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 Introduction 

 In all phases of disease gene discovery, it is of para-
mount importance to correctly determine the haplotypes, 
the specifi c combinations of given sequence variants for 
each of the two chromosomes of an individual  [1–3] . 
These haplotypes may relate to ancestral chromosomal 
segments and/or defi ned candidate genes  [1] . The cur-
rently used standard experimental approaches to the 
analysis of genetic variation, sequencing and genotyping, 
rely on the analysis of diploid (mixed) genomic DNA. 
Applying these technologies does not allow the direct de-
termination of the underlying molecular haplotypes  [4] . 
This means that we usually have to depend on unphased 
genotypes. In principle, phase information can be ob-
tained by genotyping the family members of each indi-
vidual; in many cases, however, their genotypes simply 
are not available or not suffi cient to resolve haplotype 
ambiguity completely  [5] . Existing methods for molecular 
haplotyping such as allele-specifi c long-range PCR  [6, 7] , 
carbon nanotube probing  [8] , or the construction of so-
matic cell hybrids  [9]  are to date too cost and labour in-
tensive and not amenable to automation. Recently devel-
oped, novel and promising technologies such as polony 
haplotyping  [10] , single-copy DNA genotyping in con-
junction with the MassARRAY system  [11] , or (fosmid/
cosmid) clone-based systematic haplotyping  [12]  have 
not yet become available for effi cient routine use. 

 Thus, in the past decade, several  in silico  methods 
have been developed that allow the prediction of haplo-
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  Abstract 
 The inference of haplotype pairs directly from unphased 
genotype data is a key step in the analysis of genetic 
variation in relation to disease and pharmacogenetically 
relevant traits. Most popular methods such as Phase and 
PL do require either the coalescence assumption or the 
assumption of linkage between the single-nucleotide 
polymorphisms (SNPs). We have now developed novel 
approaches that are independent of these assumptions. 
First, we introduce a new optimization criterion in com-
bination with a block-wise evolutionary Monte Carlo al-
gorithm. Based on this criterion, the ‘haplotype likeli-
hood’, we develop two kinds of estimators, the maximum 
haplotype-likelihood (MHL) estimator and its empirical 
Bayesian (EB) version. Using both real and simulated 
data sets, we demonstrate that our proposed estimators 
allow substantial improvements over both the expecta-
tion-maximization (EM) algorithm and Clark’s procedure 
in terms of capacity/scalability and error rate. Thus, hun-
dreds and more ambiguous loci and potentially very 
large sample sizes can be processed. Moreover, apply-
ing our proposed EB estimator can result in signifi cant 
reductions of error rate in the case of unlinked or only 
weakly linked SNPs. 
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types from unphased genotype data. Two of them have 
become particularly popular. One is Clark’s approach  [6, 
13] , the other the EM approach based on the genotype 
likelihood  [14–18] . The fi rst approach is motivated by the 
fact that for any haplotype that is common enough such 
that homozygotes can be found in the sample, the sample 
is expected to have several heterozygotes bearing one 
copy of that haplotype  [19] . This approach focuses on the 
prediction of haplotype pairs instead of estimating hap-
lotype frequencies. However, it does not take full advan-
tage of the count information (i.e. the information from 
the repeated observations) of some genotypes. This limi-
tation can strongly affect the conclusions drawn by the 
subsequent haplotype-based statistical analyses (see Re-
sults). In contrast, the second approach has a clear statis-
tical background and is not restricted to biallelic loci. EM 
is applied fi rst to estimate haplotype frequencies and then 
to assign to each individual genotype the haplotype pair 
with the highest frequency among all possible pairs con-
sistent with the genotype under consideration. Unfortu-
nately, application of EM is limited by the size of the 
problem it can tackle  [20] . 

 In an effort to contend with these limitations, Stephens 
et al.  [20]  and Niu et al.  [17]  developed some new statis-
tical methods, called Phase and PL, respectively. Both 
Phase and PL require the assumption that the SNPs are 
linked and consider the unknown haplotypes as unob-
served random quantities, which avoids the requirement 
of storing estimated haplotype frequencies for every pos-
sible haplotype in the sample, a limitation of the EM ap-
proach. This allows both methods handling many more 
ambiguous loci than EM. Moreover, the error-rate im-
provement of Phase over Clark’s and EM results from 
detailed model assumptions, specifi cally, the assumption 
of a coalescent model that has been made to infer the 
conditional distribution of the unknown haplotypes un-
derlying the genotype data. In contrast, PL attempts to 
improve the error-rate performance of Clark’s and EM 
by using partition ligation and prior annealing techniques 
in order to regularise the conditional distribution of the 
unknown haplotypes, as compared to imposing a specifi c 
model on this conditional distribution. This explains why 
the performance of Phase is better than PL under the co-
alescent assumption and worse than PL, when this as-
sumption is invalid. 

 A major motivation of our work has been to develop 
an empirical Bayesian procedure, termed EB, in order to 
overcome the limitation of PL, i.e. deterioration of per-
formance, when the SNPs under consideration become 
weakly linked or unlinked. The proposed EB procedure 

represents an extension of/improvement over PL in the 
sense that the same Bayes model is used, it is similarly 
based on the same haplotype likelihood framework, how-
ever, the requirement of tightly linked loci has been re-
moved through introducing the empirical pseudo-counts 
in the prior. It has been demonstrated by Niu et al.  [17]  
that PL may provide better results than Phase under the 
condition of an invalid coalescence assumption. Thus, 
this conclusion is supposed to hold for our EB. The above 
described improvement is achieved through the use of a 
new optimization criterion, an empirical posterior, as 
well as a block-wise evolutionary Markov chain Monte 
Carlo algorithm. The empirical posterior is based on the 
so-called profi le haplotype likelihood, which usually as-
signs the relatively higher likelihood to that specifi c hap-
lotype that occurs in both homozygotes and heterozy-
gotes. Relying on this profi le likelihood, we present a new 
haplotype estimation procedure as an alternative to EM, 
called the maximum haplotype likelihood (MHL). We 
show that both MHL and EB can be derived by optimiza-
tion of the profi le haplotype likelihood or of a posterior 
of the haplotypes only. This property helps also to con-
tend the limitation of the EM approach, that is, the need 
to store the estimated haplotype frequencies for every 
possible haplotype in the sample. In contrast to PL, we 
address the issue of how to specify the prior by using the 
Excoffi er-Slatkin assumption  [14] . That is, we use those 
haplotype frequencies in the space of haplotypes that are 
compatible with the genotypes, in order to specify the 
pseudo-counts in the prior. 

 In order to evaluate the performance of our proposed 
solutions, we carried out at fi rst several simulation stud-
ies considering two scenarios, one characterized by tight-
ly linked SNPs, and the other by weakly linked or un-
linked SNPs, respectively. While the fi rst scenario has 
been well motivated in the literature  [17, 20] , the second 
one has attracted attention just recently  [21] . The ratio-
nale of the second scenario may be outlined as follows: 
SNPs may, in practice, not reside on the same chromo-
some and therefore be physically unlinked. However, 
some of them may still interact with each other and in 
that, confer genetic risk to complex disease  [21] . This im-
plies that the two physically unlinked haplotypes may 
have the same parental identity if they are coupled with 
each other as the result of the potential interactions of 
disease genes in the gene network. It has been demon-
strated by Zhang et al.  [21]  that phasing two unphased 
genotype blocks together allows prediction of these inter-
actions. Moreover, considering the potentially interact-
ing SNPs as one block, that means in practice, combining 
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all SNPs and phase them as a total, was shown to improve 
the accuracy of haplotype prediction. 

 In order to extend assessment of the performance of 
our proposed procedures, we applied them consecutively 
to two real data sets, the human  �  opioid receptor gene 
(OPMR1) and the angiotensin converting enzyme (ACE) 
data sets  [2, 22] . Referring to the fi rst one, our motivation 
was to examine whether the risk pattern extracted by 
Hoehe et al.  [2]  could be derived by our proposed proce-
dures as compared to the other methods outlined, Clark, 
EM, Phase and PL, respectively. The ACE data set, on 
the other side, was used, because it appeared to allow a 
much more detailed investigation of the specifi c mecha-
nisms involved in the performance of the different meth-
ods under comparison. 

 Upon application to both simulated and real data sets, 
we conclude that our EB procedure not only can tackle a 
large size problem, but also can perform signifi cantly bet-
ter than the existing methods in terms of error rate in 
many instances. This improvement in performance might 
be due to using the effi cient evolutionary Monte Carlo 
algorithm and adopting the above described empirical 
Bayesian method to regularize the model. Note that hap-
lotyping is an ill-posed problem, in which the dimension 
of parameter space is usually much higher than the sam-
ple size. Based on our simulations we conclude further 
that compared to all other existing approaches, under a 
coalescent model, our method underperforms (slightly) 
Phase and is very similar on average to PL in the case of 
tightly linked SNPs. However, in the case where the SNPs 
are unlinked or only weakly linked, our EB method clear-
ly yields better results than PL. 

   Methods 

 Haplotype Likelihood 
 Consider a chromosomal region of  u  0  loci specifi ed by an allelic 

vector ( r  1 ,  r  2 , ...,  r  u  0 
) T , in the reference genomic sequence. Let   G   = 

( G  1 , ...,  G  n ) denote the observed genotypes for the  n  individuals, 
where  G  i  = ( g  i  1 , ...,  g  iu  0 

) T , () T  is the transpose, and  g  ij  is the genotype 
for individual  i  at locus  j . Let  g  ij  take 0, 1, or 2 according to wheth-
er its genetic haplotype at the locus  j  is homozygous and identical 
with the reference sequence, or homozygous but different from the 
reference sequence, or heterozygous. A genotype is called ambigu-
ous if it has at least 2 heterozygous sites. Let  H  i  = ( H  i  1 ,  H  i  2 ) denote 
the unobserved haplotype pair of  G  i  , and  �  i  the set of all possible 
haplotype pairs  compatible with  G  i  (called the candidate haplotype 
set for  G  i ). Set  H  = ( H  1 , ...,  H  n ), one possible way to decompose   G   
into haplotypes. Let  p  = ( p  1 , ...,  p  m  0 ) denote population frequencies 
of all possible haplotypes compatible with   G  , where  m  0  is the num-
ber of these candidate haplotypes. Then, given   G  , under the as-

sumption of Hardy-Weinberg equilibrium, we derive the ‘haplo-
type-likelihood’ 
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L p H p H

�
� �p HG          (1)

 as the function of unknown parameters ( p ,  H ), where  c  is the num-
ber of genotypes in   G   that have at least one heterozygous locus, and 
 p ( H  i  1 ) and  p ( H  i  2 ) are the population frequencies of haplotypes  H  i  1  
and  H  i  2 , respectively. 

 Note that the constant 2 c  does not affect the estimation of 
( p ,  H ). This point can be shown in the following example: 

  Example 1.  Suppose that   G   = {(0,0,0,1) T , (1,0,0,1) T , (2,2,0,1) T , 
(1,1,2,2) T } and that these genotypes have single count (i.e., multi-
plicity = 1). Then, the candidate haplotype sets of these genotypes 
are  �  1  = { h  1 },  �  2  = { h  2 },  �  3  = { h  1,   h  2 ,  h  3 ,  h  4 },  �  4  = { h  5 ,  h  7 ,  h  3 ,  h  6 }, re-
spectively, where  h  1  = (0,0,0,1) T ,  h  2  = (1,0,0,1) T ,  h  3  = (1,1,0,1) T ,  
h  4  = (0,1,0,1) T ,  h  5  = (1,1,1,1) T ,  h  6  = (1,1,1,0) T , and  h  7  = (1,1,0,0) T . 
So all the different haplotypes { h  1,   h  2 ,  h  3 ,  h  4 ,  h  5 ,  h  6 ,  h  7 } are compat-
ible with   G.   Denote their unknown population frequencies by  p  1,  
 p  2 ,  p  3 ,  p  4 ,  p  5 ,  p  6 ,  p  7 , respectively. Then, there are four ways (or so-
called assignments) to decompose   G   into haplotypes, namely, 

  H  1  = {( h  1 , h  1 ), ( h  2 , h  2 ), ( h  3 , h  1 ) ( h  5 , h  7 )}, 
 H  2  = {( h  1 , h  1 ), ( h  2 , h  2 ), ( h  3 , h  1 ) ( h  3 , h  6 )}, 
  H  3  = {( h  1 , h  1 ), ( h  2 , h  2 ), ( h  2 , h  4 ) ( h  5 , h  7 )},  
H  4  = {( h  1 , h  1 ), ( h  2 , h  2 ), ( h  2 , h  4 ) ( h  3 , h  6 )}, 

 their likelihoods can be expressed as follows: 

  L(G|p,H1) = 4p(h1)2 p(h2)2 p(h1) p(h3) p(h5) p(h7),
L(G|p,H2) = 4p(h1)2 p(h2)2 p(h1) p(h3) p(h3) p(h6),
L(G|p,H3) = 4p(h1)2 p(h2)2 p(h2) p(h4) p(h5) p(h7),
L(G|p,H4) = 4p(h1)2 p(h2)2 p(h2) p(h4) p(h3) p(h6).

   Here, we are mainly interested in the selection of the best among 
all possible ways  H  k , 1  ̂    k   ̂   4 to decompose   G  . The selection 
leads to an estimator of  p  = ( p  1 , ...,  p  7 ). Note that the constant 4 
does not affect the maximization of these haplotype likelihoods 
with respect to ( p ,  H ). 

   EM Approach 
 Note that the genotype likelihood in  [14, 23]  can be viewed as 

the marginal likelihood of  p  in  L (  G   �  p ,  H ), namely 

( )
( )

1 2
1 21 ,

.
i

n

z z
i Z Z

L p p
= ��

� �� �� �� �= 	 
� �� �� �� �

�G p

 Let log( L (  G   �  p ))/(2 n ) denote the log-genotype-likelihood. Within the 
EM approach, we attempt to fi nd  p  that maximizes the above mar-
ginal likelihood. Haplotype pairs can be reconstructed by choosing 
the most probable ones, given the genotype data and the estimated 
population haplotype frequencies  p̂.

       Clark’s Approach 
 Clark  [6]  proposed an algorithm for haplotype assignment, which 

consists of two steps: First, the initial set of the haplotypes is formed 
from the ‘self-resolved’ genotypes (i.e., those genotypes with one 
heterozygous position at the most). Second, a known haplotype is 
chosen in order to see whether any of the unresolved genotypes is 
the composite of a known haplotype and a complementary haplo-
type, and, if this is the case, the known haplotype set is updated by 
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adding the complementary haplotype. The second step is repeated 
until all unresolved genotypes are resolved or the remaining geno-
types cannot be resolved any further. Obviously, the solution de-
pends on the order in which the known haplotypes are chosen in the 
second step. The larger the number of resolved ambiguous geno-
types, i.e. the resolution, is, the better the solution  [13] . 

 In order to fi nd a potential approach to improve this method, 
let us consider the following example: 

  Example 2.  Suppose that we have the same four different geno-
types, (0,0,0,1) T , (1,0,0,1) T , (2,2,0,1) T  and (1,1,2,2) T  as in ‘Example 
1’, but with counts (i.e., multiplicities) 1,  n  2  ( 6 1), 1 and 1, respec-
tively. That is,   G   = {(0,0,0,1) T , (1,0,0,1) T , ..., (1,0,0,1) T , (2,2,0,1) T , 
(1,1,2,2) T }. We adopt the same notations  h  k , 1  ̂    k   ̂   7 as defi ned 
in ‘Example 1’. Then, similar to ‘Example 1’, we have four possible 
ways,  H  1 ,  H  2 ,  H  3 ,  H  4 , to decompose the above described four dif-
ferent genotypes. 

 Using Clark’s approach, we obtain a unique optimal solution, 
 H  2  = {( h  1 , h  1 ), ( h  2 , h  2 ), ( h  3 , h  1 ) ( h  3 , h  6 )}, in which  h  2  has no heterozy-
gous descendant. From there, we take fi rst ( h  1 ,  h  2 ) as the initially 
known haplotype set, which we choose  h  1  from, in order to resolve 
(2,2,0,1) T . Then, the known haplotype set is updated by adding the 
complementary haplotype  h  3 . At last, (1,1,2,2) T  is resolved by  h  3 . 
Note that the count information is completely ignored in this algo-
rithm. This is in contradiction to the rationale of the approach as 
outlined in the ‘Introduction’. For example, if we set  n  2  = 10, the 
haplotype  h  2  already has a much higher frequency than the other 
known haplotype in the initial haplotype set,  h  1 . According to the 
coalescent theory in population genetics, the expected rank of a 
haplotype by age is the same as the rank by its frequency, and old-
er haplotypes will tend to have more mutational connections than 
younger ones  [24] . This implies that (2,2,0,1) T  is more probably 
resolved by  h  2  than by  h  1  according to the rationale of Clark’s meth-
od. However, choosing  h  2 , we fail to resolve all genotypes according 
to Clark’s concept. This motivated us to develop a new procedure 
in the next section, taking into account the frequency informa-
tion. 

   Maximum Haplotype Likelihood Approach 
 In order to make these improvements, we fi rst introduce the 

maximum likelihood (ML) estimator of ( p ,  H ), denoted b y (p̂, Ĥ) 
 by maximizing the haplotype likelihood  L ( G  �  p ,  H ) in (1). On the 
other hand, for each particular assignment  H ,  L ( G  �  p ,  H ) is propor-
tional to 

( )
0

1

,k
k

s
k

k
p H

=
�

 where  H  k , 1  ̂    k   ̂    k  0  are all the different haplotypes in  H , ( s  1 , ...,  s  k  0) 
 

are the numbers of times that they appear in  H , and  p ( H  k ), 1  ̂    
k   ̂    k  0 , are the unknown population frequencies of these haplo-
types. It is obvious that  �  k  s  k  = 2 n . Maximizing  L (  G   �  p ,  H ) with re-
spect to these population frequencies under the constraints  �  k  p  k  = 
1,  p  k   6  0, 1  ̂    k   ̂    m  0 , we have  
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   with p̂ (H)     being the maximum estimator of  p̂            given  H . This leads 
to a defi nition of profi le log-haplotype-likelihood: 
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0
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log .                      
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   Then, it is directly shown that  Ĥ  attains the maximum of the above 
described profi le log-haplotype-likelihood. Note that – l (  G   �  H ) is the 
entropy of  p . Furthermore, for haplotype  Z , the ML estimator of 
its population frequency is the frequency of  Z  in  Ĥ.  We use ‘Ex-
ample 2’ to show the advantage of the MHL over Clark’s method 
in that MHL chooses the haplotypes with higher frequencies in re-
solving the unresolved genotypes. ‘Example 2’ serves moreover to 
elaborate the mathematical details on derivation of the above de-
scribed profi le log-likelihood in a reader-friendly manner. Any ad-
ditional mathematical details will be made available on request to 
J.Zhang@kent.ac.uk. 

  Example 2 (continued).  We have 

  L(G|p,H1) = 4p(h1)2 p(h2)2n2 p(h1) p(h3) p(h5) p(h7),
L(G|p,H2) = 4p(h1)2 p(h2)2n2 p(h1) p(h3) p(h3) p(h6),
L(G|p,H3) = 4p(h1)2 p(h2)2n2 p(h2) p(h4) p(h5) p(h7),
L(G|p,H4) = 4p(h1)2 p(h2)2n2 p(h2) p(h4) p(h3) p(h6).

   To maximize the fi rst likelihood with respect to  p ( h  k ), 1  ̂    k   ̂   7, 
we consider the following Lagrange multiplier: 

( ) ( )( )
7

1
1

, log , 1 ,k
k

l L p� �
=
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 where   �   is the Lagrange coeffi cient. Setting all partial derivatives 
of  l ( p ,   �  ) to be zero and solving the resultant simultaneous equa-
tions, we obtain the estimate  p̂ (H1 ). S ubstituting this estimate into 
log(L( G  �  p ,  H 1)) and dropping out constants, we obtain the following 
profi le log-haplotype likelihood at  H  1 : 
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 Similarly, we can derive the profi le log-haplotype likelihoods at  H  2 , 
 H  3 , and  H  4  as follows: 
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  It is obvious that   if  n  2  = 1, l(G|H2) = max {l(G|Hk):  1  ̂    k   ̂   4}. 
Thus, the MHL assignment (solution) is  H  2  = {( h  1 , h  1 ), ( h  2 , h  2 ), 
( h  3 , h  1 ) ( h  3 , h  6 )}, which also attains the maximum resolution. How-
ever, if  n  2  = 10, then there are two MHL assignments,  H  3  = {( h  1 , h  1 ), 
( h  2 , h  2 ), ( h  2 , h  4 ), ( h  5 , h  7 )} and  H  4  = {( h  1,  h  1 ), ( h  2 , h  2 ), ( h  2 , h  4 ), ( h  6 , h  3 )}. 
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Moreover, the log-genotype-likelihood obtains the same value of 
–0.7083934 through these two solutions. However, both have not 
attained the maximum resolution. This is not surprising because 
the haplotype  h  2  has a greater frequency than  h  1 . Note that EM 
provides the same solution as MHL in this toy example. However, 
MHL does produce a better result than EM for the OPMR1 data 
as shown in the section ‘Results’.

   Empirical Bayesian Approach 
 As pointed out in the ‘Introduction’, the dimension of space of 

the candidate haplotypes can be much larger than the sample size. 
This can cause some problems such as the bias due to over-fi tting. 
Even if the space dimension is lower than the sample size, the MHL 
estimator may not be unique and then the surface of the haplotype 
likelihood could be fl at around the assignments of some genotypes 
(for instance, genotype (1,1,2,2) T  in ‘Example 2’). We called these 
unidentifi ed genotypes orphans. In this situation, we seek the fol-
lowing (empirical) Bayesian approach to the problem by adopting 
the Dirichlet distribution 
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     and 1 as the priors for the ( p ,  H ), where   �   1 , ...,   �   m  0 
 will be deter-

mined by the observed genotypes later. Then the posterior distribu-
tion of ( p ,  H ),  p  ( p ,  H  �   G  ) is proportional to 

  
0

1

1

,k k
m

s
k

k
p �+ �

=
�

     ( s  1 , ...,  s  m  0 
) represent the counts (in  H ) of the haplotypes from the 

candidate haplotype space. The marginal posterior distribution for 
assignment  H ,  p  ( H  �   G  ) is proportional to 
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       where  � (    �    ) is the Gamma function. We take the mode of  p  ( H  �   G  ), 
 H  B  as the estimated haplotype assignment to   G  , which can be writ-
ten as  H  B  = arg max H   f   (H � G) because  p  ( H  �   G  ) is proportional to  
f   (H � G). The details of deriving the above marginal posterior will 
be made available on personal request to J.Zhang@kent.ac.uk. 

 To specify the pseudo-counts   �   k ,  k  = 1, ...,  m  0 , we fi rst follow 
Excoffi er and Slatkin  [14] , assuming that all genotypes are equally 
important and that for each genotype all possible haplotype pairs 
are equally likely. This assumption is based on the fact that the in-
dividuals are identically and independently distributed. Further-
more, we assume that the two haplotypes for each haplotype pair 
are equally important. Then, we take the total weights for different 
haplotypes in the space of all haplotypes compatible to   G   as the 
pseudo-counts. We call this assumption the structural information 
in the genotypes, which leads to the following scheme: 

 We fi rst assign the same weight 2 d  to the observed different 
genotypes, where  d  is a constant with a default value of 1. For each 
of these genotypes, we distribute the weight 2 d  equally to all its 
candidate haplotypes. Then, for  k  = 1, ...,  m  0 , let   �   k  be the summa-
tion of all the weights we put on the  k th haplotype, which appears 
in the  n  candidate haplotype sets,  �  i ,  i =  1, ...,  n . The resulting 
Bayesian estimator is called EB. 

 We shall now use the toy ‘example 2’ again in order to line out 
the mechanism behind EB step by step. 

  Example 2 (continued).  To apply EB, we set  d  = 1 in the above 
scheme and adopt the notations in example 1. Then, each haplotype 
in the candidate haplotype sets,  �  1  = { h  1 } and  �  2  = { h  2 }, receives the 
prior weight of 1, while each haplotype in  �  4  = { h  1 , h  2 , h  3 , h  4 } and
 �  3  = { h  5 , h  7 , h  3 , h  6 } gets the prior weight of 0.5. This gives the em-
pirical prior for all candidate haplotypes  h  k , 1  ̂    k   ̂   7: 

     �   1  = 2.5,   �   2  = 2  n  2  + 0.5,   �   3  = 0.5 + 0.5 = 1, 
  �   4  =   �   5  =   �   6  =   �   7  = 0.5. 

   As pointed out before, there are four possible ways,  H  1 ,  H  2 ,  H  3 , 
 H  4 , to decompose   G  , with the marginal posteriors 
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   Therefore, we obtain the unique empirical Bayes estimate  H  B  =  H  4 , 
if  n  2   6  3;  H  B  =  H  2 , if 1  ̂    n  2   ̂   2. Note that in the case where  n  2  
= 10, both the MHL and EM procedures provide the non-unique 
solutions  H  3  or  H  4 , since both haplotype and genotype likelihoods 
have the same value at  H  3  and  H  4 . The calculation of 
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     showed that the empirical prior frequency of each candidate hap-
lotype has played the key role for differentiation of  H  4  from  H  3 . 
This illustrates why EB could be superior to MHL and EM. Note 
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that PL and Phase result, similarly to Clark’s algorithm, in the so-
lution  H  2 , which is inconsistent with the rationale of the coalescent 
theory, if a coalescent model is assumed for this data set. See also 
the discussion in the paragraph ‘Clark’s Approach’. 

   Evolutionary Tree 
 As pointed out before, the analysis of haplotypes can be useful 

in both population and disease studies. Here we focus on the second 
issue. In order to test for association with complex disease, we es-
timate the frequencies of given haplotypes in cases and controls and 
examine, whether signifi cant differences between cases and con-
trols are given. In practice, the number of different haplotypes is 
often unfeasibly large, resulting in a sparse contingency table so that 
ordinary tests of association like the  �  2  test do not have suffi cient 
power to detect an association with any single haplotype. In order 
to cope with this problem, several methods have been suggested, 
which rely on the classifi cation of haplotypes into evolutionarily 
related ones  [25]  or functionally related (ideally functionally equiv-
alent) ones, based on sequence-structure-function similarity  [2] . In 
the present work, we build such a tree via a modifi ed UPGMA pro-
cedure, where two modifi cations have been made. First, we use an 
information distance instead of the traditional Hemming distance. 
For this purpose, we calculate the pairwise percentage identities for 
 m  0  different haplotypes defi ned in (1), say  q  ij , 1  ̂    i ,  j   ̂    m  0 . Then, 
the information distance between the  i th and  j th haplotypes is de-
fi ned by the Kullback-Leiber distance between the probability vec-
tors ( q  i  1 , ...,  q  im ) and ( q  i  1 , ...,  q  jm ) T  namely 
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     Secondly, we adopt the following weighted average distance for any 
cluster pair,  C  i  and  C  j , namely 
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       Unlike the conventional Hemming distance, here, not only the sim-
ilarities between two haplotypes, but also their similarities to the 
other haplotypes, are used in pairwise comparison. Compared with 
the UPGMA procedure used in  [2] , our modifi cation explores the 
multiplicity information of each genotype, which can effectively 
reduce the potential random fl uctuation in the distance calcula-
tions. 

   Computation 

 For the Bayesian estimator, we note that according to (3), for 
any two assignments  H  and  H *, 
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       That is, it suffi ces to calculate the pseudo-counts of the haplotypes 
in the assignments  H  and  H *, when we compare  H  and  H * in terms 
of their posteriors. This is very similar to the case of maximizing 
the profi le log-haplotype likelihood in (2). Thus, we only need to 
cope with the problem of how to calculate the MHL estimator. This 
can be solved taking the following two steps: First, for a haplotype 
assignment, we calculate the objective function, that is, the haplo-
type likelihood in the MHL case. Then we optimize this function 
with respect to the assignment. 

 We start out with  m  different genotypes  G  1 , ...,  G  m  with   �   1 , ...,   �   m  
ambiguous loci, respectively. As stated before, although the EM 
approach does use the count information, it is limited by the re-
quirement of storing 2 h  –1  variables for each genotype with  h  am-
biguous loci. In contrast, for the MHL and Bayesian approaches, 
we only need to optimize an objective function with  �  

m
i =1    (�   i – 1) 

  variables by re-expressing  l (  G   �  H ) as a function with the 
� 

m
i =1    (�   i – 1)  ambiguous loci as variables. For this purpose, let  z  de-

note a  � 
m
i =1    (�   i – 1)    dimensional variable, in which each component 

takes the value of 0 or 1. From  z , we can construct the haplotype 
pair ( H  1  i ,  H  2  i ) for each  G  i ,  i  = 1, ...,  m  as follows: All resolved posi-
tions of  G  i  are set the same in both  H  1  i  and  H  2  i . The fi rst ambiguous 
position of  G  i  is set 1 and 0 in  H  1  i  and  H  2  i , respectively. The re-
maining ambiguous positions of  G  i  are set  z  k  1  + 1

, ...,  z  k  1  +   �   1  – 1
, respec-

tively, in  H  1  i , where 
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     Ambiguous positions of  G  i  are set in  H  2  i  to the opposite of the entry 
in  H  1  i . This implies that there is a one-to-one correspondence be-
tween  z  and the assignment  H  in (2). Moreover, for each  z , we iden-
tify the corresponding haplotypes and calculate their counts. Then, 
the log-haplotype likelihood in (2) can be written in the form  l (  G   �  z ), 
as a function of  z . Now, the optimal assignment can be obtained by 
maximizing  l (  G   �  z ). Although the number of the operational vari-
ables is, compared to the original optimization problem, signifi -
cantly reduced, the new problem posed remains still a very hard 
optimization problem in a highly dimensional space. In particular, 
the new objective function  l (  G   �  z ) with many subtle local maxima is 
not a convex function. Here, we apply a recently developed MCMC 
algorithm, called the evolutionary Monte Carlo algorithm  [26] , in 
order to solve the problem. 

 The evolutionary Monte Carlo algorithm works by simulating 
a population of Markov chains in parallel, where a different tem-
perature is attached to each chain. The population is supplied with 
mutation, crossover and exchange operators, and the updates are 
accepted or rejected according to the Metropolis rule. More spe-
cifi cally, given the current population  Z  =  z  1 , ...,  z  N } and a temper-
ature ladder  t  = { t  1 , ...,  t  N }, we construct a Boltzmann distribution 
for the population  Z  by 
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     We sample the next population by taking the following two steps: 
(1) Apply the mutation or the crossover operator to  Z  with probabil-
ity  p  m  and 1 –  p  m , respectively; (2) exchange  z  i  with  z  j  for  N  pairs 
( i , j ) with  i  being sampled uniformly on {1, ...,  N } and  j  =  i   8  1 with 
probability  w ( z  j  �  z  i ), where  w ( z  i  +1  �  z  i ) =  w ( z  i  –1  �  z  i ) = 0.5 and  w ( z  2  �  z  1 ) = 
 w ( z  N  –1  �  z  N ) = 1. Note that in the mutation operator, a new vector  y  
is generated by randomly selecting a member, say  z  k  from the pop-
ulation  Z  and by randomly mutating some components of  z  k  from 
0 to 1 or from 1 to 0.  Z  is replaced by the proposed population  Y  = 
{ z  1,  ...,  y , ...,  z  N } with probability min{1, r  m }, where  r  m  is the Metrop-
olis-Hastings ratio,  r  m  =  f  ( Y )/ f  ( Z ). In the crossover operator, a new 
pair of vectors, say  y  i ,  y  j , are two ‘offspring’ of a pair  z  i ,  z  j  ( i  =  j ) se-
lected from  Z  according to a roulette wheel procedure. For details 
see  [26] .  Z  is updated by the proposal population  Y  = { z  1 , ..., 
 y  i , ...,  y  j , ...,  z  N } with probability min{1, r  m }, where is the Metropolis-
Hastings ratio, 
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       and 

  P(( z  i ,    z  j )  �  Z) 	 exp{ l  ( G     �   z  i )/t i  } + exp{ l  ( G     �   z  j ) /tj },
P(( y  i ,    y j  )  �  Y) 	 exp{ l  ( G     �   y  i )/t i  } + exp{ l  ( G     �   y  j ) /t j  },
      

 In the exchange operator, we change the order of two randomly 
selected  z  i  and  z  j  (without changing the order of  t  i  and  t  j ) with prob-
ability min{1, r  e }, where 

  re = exp{ (–l  ( G    �  z  i ) +  l  ( G    �  z  j ))(1/t i – l/  tj )}.
    
 In this paper, we set  t  i  =  t  h  – ( t  h  –  t  l ) i / N ,  i =  1, ...,  N , where  t  h  and 

 t  l  are the highest and lowest temperatures, respectively. As in  [24] , 
we choose  t  h  and  t  l  such that  Var ( l (  G   �  z  i ))( t  h  –  t  l  ) 2  =  O (1) or simply 
by checking whether the overall acceptance rates of mutation, cross-
over and exchange operations are around 0.50. 

 Our experiences show that the EMC algorithm is often effi cient, 
when the number of ambiguous loci in each genotype is less than 
20. However, when a large number of ambiguous loci are involved, 
the idea of segmentation  [17]  is very useful in speeding up the con-
vergence of our EMC algorithm. Like Niu et al.  [17] , we fi rst divide 
each genotype into several blocks, say  m  p  blocks. We run the EMC 
algorithm for each block to fi nd a list of partial haplotype pairs with 
the fi rst  m  0  highest likelihood values. We slightly modify our EMC 
algorithm and apply it to the restricted haplotype space generated 
by all the possible combinations of these partial haplotypes. More 
specifi cally, in this space we need to consider the  n   !   m  p  table ( S  ij ), 
where  S  ij  (subsets of all integers) represents the set of different par-
tial haplotypes for the  j th segment in the  i th genotype. The vectors 
 m  i  = ( m  i  1 , ...,  m  im p  ) with  m  ij  D  S  ij , 1  ̂    i   ̂    n  give an assignment of 
haplotype pairs to the genotypes. We view the segment with the size 
of  S  ij   6  2 as an ambiguous segment. Assume that there are   �   i  am-
biguous segments in the  i th genotype. Then it is similar to the case 
of the unrestricted haplotype space such that  L (  G   �  H ) can be rewrit-
ten as a function of   z * = ( z k*  ),    where  z * stands for the  �    �   i  ambigu-
ous segments and  z k* belongs to some integer subset  S k*. For the new 
objective function, we only need to change the mutation operator 
in the EMC algorithm by randomly mutating some components of 
 z *, say  z k*, from the current value to   z k* + 1 or  z k* – 1. We replace  
 z k* + 1 by the left boundary of  S k*, when it exceeds the right bound-

ary of  S k*. Similarly, when  z k* – 1 exceeds the left boundary of  S k*, 
we replace it by the right boundary. This strategy can be repeat-
edly used until the size of the restricted haplotype space becomes 
moderate. The resulting algorithm is called block-wise EMC algo-
rithm.  

   Results 

 Simulation Studies 
  Comparison of Procedures Operating under the As-

sumption of Linkage between SNPs.  First, the perfor-
mances of the proposed procedures were examined under 
the assumption of linkage between SNPs. Following Ste-
phens et al.  [20]  and using a coalescent-based program 
kindly provided by R. Hudson, we simulated 100 inde-
pendent data sets, each containing 100 haplotypes, for 
( 
 , R ) = (4,0),(4,4), and (4,40), respectively. Here   
   = 4N e   �  , 
 R  = 4 N  e  r ,  N  e  was the effective population size,  �  the total 
per-generation mutation rate across the region sequenced 
and  r  the length (in Morgans) of the region sequenced. 
The lengths of these haplotypes varied from 10 to 40 and 
depended on ( 
 , R ). For each data set, the haplotypes were 
randomly paired to form 50 genotypes. Then we applied 
the MHL, EB, and PL methods, respectively, to recon-
struct these haplotypes from the resulting genotypes in 
which phase information was ignored. In our algorithm, 
we set the population size  N  = 20, the highest and lowest 
temperatures ( t  h , t  l ) = (0.02, 0.001) in MHL, and ( t  h , t  l ) = 
(0.0, 0.003) in EB, and the mutation and crossover pa-
rameters,  p  m  = 0.2,  p  0  = 0.004,  p  1  = 0.008 and  p  2  = 0.01. 
We set the round parameter equal to 20 in PL as sug-
gested by Niu et al.  [17] . The performance of each meth-
od on each data set was measured by the error rate, being 
the proportion of ambiguous genotypes, the haplotypes 
of which were incorrectly assigned. For ( 
 , R ) = (4,0), (4,4), 
(4,40), we compared the Clark, EM, EB, MHL, Phase and 
PL methods in terms of estimated error rates in substan-
tial numbers of simulated data sets (see  table 1 ). Although 
the results of the EM, Clark, and Phase methods in  table 
1  were obtained from different data sets, the average be-
haviour of these methods should not change signifi cantly, 
because these data were generated from the above coales-
cent model with the same setting of ( 
 , R ). This means that 
the results are comparable with those of the MHL, EB, 
and PL methods.  Table 1  demonstrates that Phase has 
the lowest error rate, while PL and EB performed simi-
larly and rank second. More specifi cally, the fi rst three 
plots in  fi gure 1  suggest that, while performing slightly 
worse than PL, EB in fact has a better performance than 
PL when the recombination rate  R  is very large, and 
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therefore the loci weakly linked.  Table 1  also shows that 
MHL has almost the same error rate as EM, whereas, in 
contrast to EM, MHL can handle genotypes with a large 
number of ambiguous loci in these simulated data sets. 
Although the Clark method can cope with genotypes with 
large numbers of ambiguous loci, too, it has a consider-
ably higher error rate than the MHL method developed 
by us. 

  Comparison of Procedures Operating under the As-
sumption of Weak Linkage or No Linkage between SNPs.  
We partitioned each genotype in the previously simulated 
100 datasets into two blocks with approximately equal 
lengths, 
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     where  i =  1, ..., 100. A random sample {G*
i,  i  = 1,2, . . . ,30} 

      was then formed by pairing G (1 i,1
) ,..., G (1i,50

)  with G (2i+50
)  ,1 ,..., 

G (2i+50
)  ,50)            for  i =  1, ..., 30, where the underlying haplotype 

pairs were  (H (1i,k,
)
1, H (1i,k,

)
2)      for  G (1i,k

),        1  ̂    k   ̂   50 and 
(H (2i+50

)  ,k,1, H (2i+50
)  ,k,2)    for  G (2i+50

)  ,k,      1  ̂    k   ̂   50. Here, without 
loss of generality, the underlying haplotype blocks were 
assumed to have parental connections:  H (1i,k,

)
1      was assumed 

being coupled with  H (2i+50
)  ,k,1      for 1  ̂    i   ̂   30, 1  ̂    k   ̂   50. 

Note that these genotypes consist of two independent 
parts, which, however, have the same population param-
eters (  
  , R ). We phased  {G*

i,  i  = 1,2, . . . ,30}         directly by 
using EB, MHL and PL .  The differences between result-
ing error rates of the three methods are represented by the 
last three plots in  fi gure 1 . This fi gure clearly demonstrates 
that EB performs better than PL in general. In particular, 
reductions of error rate up to 50% in the case of unlinked 
or only weakly linked SNPs can be obtained.    

   OPRM1 Data Set 
 The OPRM1 data set used included 172 African-

American cases and controls, 25 of the identifi ed variants 
were non-unique  [2]  .  We fi rst applied the MHL approach 
to this data set, making  M  = 10 6  iterations, a long run to 
obtain suffi cient samples for inferring the maximum val-
ue of the log-haplotype likelihood  l (  G   �  z ). 46 different hap-
lotypes, numbered 1 to 46, were inferred. These haplo-
types were either consistent with or slightly different from 
the 52 different haplotypes   predicted by Hoehe et al.  [2]  
by use of the EM method. In a second step, an evolution-
ary tree was constructed from these haplotypes by use of 
the modifi ed UPGMA   described in ‘Methods’. 

 Based on this tree, the inferred haplotypes could be 
classifi ed into two groups. Group one was almost the 
same as the group found associated with substance-de-
pendence by Hoehe et al.  [2]  by means of similarity clus-
tering: it included 13 haplotypes, 11 of which were com-
mon, signifi cantly more frequent in the substance depen-
dent individuals and shared the same pattern of sequence 
variants characterized by a unique combination of 5 poly-
morphic sites  [2] . These 11 haplotypes occurred in 22 
genotypes. Notably, the above described risk pattern has 
been experimentally validated by Hoehe et al.  [2] . Thus, 
the phases of this subset of the SNPs are known. 

 EB yielded altogether 41 different haplotypes; Phase 
with the settings (burn-in, iteration) = (10 4 ,10 4 ) and with 
(burn-in, iteration) = (10 4 ,10 5 ), yielded 35 and 36 haplo-
types, respectively; PL with two settings, round = 20 and 
round = 1000, resulted in 39 and 37 haplotypes, respec-
tively. Although these seven sets of haplotypes may be 
quite different with respect to size, they do contain, how-
ever, a similar subset, which features the above described 
risk pattern. 

 It is obvious that both our solutions and that of Hoehe 
et al.  [2]  attain maximum resolution. In fact, Clark’s 
method identifi es a solution, which can be divided into 
two groups. But none of these groups carried the above 
described risk pattern. The relatively weaker performance 

Table 1. The mean error rates (ME) and standard errors (SE) of the 
different methods

(
,R) MHL
ME

(SE)

EM
ME

(SE)

Clark
ME

(SE)

Phase
ME

(SE)

PL
ME

(SE)

EB1
ME

(SE)

(4,0) (0.170
(0.023)

(0.167
(0.028)

(0.343
(0.030)

(0.084
(0.028)

(0.088
(0.012)

(0.103
(0.012)

(4,4) (0.166
(0.020)

(0.167
(0.020)

(0.343
(0.030)

(0.064
(0.011)

(0.078
(0.006)

(0.086
(0.007)

(4,40) (0.387
(0.023)

(0.390
(0.028)

(0.2000
(0.018)

(0.270
(0.014)

(0.264
(0.014)

Both ME and SE represent the sample mean and standard error 
of the error rate, which is the proportion of ambiguous genotypes, 
haplotypes of which have been incorrectly assigned. For each com-
bination of parameters subjected to analyses, the values of ME (SE) 
for the EB, MHL and PL methods have been derived from the 100 
simulated data sets. The values of ME (SE) for the EM, Clark, and 
Phase methods, kindly provided by Stephens et al. [20] have been 
derived from 90 to 100 simulated data sets using the same coales-
cent model described in the Results section. The EM method re-
quires a pre-treatment of the data sets, that is, discarding those data 
sets for which the total number of possible haplotypes was 1 105 

(the limit of Stephens’ implementation of the EM algorithm). Ste-
phens et al. had not provided the result for the Clark method when 
(
,R) = (4,40).
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of Clark’s method in this example is due to the fact that 
it has not taken into consideration the count informa-
tion. 

 As a local optimisation algorithm, EM can lead to a 
local maximum of genotype likelihood. To demonstrate 
this for the OPRM1 data set, we report the log-haplotype 

likelihood and log-genotype likelihood values of the solu-
tions derived from the fi ve different haplotyping methods 
in  table 2 . These calculations show that among the fi ve 
procedures, the MHL provides the maximum value of the 
genotype likelihood. This implies that the EM algorithm 
fails to give a global maximum of its objective function. 
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  Fig. 1.  The differences in error rates   �   A  =  E  A  –  E  PL  are plotted for each data set; and denote the error rates gener-
ated by method A (either EB or MHL) and the PL method, respectively. The lower the value, the better the per-
formance of method A compared to PL. The dotted lines represent the results obtained by application of EB (  �   EB ), 
the lines marked by triangles represent the results obtained by application of MHL (  �   MHL ). The fi rst three plots 
refer to examples where the SNPs are linked. The remaining three plots represent examples where the SNPs result 
from two independent genetic regions, show the same mutation and recombination rates, however. 
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In contrast, the evolutionary Markov chain Monte Carlo 
used in MHL tends to provide a solution for the problem 
of maximizing the genotype likelihood, which is closer to 
unknown globally optimal solutions. Therefore the appli-
cation of the EM algorithm by Hoehe et al.  [2]  seems less 
favourable than the use of MHL. 

   ACE Data Set 
 This data set is composed of 11 genotypes, each with 

52 non-unique varying sites  [22] . The 11 genotypes de-
fi ned by these bi-allelic loci were resolved into combina-
tions of 13 distinct haplotypes, which had been deter-
mined by application of molecular genetic techniques 
 [22] :  G  1  = ( H  1 ,  H  6 ),  G  2  = ( H  1 ,  H  1 ),  G  3  = ( H  6 ,  H  7 ),  G  4  = 
( H  6 ,  H  7 ),  G  5  = ( H  6 ,  H  9 ),  G  6  = ( H  1 ,  H  7 ),  G  7  = ( H  2 ,  H  3 ),  
G  8  = ( H  4 ,  H  5 ),  G  9  = ( H  10 ,  H  11 ),  G  10  = ( H  1 ,  H  8 ), and  
G  11  = ( H  12 ,  H  13 ), where  G  i , 1  ̂    i   ̂   11 are the genotypes 
and  H  j , 1  ̂    j   ̂   13 the haplotypes. The log-haplotype 
likelihood of this assignment is –2.323397. This assign-
ment could only partially be recovered by the Clark meth-
od, because, under this assignment, there were three or-
phan genotypes,  G  8 ,  G  9 ,  G  11 . Moreover, the haplotype 
likelihood reached the same value when we changed the 
true assignment by assigning any compatible haplotype 
pairs to these orphans. Where we randomly assigned com-
patible haplotype pairs to these orphans, the average 
number of erroneous phase calls was about 2.7, when run-
ning the Clark algorithm. 

 In order to apply MHL, we divided the genotype table 
into 5 blocks, the fi rst four with the same width 10 and 
the last one with the width 12. In our EMC algorithm, we 
empirically set the population size  N  = 20, the highest and 
lowest temperatures  t  h  = 0.5 and  t  l  = 0.01, and the muta-
tion and crossover parameters  p  m  = 0.2,  p  0  = 0.004,  p  1  = 
0.008 and  p  2  = 0.01. Then, we performed such a two-stage 

block-wise EMC algorithm 100 times. The average num-
ber of erroneous phase calls was 2.4, with a standard error 
of 0.19. Applying this procedure,  G  1 , ...,  G  7 ,  G  10  were al-
ways correctly resolved. That is, all the erroneous phase 
calls resulted from  G  8 ,  G  9 , and  G  11 . 

 Note that our empirical Bayesian method contains two 
components: haplotype likelihood and empirical prior. 
We have chosen to use an ad-hoc approach in order to 
demonstrate why our EB improved the accuracy of phase 
prediction. Naturally, we could also apply EB directly. 
Then, however, we would not be able to extract the spe-
cifi c mechanism underlying the described improvement. 
The ad-hoc approach involved two steps: First, dividing 
the genotype table into two blocks, one with width 30 and 
the other with width 22, and performing a two-stage MHL 
analysis, in which all the genotypes were resolved except 
for the orphan genotypes  G  8 ,  G  9  and  G  11 . In the second 
step, the haplotypes for these orphan genotypes were re-
constructed using the empirical prior. 

 Note that the surface of the haplotype likelihood 
around the assignments for these orphan genotypes is fl at. 
Therefore, the haplotype likelihood failed to gather infor-
mation for resolving these orphan genotypes unambigu-
ously. In this case, the following empirical structural in-
formation on these genotypes could be useful: unlike  G  9  
the segments of  G  8  and  G  11  in two blocks are not orphans 
according to the haplotype likelihood. To demonstrate 
this, let (H (111,

)
1, H (211,

)
1)  and (H (111,

)
2, H (211,

)
2) be the two partial 

haplotype pairs assigned by MHL to the two segments of 
 G  11 . Assembling these partial haplotypes, we obtained 
two options for assigning haplotype pairs to  G  11 : (H (111,

)
1 � 

H (111,
)
2, HC1) and (H (111,

)
1 � H (211,

)
2, HC2), where � stands for 

the concatenating operator, and  H  C  1  and  H  C  2  denote the 
haplotypes complementary to H (111,

)
1 � H (111,

)
2 and H (111,

)
1 � 

H (211,
)
2, respectively. According to the scheme for specify-

ing the prior in the Methods, we obtained the pseudo-
counts of H (111,

)
1 � H (111,

)
2,   H  C  1 ,  H (111,

)
1 � H (211,

)
2,      and  H  C  2 , 

which were   �   1  =  d   !  (1/2 4  + 1/2 36  + 1/2 35 ),   �   2  =  d /2 4 ,
  �   3  =  d /2 4 , and   �   4  =  d /2 4 , respectively. Consider any two 
assignments  H  1  and  H  2  that are different only on  G  11 , 
which  H  1  assigns  (H (111,

)
1 � H (111,

)
2,  H  C  1 )      to, whereas  H  2  as-

signs (H (111,
)
1 � H (211,

)
2,  H  C  2 ).       Invoking Equation (3), we 

have 
    

� �
� �

� � � � � �
� � � � � �

2
1 1 2 2 32 30

2
2 2 1 2

1 1
1 1/2 1/2 1,

1

p G G G
p G G G

� � �
� � �

� �
� � � � �

�

H
H

G
G

         as being independent of the constant  d . We prefer to as-
sign  (H (111,

)
1 � H (111,

)
2, HC1)          to  G  11 . Note that our Bayesian 

approach does not help us to resolve  G  8 , because the pseu-

Table 2. The performances of the different methods (analysis of the 
OPRM1 data set)

Methods MHL EM Phase PL EB1

HL –2.518 –2.547 –2.518 –2.599 –2.553
GL –2.512 –2.532 –2.590 –2.562 –2.543
Haplotypes 46 52 36 37 41

Phase is with burn-in = 10000, iteration = 100000; MHL has 
been combined with the block-wise EMC; EM is based on the im-
plementation described by Hoehe et al. [2]; PL is with round = 
1000. HL represents the log-haplotype-likelihood, while GL repre-
sents the log-genotype-likelihood.



 Zhang  /Vingron  /Hoehe  

 

 Hum Hered 2005;59:144–156 154

docounts of the two options mentioned in the last para-
graph are the same. In summary, combination of the hap-
lotype likelihood with the empirical Bayesian prior could 
resolve all genotypes in the ACE data set with a number 
of erroneous phase calls being less than or equal to 2. Note 
that the average numbers of erroneous phase calls by PL 
and Phase were shown by Niu et al.  [17]  to be 2.09 and 
3.96 with standard errors of 0.033 and 0.044, respective-
ly. EM is excluded from the comparison because it is lim-
ited with regard to the number of heterozygous loci allow-
able for each genotype  [17] . Thus, the combination of
our MHL and Bayesian approaches seems to perform 
slightly better than the other methods at least in this ex-
ample. 

   Discussion 

 Reconstructing haplotypes from genotypes is an essen-
tial fi rst step in the analysis of genetic variation in relation 
to gene function and phenotype. It will represent a par-
ticular challenge, where multiple DNA polymorphisms 
have been identifi ed as the result of high-resolution rese-
quencing studies in order to assess complete variation in 
genes, or genomic regions of interest, in defi ned popula-
tions  [1, 4] . Thus, powerful methods suitable for applica-
tion to various scenarios regarding the nature, pattern 
and organization of genetic variation (in relation to dis-
ease) will be required. Whereas scenarios characterized 
by strongly linked SNPs have been intensively covered in 
the fi eld, scenarios where SNPs are weakly linked or phys-
ically unlinked, respectively, seem yet to require more 
elaboration. In our work, we have in particular focused 
on the second scenario, both evaluating the performanc-
es of existing methods in this context and developing ap-
proaches to cope with such a scenario in generating better 
results. This may be of value for the analysis of so-called 
‘gene-based’, or candidate gene-related, haplotype struc-
tures, where we cannot necessarily rely on the existence 
of linkage disequilibrium between given SNPs as a pre-
condition  [1] , in contrast to the decomposition into hap-
lotype block structures  [1] . This may also, less obvious at 
fi rst sight, apply to the analysis of gene-gene interactions, 
where SNPs do not reside on the same chromosome, i.e. 
are evidently physically unlinked, do interact, however, 
with each other to confer genetic risk to complex disease. 
In order to elaborate on this latter issue, let us for instance 
assume two unphased genotype blocks, A and B, formed 
by two physically unlinked chromosomal segments. Let 
us further assume that A has two bi-allelic loci with alleles 

{  a   1 ,  A  1 } and {  a   2 ,  A  2 }, and B two bi-allelic loci with alleles 
{ b  1 ,  B  1 } and { b  2 ,  B  2 }, respectively. If we phase these two 
blocks separately, then we obtain unrelated decomposi-
tions of the two blocks only, for example, (  a   1  A  2 ,  A  1a      2 ) and 
( b  1  b  2 ,  B  1  B  2 ), not knowing whether   a   1  A  2  may be coupled 
with  b  1  b  2  or  B  1  B  2 . If the underlying haplotype   a   1  A  2  does 
in fact interact with  b  1  b  2 , then these haplotypes should 
co-occur more frequently than other combinations in the 
haplotype space. However, testing such an interaction us-
ing unphased genotypes is diffi cult, particularly when sev-
eral SNPs are weakly linked and when we do not know, 
how many blocks may exist in the data. For this reason, 
it does not seem very practical to identify the unknown 
blocks fi rst and then phase these blocks separately. A rea-
sonable solution seems to combine all SNPs and phase 
them as a total. Of course, we are at the risk of loss of ef-
fi ciency, when several independent sites in the genotypic 
data do exist. Therefore, it is important to evaluate the 
robustness of both existing and proposed   procedures for 
such a scenario. 

 In this work, we have shown that the robustness of one 
of the best currently existing haplotyping methods, PL, 
in fact does dissolve under such a scenario. In order to 
overcome this limitation, we have developed an empiri-
cal Bayesian procedure (EB) that can make a better per-
formance under these conditions. This should also apply 
to EB’s performance relative to Phase specifi cally under 
the condition of an invalid coalescence assumption, ex-
trapolating from the results presented by Niu et al.  [17] . 
We have elaborated the haplotype-likelihood framework 
in relation to existing methods in the literature. Conse-
quently, we have proposed a maximum haplotype-likeli-
hood procedure for haplotype reconstruction, termed 
MHL. 

 The MHL and Clark’s methods are related in the sense 
that the MHL estimator can be shown to be consistent 
with that derived from Clark’s method under the condi-
tion that all genotypes have a single count (not shown). 
According to our yet limited experiences, this could hold 
true even for the more general condition, where all the 
genotypes can be resolved completely and an unambigu-
ous solution derived by Clark’s method. 

 The procedures proposed in this paper have two ad-
vantages over Clark’s and the EM methods: (1) Unlike 
the Clark method, we take both the multiple count infor-
mation and certain structural information on genotypes 
into account by introduction of the haplotype-likelihood 
and by the specifi cation of an empirical prior. (2) In con-
trast to the EM method but similar to Phase and PL, the 
proposed procedures allow reconstruction of haplotypes 
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from ambiguous genotypes constituted by many hetero-
zygous sites by application of the block-wise evolutionary 
Monte Carlo algorithm. On the other hand, for ambigu-
ous genotypes comprised of a lower number of heterozy-
gous sites, MHL has almost the same mean error rates as 
EM under a coalescent model. Furthermore, we have 
shown that among the existing methods, Phase is the best 
one when the population conforms to the coalescence as-
sumption, whereas PL and EB perform very similarly un-
der these conditions. EB is, in contrast, more accurate 
than PL when some SNPs are unlinked or weakly linked. 
The EMC algorithm can improve the EM algorithm and 
Gibbs sampling because it combines the features of three 
different algorithms: the simulated annealing, genetic al-
gorithm, and Metropolis algorithms. These three algo-
rithms are designed to address the problem of approxi-
mately global optimization. Compared with the objective 
function used in Phase, ours are simple but still powerful. 
Thus, our approach might also provide a novel basis for 
haplotype block decomposition using unphased genotype 
data, where the coalescent, model-based method is not 
easily extended. 

 At last, we would like to point out that our algorithms 
have also been generalized to allow handling missing gen-
otype data in some individuals at some loci. Like Niu et 
al.  [17] , we have considered three types of missing data: 
both alleles are missing; only the allele 0 is missing, and 
only the allele 1 is missing (details available on request). 
Although in this paper we have discussed the haplotypes 
consisting of bi-allelic loci only, both our methods and 
algorithms can easily be modifi ed in order to cope with 
other types of loci, such as for instance microsatellite loci. 
Like Rohde and Fuerst  [18] , we are also able to include 
nuclear family information in our procedures. 

 To summarize, the main advantage of the proposed 
procedure (EB) is that it allows analysis of weakly linked 
or physically unlinked SNPs, respectively, and in this, 
improved analysis of certain candidate gene data sets or  
 of SNP interactions that may confer genetic risk to com-
plex disease. Extension and solidifi cation of performance 
results in this additional aspect would require extensive, 
physically validated data sets from the same sets of indi-
viduals for a number of loci resolved at high depth, how-
ever. Such data sets are hardly accessible at present. Thus, 
the ultimate standard that will allow informed, sensible 
statistical comparisons of different methods is not yet 
given. Because the underlying model can greatly affect 
the conclusions drawn from different  in silico  haplotyp-
ing methods in a simulation study  [17] , it seems at this 
point preferable to apply all currently available methods. 

This will help to avoid the possible bias introduced by 
any single method when we tackle real data, as has been 
illustrated at the examples of some concrete genotypic 
data sets. 
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