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Abstract. We study the evolution by mean curvature of a smooth n—dimensional
surface 7 c R™?!, compact and with positive mean curvature. We first prove an
estimate on the negative part of the scalar curvature of the surface. Then we apply
this result to study the formation of singularities by rescaling techniques, showing
that there exists a sequence of rescaled flows converging to a smooth limit flow
of surfaces with nonnegative scalar curvature. This gives a classification of the
possible singular behaviour for mean convex surfaces in thercas2.

1 Introduction

Let .#4 be a compach—dimensional manifold without boundary and ki :
¢ — R be a smooth immersion o7 as a hypersurface. We want to study
the evolution of. #4, = Fo(.#4) by mean curvature flow; that is, the family of
immersionskF (-, t) satisfying

CEY TE=-HEOpP.,  pe. =0

(1.2) F(-,0) =Fo,

whereH (p,t) andv(p,t) are the mean curvature and the outer normal respec-
tively at the point=(p, t) of the surface 74 = F(-,t)(_#2). The signs are chosen
such that—-Hv = H is the mean curvature vector and the mean curvature of a
convex surface is positive.

It is well known that problem (1.1)—(1.2) is a quasilinear parabolic system and
that the mean curvature flow is well defined up to a finite critical tifret which
the curvature of the surface becomes unbounded. Moreover, various geometric
properties (for instance convexity or positive mean curvature) are invariant under
the flow.
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The structure of the singularity aof#Z; whent approaches the critical time
has been of great interest. For instance, when the initial surfégeis convex,
then ast — T the surfaces#/; become spherical and contract to a point. This
result was obtained by Gage and Hamilton [5] in the aasel and by Huisken
[10] whenn > 2; it was then extended by Grayson [6] to arbitrary embedded
curves. On the other hand, far> 2 nonconvex surfaces may become singular
without shrinking to a point also in the embedded case. Then one can analyse the
behaviour near a singularity with rescaling techniques. In [11] Huisken showed
that singularities having a certain maximal blow—up rate (type | singularities) are
asymptotically self—similar. For surfaces of positive mean curvature the possible
limiting profiles were then classified in [12]. The singularities of rotationally
symmetric surfaces were described by Altschuler, Angenent and Giga [2] and by
Angenent and Velazquez [3], while other rescalings of mean curvature flow in
the casen = 2 were recently studied by limanen [14] and White [17].

In this paper we consider a general surface with positive mean curvature and
with n > 2. Without any assumption on the blow—up rate, we prove a new a
priori estimate, Theorem 3.1, showing that the scalar curvature of the surface is
asymptotically nonnegative near a singularity. This implies that a sequence of
rescaled flows tends to a limit flow of surfaces with nonnegative scalar curva-
ture (Theorem 4.5). Such a property is particularly interestinghfer2 because
then positive scalar curvature is equivalent to convexity. This leads to a classi-
fication of the possible limiting shapes both for type | and type Il singularities
(Corollary 4.7).

2 Preliminaries

In the next sections we study the mean curvature flow (1.1)—(1.2) assuming that
the initial hypersurface #y = Fo(.72) C R™! (n > 2) is smooth, compact
without boundary and has positive mean curvature. It is well known (see [10,
Theorem 8.1]) that there exists a smooth solution to problem (1.1)—(1.2) up to a
critical timeT at which the curvature of the evolving surface becomes unbounded.
This critical time is finite for any compact,, and satisfies

i 1/)2
T < (diam _74) .
- 8n

We recall now the equations for some geometric quantities associated with the
evolving surface and other identities which we shall need in the sequel. We shall
follow the notations of [10]; in particulag = (¢g;) andA=(h;) (i,j =1,...,n)
will denote the metric tensor and the second fundamental formZgrinduced
by the immersion, whiled =tr(h;) andR = H? — |A|? are the mean curvature
and the scalar curvature respectively. We also denot/bthe volume element
on .7¢. All these quantities depend ont (wherex is a local coordinate on
6), but this dependence will not be written explicitly unless necessary.

(2.1)

Proposition 2.1. We have the evolution equations
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(i) a—? = AH +|A]?H,

g
(ii)

2
A _ A|AZ - 2[VA]2+2/A%,
0
v — —H2 )
(iii) pn du du

Proof. See [10]. O
From (i) and the maximum principle we obtain that the mean curvature of our
surface remains positive during the evolution.Let us now introducey ferR
ando € [0, 2], the function

A?Z — (L+n)H?
(22) Gom = H?

Then we compute, using (i) and (ii) from the previous proposition,

21-o0) o(l-o0)
H?2

|H Vi hk| — ViH hk| ‘2 + 0|A‘2gg’n.

dg
2.3 ZJon = A +
( ) at gO'JI

2
THi

<VH ) VQUJ]> - go,ﬂ‘VH ‘2

In particular, fore =0, we find

LNLN:

2
OA°_ AT, 2 A
gt HZ2 " HZ H

2
(VH, V%) — m\Hvihk. — ViH hg|?.

(2.4) -

By the maximum principle and by the compactness#fwe obtain thatA|?/H 2
is uniformly bounded from above by its initial data. Thus, if we oglthe
maximum of|A|?/H? on .Z4,, we have

(2.5) |A> < cgH? on.74,¥t € [0, T[.
Let us also recall the identity (see [10])

1
(2.6) SAIAZ = (hy, ViViH) +|[VA? +Z,

whereZ = H tr(A% — |Al*. The following elementary inequality will be useful
to derive estimates oA.
Lemma 2.2. We havetr(A%)| < |A3.

Proof. If we denote by\, ..., \, the eigenvalues of the second fundamental
form, the above inequality can be written as

n n 3/2
S < (Df) |
i=1 i=1

It is not restrictive to assumi| > 0. If we set
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Ai .
=N i1,

(Z)

then|ui| < 1, and thereforg:® < p2. It follows

n
2N
i=1

A
N
S
=
-w
N~
K
>
N

IA
Y
=}
=
=9
N~
[]=
>
N

1
>

N
O

3 An estimate on the scalar curvature

The goal of this section is to prove the following result.

Theorem 3.1. Let.#4, t € [0, T [ be a smooth solution of the mean curvature
flow (1.1)—(1.2), with > 2 and the initial manifold #Z, compact and of positive
mean curvature. Then, for any> 0 there exists a constant,C> 0, depending
only on nn and. #%, such that

R>-nH?-C,
on. 7 foranyte [0, T].

Roughly speaking, this result shows that the negative part of the scalar cur-
vature cannot grow as fast & when the latter tends to infinity. Following
the ideas of Hamilton [7] and Huisken [10] one is led to look for an upper
bound for the function|A2 — H?)/H?=¢ for some small positiver. However,
the method of [10] does not carry on to the present context, because it relies
on some estimates which hold only for convex surfaces. Therefore we have to
introduce an additional parametgrand to study the functiom, , defined in
(2.2). Exploiting the presence of this parameter we obtain some inequalities (see
Lemma 3.2) which allows us to boung ,, under the only hypothesis of positive
mean curvature. This bound will yield Theorem 3.1.

The following estimate will be used in the proof of our theorem; we remark
that it does not depend on our assumptions #} and is valid for any smooth
hypersurface.

Lemma 3.2. Supposél +n)H? < |A|? < coH 2 for somen, co > 0 at some point
of _7/;. Then we also have
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() —2Z > nH?|AP;

2
(i) [HVihg — ViH hg|? > WHZWH .

Proof. (i) Taking into account Lemma 2.2 and the assumpti&n> /1 +7 |H |
we obtain

—2Z = 2(A* —tr((A)H) > 2|A%(|A| — [H )
> 2(1+n — /1+m)|AH?
> n|APH?.

(i) We have (see [10, Lemma 2.3(ii)])

IHVihg — ViH hygl?

v

1
Z'viH hg — ViH hj ‘2

1 )
= é(|A|2|VH |2 — |V Hhy [3).

Let us denote with\y, ..., A, the eigenvalues oA in _such a way tha#, is an
eigenvalue with the largest modulus. Then we hgweHh; | < A\2|VH |2 and

. VH |?
 — Vi 2 S 2 2 - 2y 2|
IHVihg — ViH hg|? > §A|VH| Z/\ o
VH |2
> 242 |
= 53 W
i=1 j=i+l
2
" [VH 2
> N\
h 2“1 n(n — 17[A2
i<
(|A|2 772H2 2
= = — 1 __|VHP. O
4n(n — 1)2|A|2|V 2 ~ 4n(n — 1)200IV |

Let us now consider the functiap, ,, defined in (2.2). We assume thaty
10,1[. In the following we denote by; any positive constant depending only
onn, n and. 4%, and we assume that these constants are chosen larger than 1.
We shall write for simplicityg,.,, = g as long ass, 7 are kept fixed. We observe
that (2.5) implies

(3.1) 9o < CoH 7.

Remark 3.3.Let g, denote the positive part af, i.e. g.(x,t) = max{g(x,t), 0}.
Then it is easily seen that € C1(.7 x [0, T[) for any p > 1 and

692 = p71@
ot "I e

-1

V(gd) =pgt
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Lemma 3.4. There exist constants,ccs such that

d b p(p — 1) > / o
. e < _ H
p /Mg du < 2 ///‘ “?|VglPdu H2 ~|VH|[*du
=
—p S HVihg — ViH hy| du+pa/ |A2gPdu
A, H A

for any p> c,.

Proof. By Remark 3.3, Proposition 2.1(iii) and equation (2.3) we havepfor 2

d ogt
dt/ bdp /(éqt Hzgf)du
10
/(pgf 1£—Hzgf> dp
p—1

p(p— 1) / 2 Vgldp+ 2= o)p [ S (VH, Vg)dn

IN

(3.2) ~2p / SHVih = ViH hafdi+po [ AR

From Lemma 3.2(ii) and inequality (3.1) we deducegif> 4n(n — 1)?con—2,

A #&
+ 2 + 2
Hao [HVihg — ViH hg|© > GHZ 7 [VH|
p—1 p
> L ITHE e R
2cH?2=7 2cocp H2
Therefore, ifp > max{2,1 + 4cyc; } we obtain
@
p—1
<
< p © [VH 2+ 2000ipg? 2| Vg2
— 2coC; H2
-1
1
< |:q|tt —|HVihg — ViH hg|* + p(p ) “|vgP?
p—1
+ 2
—p=————|VH %
p2C1H 2-0o |v |
Substituting in inequality (3.2) we obtain the conclusion. O

Lemma 3.5. There exists a constanj such that
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1
~ |A%gd
4 J o,
p p—2 2 gg_l 2
< (p+ g+ “|Vg|*du+ (1 +5p) >—|VH[du
B) J s H

p—l
+/ H4 ‘Hth|fv|Hhk||d,LL
7t

foranys >0, p > 2.

Proof. Let us seto = 2 — 0. We compute

2
Ag = A(lﬁl ) (1 +n)AH?—@

AlA? Al? |A]2
= H'g' |Q|+1AH— a(e—1) a|+2|VH|2
20 |A2
——(VH +(1+n)(2- .
g (VH, VEg) + (L +a)( a)( >

Using formula (2.6) can rewrite the above equality as

2 2

Ag = Ha(hu,VVJ )Y+ mz Ha+2‘Hth| ViHhk||2
1-a (2—a)(a—1) 2
—(W+2(1+n)H )AH +T9\VH|
2(—1
- (O‘H ) (vH. V).

We multiply this equality byy?H =2 and integrate on#,. Taking into account
Remark 3.3 and the Codazzi equation we can integrate by parts and obtain

2Z
| ~rastan
1 ot
+
p/H2 a|Vg|2d,u—2p/—Hz (hj, VigViH)dpu

p
9+ g+
+4/m<hijvviijH>dﬂ+2/W‘Hvihkl — ViH hk||2du
p p—1
g+ g+
«f (apHg_a . ><V9,VH>du
&
72/ <H4 +(2+77) ) |VH |2d:u‘-

Using repeatedly inequality (3.1) and the assumptiers]l, 2[, n €]0,1[ we
obtain
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27 g
/*ﬁzﬁmté %p/gfﬂvm%u

p—1
+ap(co + 1) / % 1M | |Vgldu

p—1
+4C0/g+ |VH |2d,u,+200/ H2+a|Hvihkl — ViH hk||2d,u,.

In addition we have, for ang > 0

—1
29* IVH ||V

IN

+ﬁ |VH ?

p —1

2
< |vm2+%

The assertion follows from the above inequalities and from Lemma 3.2(in

Proposition 3.6. Givenn €]0,1[, there exist constantssccs such that the
LP(.#¢) norm of(g, )+ is a nonincreasing function of t for any, p such that

p>cs, o <(cep) V2

Proof. Let c,,c3,¢4 be as in Lemmas 3.4, 3.5. We recall that we assumed to
choose all these constants greater than 1. Suppose,thatatisfy

C3 1 1
> = < =)=
p> max{4, Cy, 5 }, o< c \/ 8cap
If we set( = 4cy0, then
1 1
e (5+5) = 5 (62 1)< % % Pe D

pac4§,/8%3§p.

Thus, by Lemma 3.5,

-1
pa/|A|2 Py < PP= 1)/ ~2/y742d +B/ _|VH Pdu

H2
+p/H4 —~[HVihg — ViH hg|*dp.

By Lemma 3.4 we conclude

d
Pdy < 0. 0
dt/ a
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Proof of Theorem 3.1From thelP—estimate of the previous Proposition one can
derive a uniform bound on the supremum @f, with the procedure of [10,
Theorem 5.1]. We give a sketch of this method for the reader’s convenience.
Given anyk > kg, where

ko := sup supg,
o€[0,1] .7

we set
0= (g — K2 AKY)={X €. 1 v(x,t)> 0}

Arguing as in the proof of Lemma 3.4 we obtain, folarge enough,

d
(3.3) ot / vidp+ / [VolPdu < coop H2gb ,du.
. A1)

On the other hand we have the following Sobolev—type inequality (see [15]) valid
for any Lipschitz function on#z;:

(3.4)

1/q . 2/n 1/q
</ vzqdu) < 07/ |Vol?du + 7 </ Hndu) (/ vzqdu> .
)

Hereq = n/(n — 2) if n > 2 and an arbitrary number greater than hif 2.
Now we observe that, if

p > max{Cs, 4n°cs}, o < (4cep) /2

then we have

with

Thus, by Proposition 3.6,

2/
(kt)

IN

2/n
k72p/ﬂ </ H ngg,ndp“>
AK,t)
2/n
K—20/n ( / P ,d u)
Ay

< (<1+.fzo>ko>2"/”.

(3.5)

IA

Thus, we can fix; > kg large enough such that, for aky> k; we may absorb
the last term in (3.4) and then exploit thi€wv| term in (3.3) to obtain

d 1 1/q
(3.6) gt / i+ — ( / vzqdu) < cop H2gP ,dp.
8 Ak,t)
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After a time integration and a computation involving théléer inequality and
the interpolation inequality fokP spaces (see [10] for details) we obtain, for any
r>1,

-
// vPdp dt
0 JAKt)
T T 1/r
orn([[ [ 00 ([ f )
0 JAK,) 0 JAKt) ’

whereb = (g — 1)/(29 — 1). Let us now choose large enough such that
v:=1+b—1/r > 1. With an argument as in (3.5) we can estimate the second
factor on the right hand side provided o~ are larger than suitable constants
depending only om,n,.#%,. Thus we find a constant;o such that, for all

h >k >k,
T T
\h—k\p/ / dpdt < / / vPdpdt
0 JAnh) 0 JAK,t)

T v
choop ( / / du dt)
0 JAkp)

for all h > k > k;. By a well-known result (see e.g. [16, Lemma 4.1]) we

conclude .
/ / dpdt=0, Vk >k, +d'/P,
0 JAK,L)

T v-1
d= Cfogpzpv/(v—l) (/ / dudt)
0 JAk)

Here we use the properties that the critical times finite and that the area o#;
decreases with, which follow from (2.1) and Proposition 2.1(jii) respectively.
We obtain, by the definition of\(k,t),

1+b—1/r

IN

where

AP < (L+mH?+ (ky +dYP)HZ .
This implies that
AZ < @+ 2)H?+K,

for somekK,, depending only om, n,. 7. SettingC, = K, ,, we conclude that
|A2—H2? < yH2+C,, which proves the theorem. O

4 Asymptotic behaviour

We now apply the estimate of the previous section to study the asymptotic be-
haviour of our family of hypersurfaces near a singularity. It is customary to
divide the singularities in two classes, depending on the rate at which the curva-
ture becomes unbounded.
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Definition 4.1. We say that our surface develops a singularityypk | (or afast
singularity) ast — T if there exists a constar@ > 0 such that

C
4.1 A< ——
1) m/‘}ix‘ | T Tt

Otherwise we say that the singularity is tgpe Il (or slow).

Remark 4.2.(i) By a comparison argument using the evolution equatior|At
(see Proposition 2.1(ii)) it is easily seen that maxA? > [2(T —t)] L.

(i) From inequality (2.5) and from the general propery < n|Aj?2 we deduce
that under our hypothesé$? and|A|? have the same blow-up rate.

To study the shape of the surface near a singularity we define now a family
of rescaled flows. Since singularities of type | have already been classified in
[11], [12], we consider the case of type Il singularities. Following an idea of
Hamilton [8], we choose a sequenfg, t)} as follows. For any integer > 1
letty € [0, T — 1/K], X € .44 be such that

1 1
(4.2) H 2, t)(T — = —t) = max H2(x, t)(T — = —t).
k t<T—1/k k

xe.

Furthermore we set

(4.3) L =H®Xt), o= —Lgt,  wi = LE(T —t — 1/Kk).

Lemma 4.3. If the singularity is of type Il then we have, ask oo,
tk =T, Lk —>o00, ax— —00, wk— o0.

Proof. Let M > 0 be given. Since we are assuming that the singularity is of
type Il (see also Remark 4.2(ii)) there exist< T and X € .Z¢ such that
H?2(X,t)(T —t) > 2M. Fork large enough we have

t<T—1/k, H*Xt(T-t-1/k)>M.
It follows
wi = H204, t)(T — te — 1/K) > H2(X, 1)(T —t — 1/k) > M.

Since wy is increasing andM > 0 is arbitrary, this proves thaty — oc.
Furthermore, it follows from the definitions that

w —00 = Lo = k—oT, ax > —oc. O

Now consider, for ank > 1, the family of surfaces# . defined by the
immersions

(4.4) Fr(-,7) = Lk(F (-, L 2 + ty) — F (%, ), T € [one, wi].

We denote by andHi the second fundamental form and the mean curvature
associated with the immersid¥y.
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Lemma 4.4. If the singularity is of type Il then the rescaled immersions satisfy
the following properties:

(I) Fk(xka 0) =0 Hk(kao) =1

(ii) for any 7 > O there exists ¢ such thatA > < (1 +n)HZ +C, L%

(iii) for any e > 0 andw > 0 there exists ksuch thatmaxHg(-,7) < 1 +¢ for
any k> ko, 7 € [ayg, w].

Proof. We have by the definition dfy
A(X, 7) = L PAK, LT + 1),

From this we deduce (i) and (ii), by virtue of Theorem 3.1. In addition, our
choice of &, tx) implies

1
— i~ W _ w
T—%—tk—LﬁT Wk — T

HZ(x, ) <

for anyk andr € [ak, wk[. Sincewx — oo we obtain (iii). O

Theorem 4.5. Let #,;, t € [0, T [ be a smooth solution of the mean curvature
flow (1.1)—(2.2), with n> 2. Assume that the initial manifoldZZ, is compact
and of positive mean curvature, and that the flow develops a singularity of type Il
as t— T. Then a subsequence of the flow8, , converges smoothly to a mean
curvature flow.72, defined forr € R. The mean curvaturel of the limit flow
satisfiesO < H < 1 and is equal tal at least at one point. Furthermore, either
7t has positive scalar curvature everywhere or (up to a rigid motiof, =
R"-1 x T',, wherel; is the “grim reaper” curve given by x — Incosy + 7.

Proof. The curvature bound in (iii) of the previous lemma implies analogous
bounds on the second fundamental form and all its covariant derivatives. Then
by standard methods, based on the Aaz@&bcoli theorem, we can extract a
subsequence of the# . converging uniformly on compact subsetsRf! x R

to a limiting solution.#,. of the mean curvature flow, whose mean curvature
satisfiesH < 1. Since O¢ Aty o for any k and H, = 1 at that point, the
same holds for the limit flow. Being the limit of surfaces with positive mean
curvature, the limit flow has nonnegative mean curvature. But the maximum
principle implies thatH is actually everywhere positive, since it satisfies the
equation in Proposition 2.1(i) and is not identically zero.

Furthermore, the estimate in Lemma 4.4(ii) implies ti#ét < H2. Again the
maximum principle, together with equation (2.4), implies that eiﬂlﬁé?r < H2
everywhere (i.e. the limiting surface has positive scalar curvature), or

‘Z\‘ZEQZ’ |ﬁviﬁk| —Viﬁﬁmzzo,

In the latter case, arguing as in [12, Theorem 5.1], we obtain that (up to rigid
motions). Z4, = R"~1 x I;, where[’, is a convex eternal solution to the mean
curvature flow in the plane, whose mean curvature assumes its maximum at at
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least one point. By Hamilton’s characterization of convex eternal solutions [9,
Theorem 1.3] we deduce thét is a translating soliton, and it is well known
that the only translating soliton in the plane is the grim reaper. O

Remark 4.6.A similar procedure can be followed in the case of a surface devel-
oping a singularity of type I. In this case we choose a sequé¢fget)} such
thattc — T andH (X, t) = max H (., t). Then we define the rescaled flows
as in (4.3)-(4.4). In this case we obtain convergence to a limit fléfy defined

in a maximal interval of the form $ oo, 2[ for some{2 < +oo. The limit flow

has again nonnegative scalar curvature; however for singularities of type | this
property follows already from the selfsimilarity result in [11, Theorem 3.5] and
the classification in [12, Theorem 5.1].

For the two—dimensional case we now obtain a detailed description of possible
singular behaviour.

Corollary 4.7. Suppose F: .Z4> — R® is a smooth solution of (1.1)—(1.2)
compact and with positive mean curvature on the maximal time int¢oval|.

() If the singularity for t — T is of type I, the only possible limiting flows
under the rescaling procedure (4.4) are the homothetically shrinking solutions
associated with 3R x S andR x I', where I is one of the selfsimilar
immersed curves introduced by Mullins [13] (see also Abresch—Langer [1]).

(i) If the singularity is of type Il, then the limiting flow is either a strictly convex
translating soliton or the translating solution given Byx I'., wherel, is
the “grim reaper” curve given by x —Incosy + .

Proof. The first part is a consequence of the results quoted in Remark 4.6. The
second part follows from Theorem 4.5 and Hamilton’s result [9] characterizing
convex eternal solutions, since far= 2 positive scalar curvature is equivalent

to convexity.
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