2D fit is the values of the initial spin and mass ratio that
will lead to a final Schwarzschild BH (Hughes & Blandford
2003; BKL07). In practice this amounts to requiring a (a,fin

in equation (5), and this curve in the plane isn) p 0 (a, n)
shown in the top panel of Figure 4. Binaries on the curve
produce Schwarzschild BHs, while binaries above the curve
start with a positive total angular momentum and end with a
positive one; binaries below the curve, on the other hand, start
with a positive total angular momentum and end with a negative
one, i.e., with a global flip. Also shown in the top panel of
Figure 4 is the prediction from BKL07: a F pSchw BKL07
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Fig. 5.—Critical values of the initial spin and mass ratio leading to a final
BH having the same spin as the initial ones, i.e., . A magnificationa (a, n) p afin

is shown in the inset, where the dashed (nondashed) region refers to binaries
spun down (spun up) by the merger. [See the electronic edition of the Journal
for a color version of this figure.]

. The two estimates are very similar for all values�2n 3/(2n � 1)
of n and small differences appear for , where then � 0.15
BKL07 estimate is less accurate. Shown with a cross is the
binary (see Table 1), which yields a final BH with spinp1

. The numerical value is between the BKL07 pre-a p 0.005fin

diction and the 2D fit.
6. The BKL07 estimate is expected to be particularly ac-

curate for , and its prediction in this regime is capturedn K 1
very well by the 2D fit (of course, the two predictions are
identical for ). This is shown in the bottom panel ofn p 0
Figure 4 with different curves referring to , 0.01,n p 0.001
and 0.1; interestingly, the differences are small even for n p

.0.1
7. It is simple to derive the value of a which will produce

a final BH with the same spin as the initial ones. This amounts
to requiring that in equation (5), and the resultinga (a, n) p afin

solution is shown in Figure 5; clearly, the axis is a trivialn p 0
solution and a magnification of the behavior away from the
EMRL is shown in the inset. For equal-mass binaries the critical
value is , in very good agreement with thea p 0.9460crit

BKL07 estimate . The minuteness of the regiona � 0.948crit

for which (dashed region) suggests that BHs are typ-a ! afin

ically spun up by mergers (Hughes & Blandford 2003).
8. It is easy to verify that by setting andn p 1/4 2a p

in equation (5), the coefficients – and – coincide,a � a s s t t1 2 1 5 0 3

within the error bars, with the coefficients , , and reportedp p p0 1 2

in Rezzolla et al. (2007) for equal-mass, unequal-spin binaries.
The fact that the fit here is equivalent to, but has been inde-
pendently derived from, the one for the equal-mass, unequal-
spin binaries, is an indication of its robustness. Indeed, it is
possible to extend equation (5) to the whole space,(a , a , n)1 2

i.e., to describe the final spin of generic aligned, unequal-spin,
unequal-mass BH binaries, by replacing a with (a �1

. The resulting expression reduces to equation2 2a q )/(1 � q )2

(5) for unequal-mass, equal-spin binaries, and to the one in
Rezzolla et al. (2007) for equal-mass, unequal-spin binaries.
Our suggested extension of equation (5) to the space(a , a , n)1 2

is the simplest one which recovers, for aligned spins, the well-
tested limits of equal mass, unequal spins and unequal mass,
equal spins. Work is in progress to validate thisAnsatz with
numerical simulations.

A final comment is one of caution. The dependence of the
final spin on the mass ratio in the case of extreme aligned BHs
is particularly challenging to calculate and has not yet been
investigated accurately by numerical calculations. The predic-
tions of expression (5) in this limit amount to mere extrapo-
lations and are therefore accurate to a few percent at most. As
an example, when , the fit given in expression (5) is aa p 1
non-monotonic function with maximum fora � 1.029 n �fin

; this clearly is an artifact of the extrapolation.0.093

3. CONCLUSIONS

Modeling the final spin in a generic binary BH merger is
not trivial given the large space of parameters on which this
quantity depends. We have shown that the results of recent
simulations combined with basic but exact considerations de-
rived from the EMRL allow us to model this quantity with a
simple analytic expression in the case of BH binaries having
unequal masses and unequal spins which are aligned with the
orbital angular momentum. When compared with all other es-
timates coming either from numerical calculations or from ap-
proximation techniques, the estimates of the 2D fit show dif-
ferences which are of few percent at most.
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