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The Dirac formulation of massless spin-(3/2) fields is discussed. The existence and 
uniqueness for the solutions of the spin-(3/2) field equations in Dirac form is 
proven. It is shown that the system of equations can be split into a symmetric 
hyperbolic system of evolution equations and a set of constraint equations. The 
constraints are shown to propagate on a curved manifold if and only if it is an 
Einstein space. The gauge freedom present in the spin-(3/2) system is discussed and 
it is shown that the complete system “solutions modulo gauge” has a well posed 
Cauchy problem if and only if the Einstein equations hold. 0 1995 American 
Institute of Physics. 

I. INTRODUCTION 

The field equations for massless particles with spin-(3/2) have recently gained renewed inter- 
est. This is due to two observations:’ first, the integrability conditions for the field equations are 
the vacuum Einstein equations. Second, the charges of the spin-(3/2) fields in flat space form a 
twistor space. It is this position of spin-(3/2) fields between the vacuum Einstein equations and 
twistor theory which has triggered interest in the system. It gave rise to the hope of providing a 
link between the twistor theory which up to now is well defined only on conformally flat space- 
times and the vacuum Einstein equations. The purpose of the present work is to show that the field 
equations have a well defined initial value problem on a curved manifold if and only if the 
Einstein tensor on that manifold vanishes, i.e., Gnb =0 is not only necessary but also sufficient for 
the local existence of solutions. 

In the first article on higher spin equations, Dirac* derived the necessary form for wave 
equations which are to be satisfied by the wave functions of massless particles with arbitrary spin. 
A massless particle with spin s has to be described by a spinor field #$:‘.yD, with p unprimed and 
p’ primed indices, totally symmetric in the two kinds of indices and so that p fp ’ = 2s. The field 
equation is 

V*A’&::fb’=O’ (1.1) 

which implies that each component of the spinor field satisfies the wave equation: q $$‘,‘.fb, 
= 0. Here V AAl is the usual spinor derivative operator on Minkowski space. 

Later, Fierz3,4 investigated these field equations and showed that different splittings of 2s into 
p and p ’ describe the same one-particle states. One can transform fields with index structure 
@ ,p ‘) into fields with index structure (p + 1 ,p’ - 1) by taking a derivative contracted over the 
primed index and symmetrized over the unprimed indices. Fierz constructed expressions for en- 
ergy momentum and angular momentum for the fields and observed that there exist “trivial” 
solutions of the field equation (1.1) which can be added to any solution without affecting its 
energy momentum and angular momentum. These solutions are obtained from spin s- 1 fields 
with index structure (p - 1 ,p ’ - 1) which satisfy the field equation (1.1) by taking a derivative and 
symmetrizing over all indices. He proposed that two solutions of (1.1) should be regarded as 
equivalent if their difference is one of these “gauge solutions.” So we have the view that spin s 
systems are to be regarded as solutions of (1.1) modulo gauge transformations. Obviously, among 
all the possible ways to decompose 2s into positive integers p and p’ there are two distinguished 
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ones, namely, those where either of them vanishes. These lead to cases where the resulting field 
equation has gauge invariant solutions for particles with positive and negative helicity and these 
equations are usually referred to as the zero rest-mass equations. They have the form 

(1.2) 

where + now is totally symmetric in its 2s indices. 
Although the fields with different (p,p ‘) are equivalent as states of free particles in flat space, 

problems arise when one tries to couple the fields to an external electromagnetic field. This was 
also pointed out by Fierz and together with Pauli’ he presented a way to construct Lagrangians for 
massive and for massless fields of arbitrary spin in an external Maxwell field which gave rise to 
consistent equations. Similar inconsistencies arise when the field equation (1.1) is put onto a 
curved four-dimensional (pseudo-) Riemannian manifold. The appearance of the so called 
Buchdahl conditions severely restricts the solution spaces of (1.1) in most cases. Within the class 
of solutions of (1.1) there are three distinguished cases: s =(1/2), s = 1, and s =(3/2). The Weyl 
equation [s = (l/2)] is unrestricted (no Buchdahl condition) and gauge invariant. The case s=l 
with p = 2 and p ’ = 0 corresponds to the Maxwell equations and is also gauge invariant and without 
Buchdahl conditions, while p =p ’ = 1 corresponds to the version of the Maxwell equations using 
potentials which is not gauge invariant. Finally, the case s=(3/2) is distinguished among all 
equations of the type (1.1) by the fact that only for p =2 and p’ = 1 the Ricci curvature alone 
appears in the Buchdahl conditions. In all other cases the Weyl curvature appears also. This 
establishes a link between the Einstein equation and the spin-(3/2) fields. The corresponding 
equation is 

v,,IpA,:=o. (1.3) 

The gauge solutions are of the form p”,? = Vi,# with Vi,v, = 0. This form of the field 
equation is referred to as the Dirac form while there is another formulation to describe the same 
system which is due to Rarita and Schwinger.6 The (RS)-formulation regards a spin-(3/2) field as 
a one-form q\Ir, with values in the space of Dirac spinors. The field equation is 4V,T\Ir,=0 with 
the supplementary condition 4Ta=0 and the gauge transformations are *,-+qO+V,v where 
y”V,v=O. Here the 4 are the Dirac matrices. 

The (RS)-system has been investigated by several authors. Velo and Zwanziger7 have shown 
that the Cauchy problem for the field equation is well posed in flat space and have quantized the 
system. They pointed out that the characteristics of the system become spacelike in strong external 
electromagnetic fields so that the wave propagation can become acausal. A similar property was 
shown to be present in curved spaces by Madore.’ Finally, there is a large number of authors who 
looked at the (RS)-system from the point of view of super-gravity (see, e.g., Ref. 9). 

The aim of the present paper is to show local existence and uniqueness of solutions of the 
spin-(312) system modulo gauge solutions in its Dirac formulation (1.3) on manifolds which are 
Ricci flat. We show that the equations can be split into two sets of equations: evolution equations 
which can be put into a symmetric hyperbolic form and constraint equations which are propagated 
by the evolution equations provided that the Ricci tensor is pure trace. Thus, the Cauchy problem 
for Eq. (1.3) is locally well posed if the manifold is an Einstein space. This clarifies the role of the 
Buchdahl conditions in this case. We investigate the role of the gauge solutions and show that they 
remain “gauge,” only if additionally also the scalar curvature vanishes. Thus, the spin-(3/2) system 
modulo gauge is well defined on Ricci flat manifolds. 

The main tool employed in this work will be the formalism of space [or SU(2)] spinors which 
allows a straightforward decomposition of spinor equations into evolution and constraint equa- 
tions. This formalism is briefly described in Sec. II. In Sec. III, we discuss the evolution and 
constraint equations. We treat the gauge solutions in Sec. IV, and conclude the paper with Sec. V. 
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II. SPACE SPINORS 

We want to briefly introduce the formalism of space spinors which is very useful for analyzing 
the initial value problem for spinor equations. “J’ This formalism can be set up in all those 
situations where there exists a distinguished time direction like the normal vector field of a 
foliation by spacelike hypersurfaces. 

Let us first discuss things algebraically. In this work we will use the notation and conventions 
of Ref. 12. So let (.SA,eAB) and (SA’,6AIBf) be unprimed and primed spin space, i.e., the repre- 
sentation spaces of the fundamental representation of SL(2,C) and its complex conjugate repre- 
sentation, respectively. Then we have the usual spinor-vector correspondence aPA’++ Q’ between 
SAgSA and complexified Minkowski vector space M. Let t“ be a real future timelike vector 
which we assume to be normalized by the condition t/=2, then tAA’ tBA’ = 8. We may consider 
tAA’ as defining a Hermitian form on spin space which we can use to identify SA’ with SA and 
hence also SA’ with SA . Explicitly, this isomorphism is n;,t-n;,~t~‘~ . It extends canonically to 
the complete spinor algebra. Formally, each primed index can be converted to an unprimed one, so 
primed indices never appear. One can also introduce a complex conjugation map on the spinor 
algebra by first defining +A : = +A f p A and then extending this map canonically to the full algebra. 
Note that *n-A30 for all n;, and that tirr,,, = Oe “A = 0. We introduce real spinors by the 
condition &A ,... &=( - l)n4A . ..A (it is easily seen that this notion only makes sense for 
spinors with an even number ok in&es). 

Given a covector ua= uAA t we can convert the primed to an unprimed index and then decom- 
pose the result into irreducible parts: uAA’tA’B= +ABvCC’tCC’ +uA’(AtA’B). Thus, we see that if 
vata=0 then uAA’tA’ B = uBA 1 tA A . So we can identify the three dimensional subspace of vectors 
orthogonal to ta with the space SAB of symmetric two-spinors and there is a canonical isomor- 
phism C@S,,+&I. 

Now suppose that (M,g) is a four-dimensional Lorentz manifold with a spin structure. Fur- 
thermore, suppose there exists a congruence of timelike curves on M with tangent vector ta 
normalized by t/=2. Then we can perform all the constructions above at each point of M. The 
covariant derivative operator VAAt now can be decomposed as 

tA’BVAAt=EABDfDAB. (2.1) 

Then 20 = taV, is the covariant derivative along the congruence while the three (complex) op- 
erators DA, 1 - act in the directions orthogonal to P. Since VAAr is a real operator, we also have ,. 
D=D=D and DAB=-DAB. 

Associated with tAA’ there are two spinor fields on M, KAB= rAA’DtBA’ and 
K ABCD= tDC’DABtcc’. since ta is normalized we have the symmetries KAB= KBA and 
K AI?XD=~(AB)(CD). KAB is the “acceleration” taV,tb of tb while KABcD contains the expansion, 
twist and shear of the vector field ta. The congruence is hypersurface orthogonal if and only if 
K AcBAD)=O and then KABcD is the extrinsic curvature of these (spacelike) hypersurfaces. Both 
KAB and KABcD are real spinor fields. 

Ill. THE SPIN-(3/2) SYSTEM 

Let us now consider the Rarita-Schwinger system in the Dirac form 

(3.1) 

Converting the primed to unprimed indices with respect to some timelike vector tAA’ and using the 
decomposition (2.1) of VAAl we obtain 

P AB~~~‘APBArgrtB’C=DpABC-DEAPEBC-KCEPABE+KEAcDPEBD=O, (3.2) 
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with P/UK= Pm’&. Now we decompose pABc into its irreducible parts 
PABC=rABC+2EC(ArB)7 where rABC is totally symmetric and obtain 

P ABC= D’-ABC+ 2 +(ADrB) - D,EbcE +DAc’-B- %?DEd-, 

-KCErAm-2Kc(ArB)+KEAcDrEBD+2KEAc(ErB) * (3.3) 

The irreducible parts of PA,, now automatically yield the decomposition of Eq. (3.1) into evo- 
lution and constraint equations. In particular, we can get four systems of equations by taking, 
respectively, the totally symmetric part and the three possible traces of PABc . These are 

O=P (ABc)=DrABc-D(AErBc)E+D(ABrC)-K(AErBC)E-2K(ABrc) 

+KE ’ (A BrC)ED- KE(AB ErB)+KE(ABC)rE T (3.4) 

o=PCB ‘=--3Dr +DACr B AcB+ DEBrEm KACrAcB- KEBI-,+ K E AD A rEBD+ 2KEAA(E’B) 7 
(3.5) 

O= PAB BE-3DrAf3DE~rE-KBCrABC-KEArE-KEABDrEBDfKEABErB, (3.6) 

0 = PBBc’ DABrABc- 2DBcrB- KEBcDrEBD- 2KEBqErB). (3.7) 

We find that (3.4) describes the evolution of r,$Bc while (3.7) are the constraint equations. Both 
(3.5) and (3.6) are evolution equations for rA. The difference between those two equations is 
proportional to the constraint equations. Therefore, we can take any linear combination ~~(3.5) 
+p(3.7) with complex constants a and p as evolution equations for rA. 

A. The evolution equations 

First, we want to discuss the properties of the system of evolution equations which we take to 
consist of (3.4) together with a linear combination of (3.5) and the constraints (3.7). Our aim is to 
choose the linear combination in such a way that the resulting system becomes symmetric hyper- 
bolic and is thus amenable to standard methods in the theory of partial differential equations. 

Let us briefly review what a symmetric hyperbolic system is. Suppose we have a first order 
system of semilinear partial differential equations in an open set of W” given in the form 

A;,(+%&‘=~&~~)~ (3.8) 

where the “unknown” 4”=@‘(x) is a column vector of N complex valued functions. B, is a row 
vector of N complex valued functions which may depend on the coordinates x as well as on the 
unknowns 4” and A>,(x) is a square matrix with complex valued entries. Then the system (3.8) 
is symmetric hyperbolic if the following two conditions hold for all x: for all (real) covectors u, 
the matrix u,A~,(x) is Hermitian and there exists a covector t, such that the matrix taAE,(x) is 
positive definite. Note that the matrix u,Az,, is obtained by replacing the derivative operator in the 
principal part of (3.8) by u,. The Hermiticity condition is equivalent to the following statement: 
for all #, p 

~A;yu,qb”= +pA;,,va@‘, (3.9) 

i.e., the matrix Az,,u, is Hermitian with respect to the canonical inner product on CN defined by 
(Icrt@) = Fv,. 

In our case there are six unknowns &’ given by the pair of spinors ( rABC,#). Let us define the 
sesqui-linear form (&&+s^ABCrABc +iArA on the space of these pairs. This form Can easily be 
shown to be positive definite, thus defining an inner product. Now we have 
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Here we have replaced the derivative operators in the principal part of the system with (u, vAB) 
and we have taken an arbitrary linear combination of (3.5) and (3.7) as evolution equation for ra . 
The complex numbers LY and p have to be determined so that the equation (3.9) holds. From the 
deS of Complex conjugation of su(2) spinors we have ;ABC= - rABc and ;A= - rA and hence the 
right hand side of (3.9) becomes 

7 q5 A;,u#‘= -#BC ( US^ABC- V”AEi~c~+ U”ABSIC) - P 

x(-3LYUS^A+(~+P)UcBC~ABC-(Ct’-22P)VIABS^C). (3.11) 

The reality of v, implies u =U and uAB= - UIAB and so we find that (3.9) will be satisfied if we can 
arrange that 

= -3 av2ArA + (a+ p).tAvBcrABc+ iABCvABrc-( a-2p)iAuABrB. (3.12) 

This will be the case if we choose (a+@= - 1 and ~%=a. Furthermore, from (3.10) with v=&‘ 
we get for matrices with uAB=O 

(3.13) 

So if we choose a<0 then the matrix uaA;21,, will be positive definite for those u, with uAB=O. 
Thus we have shown that the system 

E D 
DrABc-D(AErBC)EfD(ABrC)=K(AErBC)EfK(ABrC)-K (A BrC)ED+KE(ABErB)-KE(ABC)rE7 

(3.14) 

- KECDBrcDE- 2KCEEBrc (3.15) 

is symmetric hyperbolic for any choice of LY-=CO. 
This property of the system of evolution equations implies existence and uniqueness of solu- 

tions. The precise procedure depends on the concrete situation one is interested in. Without going 
too much into details we want to present here how to get local existence and uniqueness of 
solutions. We choose a spacelike hypersurface Z in M and introduce Gauss coordinates (t ,x’) with 
respect to Z to cover an open neighborhood U of Z. Then the surfaces t=const. foliate U which 
is topologically of the form U=ZXR. We can use the congruence of normal vectors ta=V2$ to 
introduce SU(2) spinors. We introduce an adapted spin basis (0, , Lo) by fixing a spinor oA so that 
tAA’ oAoAt = 1 and then defining ~~ = zA. Then (0, , LA) is a normalized spinor dyad which can be 
used to expand rABc and r, in terms of the coordinates. It can also be used to define an ortho- 
normal frame ei ,e2,e3 on 2:: 

J. Math. Phys., Vol. 36, No. 6, June 1995 

Downloaded 14 Jan 2008 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



Jbrg Frauendiener: On spin-(3/2) systems in Ricci flat space-times 3017 

efB=$ (doB+ PP), 

e$B=& (&LB+ POB). (3.16) 

Furthermore, we need to express the spatial derivative operator DAB in terms of the partial 
derivatives with respect to the Gauss coordinates. This can be done with the observation that the 
derivative operator DAB is related to the SU(2) spin connection VAB of the induced metric on 2 by 
the formulaI 

DAB&=QAB&+KABC Di,. (3.17) 

The Ricci rotation coefficients of VA, with respect to the orthonormal frame (3.16) are then used 
to express the derivative operators in terms of the partial derivatives with respect to the Gauss 
coordinates. Inserting all these representations into the system we obtain a symmetric hyperbolic 
system on R4. Using results from Ref. 14 we have the following 

Theorem III.l: Let (M,g) be a manifold of class SF’” and let IZ5 be a spacelike E”” hyper- 
surface. Then there exists a neighborhood U-ZXR such that the system of evolution equations 
(3.14), (3.15) has a unique E”” solution for arbitrary E’?” initial data of compact support. 

Finally, we want to determine the characteristics of the system. RecaIl,14 that a hypersurface is 
characteristic for a first order system of partial differential equations A$,~,cJ~+ b,=O if it cannot 
be used as an initial data surface, i.e., if one cannot determine the outward derivative of the 
unknown functions from data given on the surface using the system. Let n, be a normal covector 
to the hypersurface. Then we are led to compute the determinant D(n) of the matrix 
A(n)=n,Az,,. If D(n) =O then n, is the conormal to a characteristic hypersurface. 

In the present Case, we W&e n, aS nAAt = ntAA’ + tBrnAB . Then We choose an adapted spin 
frame as above and define nO’nABOAoB, nl”nABoAL h-l and nz=nABLALB, so that n, iS real, 
no = -G and n/=2(n2-nf+non2). Note, that (n:-non,)20 and that it vanishes iff 
no = n , = n2 = 0. The matrix A(n) for the present system with respect to the basis 

is 

n+n, n2 0 0 n2 0 

-no 3n+n, 2n2 0 -2nl n2 

0 -2no 3n-n, n2 n0 * -2n, 
0 0 -no n-n1 0 n0 

-no -2n, -n2 0 -3a(n+nl)-2nl -(3a+2)n2 
0 -no -2nl -n2 (3a+2)no -3a(n-n1)+2nl 

The determinant of this matrix is found to be 

D(n)=9(n2-(nt- ngz2))2(9a2n2-(a+2)2(nf-n0n2)) (3.18) 
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which implies that there are two sets of characteristic conormal cones, one of which coincides with 
the null cone in the cotangent space of each point and is doubly degenerate. The other cone 
depends on the parameter CY, whose value determines its opening angle. Suppose, n, lies on the 
second cone, then n2=X2(n:-non2) with X=(a+2)/3a and thus 
n,na=n2-(nf- non2)=(X2- l)(nT-non2). Therefore, n, will be spacelike iff AZ<1 and it will 
be timelike iff X2> 1. 

To each of the conormal cones there correspond a ray cone and a ray conoid (see Ref. 14). In 
the case of the null conormal cone at a point p E M the corresponding ray cone is the null cone in 
TPM and the ray conoid is the light cone CP, i.e., the set of all null geodesics emanating from p. 
For the other conormal cone the ray cone is again a cone in the tangent space TPM which is a 
timelike (resp. spacelike) hypersurface (apart from the vertex) if X2< 1 (resp. X2> 1). The corre- 
sponding ray conoid rP(~) is generated by the bicharacteristics emanating from p. These are 
curves in M which are projections from integral curves of the Hamiltonian vector field on the 
cotangent bundle corresponding to the quadratic form which defines the conormal cone. At each of 
its points the ray conoid is tangent to the local ray cone. Now if CY ranges over the negative real 
numbers then X2 takes on all positive values. This shows that the ray conoid rP(a)) can be made 
timelike or spacelike at will by choosing a appropriately. 

The choice of cx does not affect the property of the system being symmetric hyperbolic as long 
as LY remains negative but it does affect the size of the domain of dependence of a point p E M. In 
fact, given a point p in the future of an initial surface C we draw all the backward ray conoids at 
p defined by the system until they intersect X in two sets S and S(a). Then the domain of 
dependence of p is contained inside the intersection of the interiors of S and s(a). Since the ray 
conoid VP(~) is either spacelike or timelike it lies either completely outside or inside the light 
cone of p. Thus, either S is in the interior of S(a) or vice versa, so that the size of the domain of 
dependence is constrained by S [if KP(a) is spacelike] or by S(a) [if rP(~) is timelike]. There- 
fore, in order to obtain the maximal possible domain of dependence we need to make KP(cr> 
spacelike. This will be the case if we choose a<-(l/2). Then X2> 1, F$,(cY) is spacelike and the 
domain of dependence is given by the light cone C” of p. The natural choice to be made for (Y is 
CY= -(l/2) which makes the second characteristic coincide with the light cone, but for the moment 
we want to leave a undetermined to see its effect in the constraint equations. 
B. The constraint equations 

Now we want to discuss the constraint equations. Our aim is to show that the constraints are 
propagated by the evolution equations under certain circumstances. Before going into the details 
we need some definitions. As we have seen in (3.2) the complete system of equations is given by 
PABc=O. Let US define EABC'PcABC), EA' - CYPAC~-PC~A andZ,= PC', .Thentheequations 
E ABC=0 and EA=O are the Eqs. (3.14) and (3.15) which constitute the symmetric hyperbolic 
system and ZA=O gives the constraint equations (3.7). We have the decomposition 

2 a+2 1 
pABC=EABC- z Ec(BEA)- 5 EC(BZA)+ z EABzC. (3.19) 

We want to derive a system of equations obeyed by the constraints. To this end we compute 

Here we have used the “epsilon-identity” EA[BEBC] - -0 for the second equality. The second term on 
the right-hand side can be rewritten by commuting the covariant derivatives as follows 
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- f;,t;,vBB’PAB~. (3.21) 

Here we have introduced the unprimed spinor curvature derivation q ,J, as defined in Ref. 12. 
Rewriting the second term in terms of KAB and KABcD we obtain the equation 

+KBDC&BC+ t;‘o pAB AB E’ . (3.22) 

Now assume that the evolution equations are satisfied in some space-time region. Then from 
(3.19) we have PA,,= - (cu+2)/3aeccBZAj+ l/2eABZc and after inserting this into (3.22) we 
obtain the equation 

ff+2 a+2 2a-2 
DZA + K DABZ~= - x KAcAcZB+ 3~y KABZB- ti’OCDp;P. (3.23) 

The last term in this equation can be written as 

(3.24) 

by expressing the spin curvature derivation in terms of the curvature spinors. In this case only the 
Ricci spinor @,JB,J,B, appears. If (PABA#B, = 0 then the constraints satisfy a linear homogeneous 
first order system of partial differential equations which can easily be seen to be symmetric 
hyperbolic. The characteristic conormal cone is given by the equation 

9a2n2-(cx+2)2(n;-n~n2)=0, (3.25) 

so the ray cone at p EM determined by (3.23) is E”(LY), the same as the second ray cone deter- 
mined from the evolution equations. 

With our choice of a<-(l/2) from the last section, we obtain the statement that the con- 
straints am satisfied everywhere in the space-time region where the evolution equations hold if 
they are satisfied on an initial surface, provided the Ricci tensor of the manifold is pure trace. 
Finally, we can state the following theorem the proof of which is the contents of the previous two 
sections: 

Theorem 111.2: tit (M,g) be an Einstein space with spin structure, then the spin-(312) system 

VAA,pAg?=O 

admits a well-posed Cauchy problem. 

IV. GAUGE TRANSFORMATIONS 

As Fierz3 pointed out, there are “trivial” solutions of the field equations for higher spin fields 
on flat space which have no energy momentum and angular momentum. He proposed to regard 
solutions of the field equations to be defined only up to the addition of these trivial solutions, thus 
introducing “gauge transformations.” In the special case of spin-(3/2) the trivial solutions are of 
the form . 

(4.1) 

where VA is a solution of the Weyl (anti) neutrino equation Vt , VA = 0. The question arises under 
what conditions solutions of this form persist to be “gauge solutions” on curved spaces. The first 
point to discuss is the Cauchy problem for the Weyl equation. It is well known and easy to see that 
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the Weyl equation can be put into the form of a symmetric hyperbolic system of evolution 
equations without constraints. Therefore, there are no problems related to the existence and 
uniqueness of solutions of the Weyl equation on curved manifolds from the point of view of the 
initial value formulation. Locally, there will always exist unique smooth solutions, given appro- 
priate initial data. The second point of discussion is the question under what conditions will fields 
of the form (4.1) be solutions of (1.3). This is easily checked.’ For p”,f of the form above to be a 
solution of (1.3) we need 

Here, we used the fact that solutions of the Weyl equation also satisfy the wave equation. There- 
fore, if the scalar curvature A of the manifold vanishes, then fields of the form (4.1) will still be 
solutions of the field equation (1.3). 

Fierz proceeded further to claim that he could use the gauge freedom to put the fields into a 
special form. In terms of SU(2) spinors the field p”,f is represented by the pair (rABc,rA) of a 
spin-(3/2) part and a spin-(l/2) part. The gauge transformation in this representation is 
rABCHrABC+D(ABvC)t rA++rAf( 1/2)Dv~+( 1/6)DAB#, with Dv~-I-D~~v~=O. In flat space 
we can choose t, to be covariantly constant SO that KAB=O and KAB,D=O. Fierz claimed that it 
was always possible to put rA =0 by a suitable gauge transformation. To do this, we use the Weyl 
equation to eliminate D v, from the transformation for rA in favor of DAB vB. Then we can solve 
the equation GA = rA - ( l/3) DAB vB = 0 for 9 on the initial surface because this is a linear elliptic 
system. We can use this solution fi to gauge away the rA component on the initial sur$ace. 
However, problems arise with the propagation of GA. In contrast to Fierz’ statement it does not 
seem possible to maintain the gauge r A=0 away from the initial surface because the equation 
GA =0 is not preserved under the time evolution. Put differently, we can solve the equation GA =0 
on each time slice for VA . But then the resulting spinor field will not be a solution of the Weyl 
equation. The reason is that rA itself is not a Weyl field. Since in flat space with t, covariantly 
constant, the operators D and DA, commute it follows from GA=0 that rA would have to satisfy 
the Weyl equation. Instead, rA satisfies the equation (3.6): 

-3Di-,+DEAr,=o. (4.2) 

Obviously, the situation does not improve in curved space with Rub=0 for several reasons. 
Suppose it were possible to choose a gauge with r,., =0 in a space-time region where the evolution 
and constraint equations (3.4)-(3.7) are satisfied. Then (3.5) implies the algebraic constraint 

KBCr ABC-KA EBCrEBC= 0. (4.3) 

This equation can be satisfied in general only if KAB=O and KAB,D=O. But this implies Vatb=O, 
i.e., that t, is covariantly constant which severely restricts the curvature of the manifold. In fact, 
only pp-waves are allowed by this condition. But even if one can find a covariantly constant 
timelike vector then one would still be left with the incompatibility of rA with the Weyl equation. 

We saw in the last section that there are two characteristic surfaces for the evolution equations 
one of which has multiplicity two. Thus, there are four “components” of the spin-(312) field 
whose propagation is locked onto the light cone, while there are two further “components” whose 
propagation is determined by a “floppy” cone which can be made timelike or spacelike by 
choosing a parameter appropriately. It is tempting to attribute these “floppy parts” in the spin- 
(3/2) system to the gauge freedom. However, it is not obvious how they are affected by gauge 
transformations and furthermore, how to eliminate them globally by a gauge transformation. The 
problem lies in the fact, that these “components” are in fact only well defined objects on the 
projective spin bundle over M, thus containing information not only from the space-time point but 
also from all possible directions along which propagation is possible. 
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These considerations of (im)possible gauges does not affect the truth of the 
Theorem IV.l: The spin-(3/2) system on a Lorentz manifold consisting of equation (1.3) up to 

gauge transformations (4.1) admits a well-posed initial value problem if and only if the manifold 
is Ricci flat. 

We want to make a final comment. Instead of Eq. (1.3) we consider the weaker equation 

(4.4) 

This equation falls into a class of higher spin systems that has recently been discussed.15 It was 
shown that the equation is constraint free but can not be written in symmetric hyperbolic form. 
Using the existence theory of Leray and Ohya for equations with degenerate characteristics’6 it 
was possible to show that the Cauchy problem of this equation is well posed on arbitrary smooth 
manifolds. Solutions are in Gevrey classes whose index depended on the Gevrey index of the 
metric of the manifold. It should be possible to improve these smoothness results. Defining the 
solution space of (4.4) by the symbol [‘I and the solution space of the Weyl equation by [J we can 
summarize the results of this section in the sequence 

&&, (4.5) 

where L is the map &+V$@) and N is the map p A,%v;‘pA,f3. Then we have NoL=O. The 
sequence above is not exact. In fact, it is exactly the difference between the image of L and the 
kernel of N which accounts for the “true degrees of freedom” of the spin-(3/2) fields. The 
structure of the maps in the sequence above can be visualized in the following diagram: 

lI2I4sL 
1 [I 3 5 [I 1 5 [I z 

To discuss this diagram we first restrict ourselves to flat space. Then solutions of (4.4) are 
mapped by N into the solution space of the Weyl equation. If we use the appropriate function 
spaces then this map is actually surjective. We will not go into these details here. The kernel of N 
symbolized by the lower two thirds of the line above [J is the solution space of the equation (3.1). 
On the other hand, the map L maps the solution space of the Weyl equation injectively into the 
solution space of (4.4), again modulo questions of the degree of differentiability. In fact, the image 
of L symbolized by the lower third of the line above [$J is contained in the kernel of N. The 
middle third above [;I, i.e., ker Nlim L is the part in the solution space of (4.4) which is “pure 
spin-(3/2).” It corresponds to the two degrees of freedom in a solution of the massless field 
equation. 

Now it is interesting to note that the structure of this diagram is preserved if and only if the 
manifold is Ricci flat. This comes about in a rather symmetric way: if the Ricci tensor is pure 
trace, R,, = iRgab then the maps L and N are well defined. If in addition also R =0 then we have 
the property im LCker N, i.e., that gauge solutions are divergence free. 
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V. CONCLUSION 

We have shown that the spin-(3/2) system defined by the solutions of VAA,ptf3 = 0 modulo 
solutions of the Weyl equation is well defined on curved manifolds if and only if they are Ricci 
flat. This is an interesting property of that system for two reasons. First, it opens up a relationship 
between the vacuum Einstein equations and spin-(3/2) fields. This has been observed again and 
again over the years and is well known from super-gravity. The reason for this is that among all 
the relativistic wave equations derived by Dirac the spin-(3/2) system is the only one (apart from 
those which do not involve curvature at all) for which the Weyl curvature does not appear in the 
consistency conditions. Julia17 has pointed out that one could regard the spin-(312) system as a 
linear system associated with the Einstein equations in analogy with the Lax pair of integrable 
systems. However, this analogy is not as far reaching as one would hope. (I am grateful to Lionel 
Mason for pointing this out.) 

The spin-(3/2) system is interesting for another reason: the two possible formulations for 
spin-(3/2) systems (up to the sign of the helicity) corresponding to the splitting @=3, p’=O) (the 
zero rest-mass equation) and (p =2, p’= 1) (the equations considered here) are equivalent in flat 
space as was pointed out by Fierz. However, the two formulations are radically different on curved 
spaces. While the (p=2, p’= 1) formulation is well defined on Ricci flat manifolds the zero 
rest-mass formulation is well defined only on conformally flat manifolds. This is because the field 
equation V$, $~;lec = 0 implies the Buchdahl condition ?TrAB,DtVpBc=O. The field equation*can 
be split into a symmetric hyperbolic system of evolution equations and constraint equations which 
are propagated by the time evolution only if the Weyl curvature vanishes. 

The relation between the spin-(3/2) formulation on Ricci flat spaces on the one hand and the 
massless field formulation with its associated twistor space of charges is the starting point of a 
recent research programme to obtain a twistor formulation for Ricci flat manifolds, i.e., for the full 
vacuum Einstein equations.’ 
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