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2.2
Computer-Aided Design of Solid Catalysts

Martin Holena and Manfred Baerns*

221
Introduction

Our understanding of heterogeneous catalysis has in-
creased significantly during the past 10 years, due mainly

* Corresponding author.

to the application of in-situ spectroscopies to surface and
bulk processes, and to advanced computational methods
based on ab-initio quantum chemistry techniques. The
results of such investigations with regards to catalysis
allow the identification not only of interactions of gaseous
or liquid reactants with the solid catalytic surface, but
also of changes in the electronic and structural proper-
ties of the solid catalytic material. Moreover, elementary
catalytic reaction steps can be frequently discovered. The
information derived from these processes provides essen-
tial indications for designing a catalyst based on certain
materials of catalytic impact. Such a procedure often does
not lead to an optimum catalyst, however, and this is
applicable to both qualitative and quantitative composi-
tions, as well as to the method of preparation. Against
this background, empirical methods — which make use of
fundamental knowledge — are still required in the quest
for an optimal catalyst.

In this chapter we present a brief introductory overview
of the results of the theoretical methods mentioned
above, but no further mention is made of the various
spectroscopic techniques described elsewhere in this
handbook [1]. The main emphasis of this chapter is
placed on a combination of fundamental and empirical
knowledge in preparing new catalysts, as well as on the
design of catalytic experiments and the assessment of
experimental data. A careful evaluation of the catalytic
results by suitable data mining procedures may add
to our fundamental understanding of catalysis [2, 3].
Combinatorial methodologies were introduced into the
development of solid catalysts during the late 1990, at
a time when they were already well known from the
viewpoints of organic synthesis and enzymatic catalysis.
One major advantage of the combinatorial techniques
is their ability to cover of a wide range of variables
during the development process; these variables include
mostly the composition of the catalytic material, as well
as other properties of the solid material, and finally also
the reaction conditions to which the catalytic material
is exposed (see Section 2.2.3). An extensive overview of
related subjects, notably with respect to organic chemistry,
has been provided elsewhere [4]. So-called expert systems,
which have been described earlier [4-7], have not proven
to be especially successful in heterogeneous catalysis;
hence, they are not considered within this chapter.

2.2.2
Theoretical Methods

In an earlier review, the use of ab-initio molecular-
orbital calculation had already been discussed for the
elucidation of catalytic processes; in this way, the
method offers a potential for predicting the catalytic




properties of solid materials and hence, in the widest
sense, for designing catalysts [8]. Likewise, it was pointed
out later [9] that an understanding of the catalytic
and adsorptive properties of solid materials at atomic
and electronic levels is essential in the design of
novel catalysts. In this way, computer simulations
can significantly contribute to a rational interpretation
of experimental results, and they can also suggest
modifications of new catalytic materials. In 2004, Motoki
and Shiga [10] developed a reaction simulator, which
is an intermolecular interaction analyzer based on the
theories of paired interacting orbitals and localized
frontier orbitals. For specific situations, activities and
selectivities, as well as molecular weight in olefin
polymerization, can be predicted. By using density
functional theory (DFT) calculations, various catalytic
performances became predictable; for example, the
difference in dehydrogenation activity for cyclohexane
by Pt and Ni [11], as well as the activation of C-H, C-C
and C-I bonds by Pd and cis-Pd(CO),1; [12].

A first-principles method was illustrated by Linic
et al. [13] for the identification of bimetallic alloy catalysts.
The elementary reaction steps for ethylene epoxidation
were derived from surface science experiments, and
DFT calculations used for the catalytic chemistry. This
molecular-level mechanistic information was used as an
input in computational screening of potential bimetallic
alloy catalysts that might offer greater selectivity to
ethylene oxide than the traditional monometallic silver
catalyst. In this way, a formulation of a novel Cu/Ag alloy
leading to improved selectivity was found which was later
verified experimentally. The main point of discussion
with regards to this example was the confirmation of
the great value of first-principles studies in catalyst
design.

The above-described methods are often referred to as
combinatorial computational chemistry approach, a term in-
troduced by Kubo et al. [14]. Originally, the term had been
applied mainly to the synthesis of organic compounds,
but was then extended to include drugs and enzyme catal-
ysis; today, it is successfully applied also to inorganic
chemistry and hence, to the preparation of solid cata-
lysts. Examples of this approach include the design of
metal catalysts for methanol synthesis [15] and deNO,
chemistry [16].

The selected studies mentioned above indicate that
significant progress has been made in computational
chemistry, and these advances are progressively coming
to bear on catalyst design. In the past, computational
chemistry usually served the purpose of elucidating
the physico-chemical properties of materials, which
then further contributed to their improved design by
computation. Unfortunately, first-principle quantum-
chemical calculations, which represent the most powerful
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approach, suffered from certain disadvantages, the main
problem being that as the quality of the computational
results depends largely on the assumed cluster size of the
catalytic material, significant amounts of computer time
are needed for large clusters. A variety of simplifications
have been introduced, such as the neglect of long-
range electrostatic interactions. More recently, Selvam
etal. [17] dealt with the implications related to materials
development and introduced a new approach, termed
the tight-binding quantum chemical molecular dynamics
method, whereby the computing time was reduced by a
factor of 5000. This method can obviously be applied
not only to single-site but also to nano-scale catalysis.
In their report, the authors described comprehensively
the design of materials and an understanding of its
performance for a variety of applications, of which
only those related to catalysis are mentioned. These
include chemical reaction dynamics over organometallic
catalysts, electronic states of supported metal catalysts,
interface characteristics of precious metals-on-zirconia
catalysts, chemical reaction dynamics on a Ziegler—Natta
catalyst, adsorption and electron transfer dynamics on
a metal surface, and chemical reaction dynamics of
materials-synthesis processes. The effective simulation
of a number of physical and chemical systems at
reaction temperatures is of special importance, as
such simulations cannot yet be studied by static first-
principles calculations and classical molecular dynamics
simulations.

In similar manner to the studies described above,
a concept of micro-kinetic analysis of heterogeneous
catalysis was pioneered by Stoltze and Norskov [18, 19],
as well as by Dumesic etal. [20]. For the kinetics of
the elementary reaction steps the kinetic parameters
were derived by computational studies. Hereby, the
catalytic performance, especially of catalytic metal sites,
could be predicted, and this then served as a basis
for selecting catalytic elements for the reaction under
consideration.

In spite of all the recent progress that has been made
in computational chemistry coupled with combinatorial
approaches, there is an ongoing demand for experimental
studies related to catalyst design. By introducing the
concept of combinatorics to computational chemistry,
a theoretical high-throughput screening of catalysts has
become feasible, as long as sufficient knowledge can
be made available for carrying out the computational
chemistry calculations. Unfortunately, at present this is
still not the case in many situations, and consequently
a variety of empirical combinatorial approaches have
been established. However, these require the rational
design of experiments using all available empirical
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68 22 Computer-Aided Design of Solid Catalysts

and fundamental knowledge, a suitable analysis of the
catalytic data obtained from these experiments, and
their subsequent use in the design of new experiments
to develop improvements in catalytic performance.
Moreover, the data analysis comprises extensive data
mining in order to extract all available empirical and
fundamental knowledge. No mention is made here
of the experimental details of any high-throughput
experimentation based on the design of experiments, but
the interested reader is referred to extensive reference
material available on the subject[21, 22] (see also
Chapter 9.3).

223
Rational Methods for the Design of Catalytic Experiments

Many properties and conditions influence the ability of a
material to serve as the catalyst for a particular reaction.
First, the composition of the material is important, it being
defined by the present chemical elements or compounds,
in addition to their respective masses or molar fractions
within the material. In addition, the material’s structure
and texture, both of which are mainly determined by
the preparation method used, play important roles. The
composition and structure of the bulk and the surface are
interconnected by further properties of the material, such
as acidity, basicity, redox potential, electronic conductivity;
all such properties are normally referred to as descriptors
(cf.[23, 24]). The catalytic performance of a material
depends not only on the material itself, but also on
the conditions to which it is exposed in the reaction,
at a particular temperature, at partial pressures of the
reactants, total pressure, and the space velocity of the
feed. Taken together, the descriptors of the material and
the reaction conditions are termed the input variables in
the sequence.

In a catalytic experiment, a certain number of catalytic
materials are tested, and these are chosen from a very
comprehensive set of potential materials. The number
of materials to be examined is affected by the following
aspects:

e The ranges of the individual input variables.

e Whether a particular input variable can have only par-
ticular prespecified values, or whether it can assume any
value within the corresponding range, restricted only
through the finite discernibility due to experimental
error.

o The experimental error of a particular input variable.
As there always exists some experimental error for a
continuous variable, the number of discernible values
within its range is always finite, but may be quite high.
For example, a range of fractions of 0 to 20% and an

experimental error of 0.1% will entail 201 discernible
values.

e Constraints on input variables, such as the constraint
that the fractions of all components should sum up to
100%, or constraints on the number of non-zero
fractions. The latter actually express constraints on
the number of components in a catalytic material,
for example, two to three active components plus one
dopant.

2.2.3.1 The Statistical Design of Experiments

The task of finding, for a given set of potential catalytic
materials, a subset of representatives which convey the
required information about the whole set has, for almosta
century, been addressed by methods of statistical design of
experiments (DOE). A very simple situation called factorial
design occurs if the required information represents the
impact of any combination of possible values of some
n independent factors. If for i =1, ..., n the i-th factor
can assume f; different values, the factorial design needs
fi ... fu representatives. As an example, let a catalytic
material have a fixed fraction of support chosen from
two possibilities, active components chosen from three
possibilities, among which one is always present, whereas
each of the remaining two either is absent or its ratio to
the first one can assume one of three given values, and
can have one dopant which either is absent or assumes
a given value. Then n =4 independent factors exist,

f;upport =2, find active component =ﬁrd active component = 4,
fdopant = 2, and the factorial design needs:

f;upport ‘ﬁnd active component 'f3rd active component

X fiopant = 64 representatives.

On the other hand, assuming that there is no interaction
between different factors and the only information
required is about the impact of any single factor in
isolation, one needs only n+ 1 representatives. In the
above example,n 4+ 1 = 5.

In both of the above methods, the number of
representatives can vary from experiment to experiment,
depending on the number of independent factors, and
in factorial design also on the number of their possible
values. Computer-aided statistical DOE methods have been
developed only since the 1970s, and these are used to
solve more ambitious and computationally much more
demanding tasks: the main target here is to choose,
for any given set of possible materials, a representative
subset of particular size such that the amount of required
information about the whole set is maximal among all subsets
of that size.

Among the computer-aided DOE methods available,
the D-optimal design is the most frequently used. This




relies on a model assuming a dependent variable, such
as yield, conversion or selectivity, which depends linearly
on input variables, and interactions between them. The
information maximized in the D-optimal design is an
information measure called the Fisher information for
that model; more precisely, it is the determinant of the
matrix of that information measure (actually, the term
“D-optimal” relates to the fact that the determinant is
maximized). Moreover, from statistics it is known that
maximizing this information is equivalent to minimizing
the volume of the confidence ellipsoid for parameter
estimates in the underlying linear model. To illustrate
these principles again by an example, a catalytic material
is considered that consists of a support material and
four active components. For this material, it is assumed
that the yield y; of the reaction catalyzed with the
i-th catalytic material from the representative subset
depends on the fraction x;o of the support and the
fractions x;0, %1, %i,2, %3 of the active components
1, 2, and 3 in this material. The fraction x;4 of the
active component 4 is obtained from the condition
Xi0+ %i1+ %2 + % 3 + %, 4 = 1. Moreover, the yield y;
is also assumed to depend on interactions between any
two of the fractions x; 1, x; 2, %3, and on interactions
between x; o and any pair of those three active-component
fractions. Rewritten in a formula, these assumptions
read:

Y= onj‘() = lei,l = Bzxj,z o ﬁzxij + Bmx,-,ox,;l
+ By xi 0%i,2 + Bozxi 0xi 3 + Byy%i 1% 2
+ Ry3x; 1%i,3 + B3 2%i 3 + Byqo%i 0%i,1%i2

+ Bo13%i,0%i,1%i,3 + Bz Xi 0%i,2%i 3

where R, R, ..., 8,3 are the unknown model param-
eters. The information, which is maximized in the
D-optimal design, is then the determinant det(R’R), with
R denoting the 13-column matrix with rows

(xi,O, Xi 1, Xi,2, Xi,3, %i,0%i,1 - - - X{,2Xi,3, X{,0%;,1%i,2,

X;,0%i,1%i,3, Xi,0%i,2%i,3)

and R’ representing the transpose of R. As was recalled
above, maximizing that information is equivalent to
minimizing the volume of the confidence ellipsoid for
the estimates of B, 8, ..., Bj,3.

For a comprehensive explanation of various statistical
DOE methods, competent monographs are available,
both of a general form [25-27] and those addressing
specifically chemical applications [28, 29]. Examples of
such applications in catalytic research can be found
elsewhere [30-34].
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2.2.3.2 Optimization Methods for Empirical Objective
Functions

Different statistical methods for the design of experiments
use different criteria to choose experimentally tested
materials from among those considered possible for
testing. Nonetheless, the respective criteria are always
applied uniformly to the entire set of possible candidate
materials. This is to be quite impractical if the
most interesting catalytic materials are not distributed
uniformly in the parameter space of possible materials,
but rather form only one or several small clusters. This
often occurs when interest is expressed only in catalytic
materials of sufficiently high performance (in terms of
yield, conversion, selectivity, etc.). Indeed, high values of
such performance measures are typically achieved only in
small areas of contiguous compositions (Fig. 1).

In such situations, it is more relevant to use a
method designed specifically to seek, for any given
objective function, locations at which the function values
are maximized. Since each such method equivalently
seeks locations in which the negative of the objective
function takes its minimal value, the more general terms
optima /extremes of the objective function are used rather
than maxima and minima. The process of searching
such optima by means of a corresponding algorithm is
termed function optimization, and the involved computer-
aided methods optimization methods. Before presenting
an overview of these types of methods, two introductory
points should be clarified:

e Whether a location is an optimum of the objective
function in the space of input variables depends on

Contour maps of the propene yield in the
Ga/Mg/V/Mo system
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o
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2% 4% 6% 7% 8% yield of C4Hg

Fig. 1 Example of dependency of yield on catalyst composition.
This example shows the dependency of propene yield on the
fractions of Mg, V, Ga, and Mo in the oxidative dehydrogenation
of propane. The approximation was obtained by means of artificial
neural networks on data analyzed in Ref. [35].
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70 2.2 Computer-Aided Design of Solid Catalysts

other locations with which it is compared. On occasion,
the function value in a location is not surpassed by
values in locations within a certain neighborhood, yet
outside that neighborhood there are locations with a
higher function value. For example, varying the fraction
of individual elements in the catalytic material within
a certain small range does not lead to a material
with a better performance, whereas varying some of
those fractions outside that range can lead to such
a performance. The material is then said to have a
locally optimal performance or, in mathematical terms,
to be a local optimum of the function describing the
dependency of its performance on the composition. On
the other hand, if even varying any of the fractions
within the whole range of their admissible values does
notlead to a better performance, the considered catalytic
material is said to correspond to a global optimum of
that function.

e In most other applications (including, e.g., reaction ki-
netics), values of the objective function may be obtained
analytically — that is, either as the result of setting the
function input into a mathematical expression, or as
the solution of an equation described with a mathe-
matical expression (e.g., of a differential equation). In
contrast, values of functions describing the dependence
of catalyst performance on its composition are obtained
empirically, through experimental measurements.

2.2.3.2.1 Evolutionary Methods  Evolutionary optimiza-
tion methods are stochastic methods, which means that
the available information about the objective function is
complemented with random influences. The term “evo-
lutionary” refers to the fact that the way of incorporating
random influences into the optimization process has in
those methods been inspired by biological evolution. The
most frequently used (and most deeply elaborated) repre-
sentatives of evolutionary methods are genetic algorithms
(GAs; see below), in which the incorporation of random
influences attempts to mimic the evolution of a genotype.
Basically, that method comprises:

o randomly exchanging coordinates between two particu-
lar locations in the input space of the objective function
(recombination, crossover);

e randomly modifying coordinates of a particular lo-
cation in the input space of the objective function
(mutation); and

e selecting the locations for crossover and mutation (par-
ent locations) according to a probability distribution,
either uniform or skewed towards locations at which
the objective function takes high values (the latter being
a probabilistic expression of the survival-of-the-fittest
principle).

Detailed treatment of various types of genetic algorithms,
as well as of other evolutionary optimization methods,
can be found in specialized monographs [36-45]. In
this chapter, only those four features of GAs will be
highlighted which are particularly important for the
development of catalytic materials.

Feature 1 The meaning of the individual coordinates
of locations in the input space of the objective function
is strongly problem-dependent. In catalyst design, the
coordinates typically convey some of the following
meanings:

(i) The qualitative composition of the catalytic material;
that is, of which active components does it consist,
whether it contains dopants (and which ones),
whether it is supported, and what is its support.

(ii) The quantitative composition of the catalytic material;
that is, the fractions of the various components
mentioned in (i).

(iii) The preparation of the catalytic material, its individual
steps and their quantitative characterizations, such
as temperatures or times they need.

(iv) The reaction conditions of the catalyzed reaction.

There is an intimate connection between qualitative and
quantitative composition of catalytic materials. The pres-
ence of a particular component in the catalytic material
is equivalent to the fraction of that component being
non-zero. There are consequences for the algorithms
accomplishing the operations of recombination and mu-
tation. Namely, the algorithms must guarantee that this
equivalence cannot be invalidated through the respective
operation. For example, if the presence of a particular
component in one of the parent materials, and the ab-
sence of that component in the other parent material,
are exchanged during recombination, then the fraction of
that component has also to be changed at the same time.
Similarly, if a mutation eliminates a certain component
from the catalytic material, the fraction of that compo-
nent must be set simultaneously to zero. In this context,
it is useful to differentiate between quantitative muta-
tion (which modifies only the quantitative composition
of the catalytic material, without affecting its qualitative
composition) and qualitative mutation (which modifies its
qualitative composition) (Fig. 2).

Feature 2 Crossover and mutation operations can be
applied to many individuals simultaneously; thus, the GA
can follow many optimization paths in parallel. Moreover,
optimization proceeds between subsequent iterations for
different paths independently. Because of the biological
inspiration of GAs, individual iterations of a GA are
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Crossover
[Co=0 [Cr=0 [Cu=40 [Mn=0 [Mo=34 [P=0 [Sn=11 [W=15 |
+
[Co=0 [Cr=0 [Cu=32 |[Mn=0 [Mo=17 [P=18 [Sn=10 [W=23 |
¥
[Co=0 [Cr=0 [Cu=40 [Mn=0 [Mo=17 [P=18 [Sn=10 [W=15 |
+
[Co=0 [Cr=0 [Cu=32 [Mn=0 [Mo=34 [P=0 [Sn=11 [W=23 |
Qualitative mutation
[Co=0 [Cr=0 [Cu=32 |[Mn=0 |Mo=17 [P=18 [Sn=10 [W=23 |
¥
[Co=0 [Cr=0 [Cu=49 [Mn=0 [Mo=21 [P=0 [Shn=12 [W=18 |
Quantitative mutation
[Co=0 [Cr=0 [Cu=32 [Mn=0 [Mo=17 [P=18 [Sn=10 [W=23 |
4
[Co=0 [Cr=0 [Cu=48 |Mn=0 [Mo=15 [P=1 [Sn=16 [W=20 |
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Fig. 2
catalytic material expressed in mol%. (Reproduced from Ref. [46].)

referred to as generations, and all locations in which
the value of the objective function is considered in a
particular generation (e.g., all catalytic materials of which
the performance has been measured in that generation)
are denoted as population. The fact that GAs follow
many optimization paths in parallel is actually the main
reason for their attractiveness in high-throughput catalyst
development, because a straightforward correspondence
can be established between those optimization paths and
channels of the high-throughput reactor in which the
materials are experimentally tested.

Feature 3 As GAs do not use derivatives, they are not
attracted to local optima. On the contrary, the random
variables incorporated into recombination, mutation, and
selection enable the optimization paths to leave the
attraction area of the nearest local optimum, and to continue
searching for a global one.

Feature 4 Due to the biological inspiration of the GAs,
a particular distribution of the incorporated random
variables cannot be justified mathematically, but its
choice is an heuristic task. The most important heuristic
parameters describing such a distribution are the overall
probability of any modification of an individual, the
ratio between the conditional probabilities of crossover
and qualitative or quantitative mutation, conditioned on
any modification, and the distribution of the intensity
of quantitative mutation. The population size is also
sometimes a matter of heuristic choice, although in the
practice of catalyst development it is usually determined
by the number of channels in the testing reactor.

As a consequence of the problem-dependency of GA
inputs, for solving optimization problems in specific

lllustration of operations used in genetic algorithms; the values in the examples are mass fractions of active elements in the

application areas such as in the development of catalytic
materials, it is quite difficult to use general GA software,
such as Matlab’s Genetic Algorithm and Direct Search
Toolbox [47]. Indeed, such general GA software optimizes
only functions within input spaces of low-level data
types, examples of which are vectors of real numbers
and bit-strings. However, encoding the qualitative and
quantitative composition of catalytic materials, their
preparation and reaction conditions with low-level data
types is tedious and error-prone. Moreover, it requires a
great deal of mathematical erudition.

For the reasons highlighted, it is not surprising
that — apart from early attempts to use general GA
software to optimize the distribution of active sites of
two catalytic components [48, 49]-the application of
GAs in this area has followed the way of developing
specific algorithms for the optimization of catalytic
materials. The first such algorithm for solid catalyst
development was implemented by Wolf et al. during the
late 1990s [50-52], followed by a modified version in
2001 [53, 54); similar algorithms were later also developed
at other institutions [2, 32, 55-59]. Experience gained
with those algorithms shows that any new method of
catalyst design can substantially decrease the usefulness
of an earlier implemented specific GA after several years.
Maintaining a high usefulness of the implementation for
a long time requires (during the GA’s development) the
anticipation of all catalytic materials and their preparation
methods for which the implemented algorithm might
need to be used in the future. Nevertheless, there is no
guarantee thatall of these factors can be anticipated during
development. In addition, the more possibilities the
implementation of a GA attempts to cover, the broader the
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class of possible distributions of the incorporated random
variables. Thus, according to Feature 4 (see above), the
greater becomes the number of possible combinations
of parameters of those distributions that need to be
heuristically chosen. In order to avoid that problem, a
recent proposal was made to generate implementations
of specific GAs by a software system, according to
a description of the problem in a machine-readable
description language [46].

2.2.3.2.2 Other Stochastic Methods  Several other
stochastic methods have been developed for the op-
timization of an objective function; these include
simulated annealing, tabu search, multilevel single
linkage, topographical optimization, stochastic hill climb-
ing, stochastic tunneling, stochastic branch and bound
[60, 61]. Like GAs, these methods typically only compare
function values at different locations; hence, they tend to
find global optima rather than local ones. On the other
hand, as function values alone contain only little infor-
mation, the search for the optimum progresses only very
slowly.

Simulated annealing has sometimes been used in
heterogeneous catalysis, although less frequently than
GAs [49, 62-65]. Basically, the way in which the simulated
annealing method searches for the global minimum of an
objective function mimics the way in which a crystalline
substance reaches the ground state with minimal energy
in a process of heating and then slowly cooling. The
method works by iteratively proposing changes and either
accepting or rejecting each of them. There are various
criteria for the acceptance or rejection of proposed
changes, the most often encountered being a criterion
called Metropolis. This accepts the change unconditionally
if the objective function decreases; otherwise it accepts
it only with an exponentially distributed probability that
depends on a driving-force parameter being called
temperature, which is equal to the mean of that exponential
distribution. Thus, if the temperature is very large, nearly
all changes are accepted and the method simply moves
the system through various states, irrespective of the
values of the objective function. Consequently, if the
method starts at a higher temperature, which is then
gradually decreased, it brings the system to a state with
a minimum of the objective function, but still allows
it to escape that state if the minimum is not global
(hence, the temperature is not zero). In particular, when
searching for catalyst materials with high performance,
the simulated annealing method can leave a locally
optimal catalyst, and continues with lower-performance
materials, in order to ultimately identify a globally optimal
catalyst.

2.23.2.3 Deterministic Methods  From the overall
perspective of function optimization, the plethora of
deterministic methods is much more frequently used
than stochastic methods [66,67]. In those methods,
the optimization of a function relies solely on the
available information about its response surface, with
no randomness involved. Hence, the same starting
location of the optimization procedure always leads to
iteration through the same locations in the input space
of the objective functions. Before discussing the role of
deterministic methods in the optimization of catalytic
materials it should be recalled that, according to the
information they use, all such methods could be divided
into three large groups.

Group 1 Methods These include methods that use
only information about function values. As mentioned
above in the context of stochastic optimization, such
methods tend to find a global optimum rather than a
local one (in contrast to Groups 2 and 3, below), and
they are very slow. Their most frequently encountered
example is the simplex method. This produces a sequence
of simplexes; that is, of polyhedra with (n + 1) vertices,
where n refers to the dimension of the input space of
the objective function. The vertices of the first simplex
of the sequence are typically chosen at random, and any
further simplex is obtained from the previous one through
replacing the vertex in which the value of the objective
function was the worst (i.e., the lowest value in the case
of maximization, and the highest value in the case of
minimization). Other methods of this group, used in
the design of catalytic materials, include the holographic
research strategy and the sequential weight increasing factor
technique.

Group 2 Methods  These include methods which use, in
addition to function values, information about first partial
derivatives; that is, about the gradient. The gradient of a
function has the property that its direction coincides with
the direction of the fastest increase of function values, and
is opposite to the direction of their fastest decrease. Thus,
if the optimization path follows from some location in
the input space the direction of the objective function
gradient, then the function value increases with the
highest possible speed along that path (at least in the
immediate neighborhood of that location). Similarly, if
the path follows the direction opposite to its gradient,
then function values decreases with the highest possible
speed. However, following the direction of the gradient
(or opposite to the gradient) of the objective function
does not generally allow the optimization path to reach
its global maximum (or minimum), but only a local
one. More precisely, for every maximum (global as well




as local) there exists an area that an optimization path
will never leave if it starts within that area and follows
in each location the direction of the gradient of the
objective function. The area is called the attraction area
of the considered maximum, and the maximum is said
to be an attractor of that area. Global and local minima
are also attractors, although the optimization paths in
their attraction areas follow in each location the direction
opposite to the gradient. Simple examples of methods
of this group are various variants of steepest descent,
which directly employs the above recalled property of
gradients and searches for a minimum of the function
in such a way, that the next location in a sequence
of iterations is chosen in the direction opposite to the
gradient in the current location. Individual variants of
this method differ in their particular way of choosing
the next location in that direction. More sophisticated
representatives of this group include several methods of
conjugate gradients.

Group 3 Methods These include methods which use,
in addition to function values, information about partial
derivatives up to the second order. Like gradient-based
methods, they search for a maximum or minimum of
the objective function only within its attraction area.
However, second-order derivatives allow the construction
of a quadratic approximation of the function, whereas
gradient approximates the function only linearly. Close
to a maximum or minimum, a quadratic approximation
of a function is more accurate than a linear one, and
therefore methods of this group can localize searched
optima faster, once they reach their proximity. On the
other hand, linear approximations are frequently more
accurate far from any optima. Therefore, methods of
this group are most often used as combined methods,
which switch between the behavior of second-order
methods close to an optimum and the behavior of
a gradient-based method far from the optimum. The
most frequently encountered method of that type is the
Levenberg—Marquardt method, whereas using only second-
order derivatives leads in the most simple case to the
Gauss—Newton method.

For the optimization of empirical functions in the
development of solid catalytic materials, it is, unfor-
tunately, impossible to employ methods using partial
derivatives — that is, methods from Groups 2 and 3. The
reasons for this impossibility are connected with the char-
acter of catalytic experiments, and can be summarized as
follows:

o As a mathematical expression for the dependency of
performance of the catalytic material on the various
inputvariables is not known, mathematical expressions
for its partial derivatives cannot be obtained either.
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o To obtain sufficiently accurate numerical estimates of the
partial derivatives, small differences between values of
the dependent variable must be recorded; typically,
differences should not be larger than 0.1% of the
function value in the respective location. However,
for the dependent variables occurring in catalyst
optimization (e.g., yield, conversion, selectivity), such
differences commonly lie within the experimental error.

e Even if the experimental setting would lead to a
lower experimental error (or if sufficient accuracy of
the estimates were not required), obtaining numerical
estimates of the gradient must be given up for practical
reasons. Indeed, to obtain the numerical estimate of
the gradient in any location of an n-dimensional input
space of the objective function would require empirical
evaluation of the function in (n + 1) locations located
very close to each other. For example, imagine that the
objective function describes the dependence of yield
on the composition of catalytic material on choosing
its components from a pool of 15 elements. Then, to
estimate its gradient numerically in one single location
would require testing 16 materials with nearly the same
composition. That is clearly not affordable for reasons
of cost and time.

Therefore, in heterogeneous catalysis only deterministic
optimization methods of Group 1 have been occasionally
used [64, 68-70]. On the other hand, in the context of
high-throughput development of solid catalysts, it was
pointed out that their best known representative — the
simplex method — allows an easy adaptation to produce
any prescribed number of sequences of simplexes in
parallel [64]. Consequently, the method can propose
in each step a prescribed number of new catalytic
materials in parallel, which provides a straightforward
correspondence with their subsequent testing in a
multichannel reactor, as in the case of evolutionary
algorithms.

2.23.3 Concluding Remarks

The choice of computer-aided methods for the design
of catalytic experiments depends on whether the space
of potential catalytic materials should be investigated
in some systematic way, or whether the search for
catalysts with the best performance is its only objective.
The former case is a task for statistical DOE methods,
whereas optimization methods are appropriate for the
latter. Within the computer-aided branch of statistical
DOE methods, the D-optimal design is most universally
employed. An optimization method has to require solely
function values to be applicable to the optimization of
catalytic materials. Among such methods, GAs are most

References see page 79




74 2.2 Computer-Aided Design of Solid Catalysts

frequently used, especially those developed specifically for
catalytic optimization.

One problem with GAs is the crucial role of their
heuristic parameters, a correct tuning of which requires
a great deal of preliminary knowledge. In part, that
knowledge can be obtained by means of data analysis
and data mining methods, which will be surveyed in the
following section. Therefore, GAs are frequently combined
and interleaved with such methods, especially with neural
networks [54, 5658, 68, 71-73].

2.2.4
Data Analysis and Data Mining

The term data analysis is traditionally used for statistically
assessing the extent to which data support particular
relationships between the various objects, properties
and phenomena that they describe. Until the early
1970s, researchers hypothesized such relationships, and
computers were employed only for their assessment.
However, the steadily increasing amount of experimental
data, which became available following the advent
of database technology, required an automated, data-
driven search for such relationships within a new
branch of statistics, referred to as exploratory statistics.
On the other hand, the increasing significance of
computers also led to a rapid development of artificial
intelligence and machine learning, which attempt to
mimic the way in which human beings themselves
hypothesize relationships from observations. The most
important types of machine learning methods include
rule-based methods, decision trees, inductive logic
programming, support vector machines, and artificial
neural networks (ANNs). Methods based on ANNs
have been frequently used also in heterogeneous
catalysis (see Section 2.2.4.2 below). Although methods
of exploratory statistics and machine-learning rely on
different paradigms, they deal with the same data and
employ the same information technologies, especially
databases, the world-wide web, and various object-
oriented technologies (Fig. 3). Together, they form a
new interdisciplinary area known as data mining. In
the context of heterogeneous catalysis, the distinction
between traditional data analysis and data mining should
be taken into account when choosing between the two
conceptually different approaches to the design of libraries
of solid catalysts — the optimization approach and the
discovery approach [74].

2.2.4.1 Statistical Methods: An Overview

The simplest use of statistical methods is to provide
summary parameters characterizing important statistical
properties of input variables and of various measures

Machine learning
(decision trees,
SVM, ILP,...)

Statistics
(correlation, regression,

contingency tables,
time series,...)

Logic
(observational,
fuzzy,...)

Neural networks
(MLP, RBF, ARTMAP,...)

Fig.3 Maindata mining approaches and supporting technologies.
ILP, inductive logic programming; MLP, multilayer perceptron; RBF,
radial base functions network; ARTMAP, adaptive resonance theory
mapping network; DOOT, distributed object-oriented technologies;
CORBA, common object request broker; RMI, remote method
invocation.

Data
mining

DOOT
(CORBA, RMI,...)

of catalyst performance (yield, conversion, etc.), or rela-
tionships between them. Such summary parameters are
usually called descriptive statistics; their common represen-
tatives are mean, median and other quantiles, variance, stan-
dard deviation, skewness, kurtosis, covariance and correlation.

The two last-mentioned descriptive statistics — covari-
ance and correlation —allow one to summarize the
relationship between a performance measure and a partic-
ular input variable. The situation becomes substantially
more complicated if one is interested in the relation-
ship between a performance measure and a whole set
of input variables. Indeed, then not only parameters cor-
responding to individual variables, but also parameters
corresponding to various levels of interactions between
them are needed. In such situations, the parameters are
usually combined with an assumption about the form
of the dependency of the performance measure on the
input variables (such as linear dependency, polynomial
dependency, or dependency derived from some theoret-
ical model), for once an assumption about its form is
made, the parameters already fully determine that depen-
dency. In statistics, this approach is known as regression
or response surface modeling, and the parameters determin-
ing the dependency are called regressors. For example, the
regression of yield y on three component fractions x;, x,
x3 uses in the case of a linear regression four parameters
o, 01, 00, 003:

Yy =00 + a1x1 + a2x2 + 03x3

whereas in the case of a quadratic regression, it uses 10
parameters o, &1, 02, 0¢3, 01,1, 01,2, ..., 03 3:




Y = oo +o1x1 +o2xy + oe3x3 + oel'lx% + azvzx%
+ a3,3x§ + a1,2%1%) + @1 3X1X3 + 062 3%2%3

Descriptive statistics can also not be used in the case of
other properties of catalytic materials that depend on a
whole set of input variables. Examples of such properties
are similarity between different materials, dependence
on unobservable factors, or classification of materials
according to their catalytic behavior in particular reactions.
In order to characterize such properties, methods
of multivariate analysis are needed. The multivariate
approaches which are most relevant to the analysis of
catalytic data are:

e Principal component analysis, which reduces data di-
mensionality through concentrating on those linear
combinations of input variables that are most responsi-
ble for the variability of the data set (unfortunately, such
combinations usually do not convey any real meaning).

e Factor analysis, which explains input variables as
combinations of a smaller number of unobservable
factors.

e Analysis of the relationship between factors influencing
input variables and those influencing performance
measures by means of an approach called partial least
squares.

o Cluster analysis, which entails grouping catalytic
materials into clusters or a hierarchy of clusters
according to similarity among the values of the
input variables or according to a similar catalytic
performance, which can be measured with various
similarity measures.

e Classification of new materials, according to values of
their input variables, with respect to their usability as
catalytic materials in particular reactions. An important
feature of classification is that the discrimination
between classes relies solely on data with known correct
classification, for example, on already tested materials.

Frequently, the primary purpose of data analysis is to
check the compatibility of the available data with certain
assumptions about the probability distribution governing
those data. To this end, methods of statistical hypotheses
testing are needed. The most commonly tested hypotheses
include:

e that the probability distribution of data belongs to a
certain family of distributions, for example normal
distributions or exponential distributions

e that certain parameters characterizing the distribution,
such as mean or variance, have a particular value, or
that their value lies within a particular range

e that probability distributions governing two data sets
are identical, or that some of their parameters are
identical.
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One important example of testing hypotheses of the
last-mentioned type is an analysis of the influence of
varying the values of individual input variables on the
performance of a catalytic material by means of an
approach called analysis of variance.

For detailed information about statistical methods,
the reader is referred to comprehensive monographs
about statistics [75—-78], or chemometrics [79, 80]. Recent
applications of statistical methods to heterogeneous
catalysis have been reported in [23, 24, 33, 34, 81-88].

2.2.42 Artificial Neural Networks

ANN s are distributed computing systems that attempt to
implement a greater or smaller part of the functionality
characterizing biological neural networks. Their most
basic concepts are a neuron, the biologically inspired
meaning of which is an elementary signal processing
unit, and a connection between neurons enabling the
transmission of signals between them. In addition to
signal transmission between different neurons, signal
transmission between neurons and the environment can
also take place. Neurons, connections between them, and
connections between the environment and neurons form
together the architecture of the ANN. Those neurons that
receive signals from the environment but not from other
neurons are called input neurons, whereas those sending
signals to the environment but not to other neurons are
called output neurons. Finally, neurons that receive and
send signals only from and to other neurons are called
hidden neurons (Fig. 4).

Partitioning of the set of neurons into input, hidden,
and output neurons allows a large variety of architectures;
however, for almost all types of ANNs frequently
encountered in practical applications, the architecture is
basically the same. It is a layered architecture, in which all
signals propagate from layer to layer in the same direction,
denoted as forward direction. During that propagation, a
neuron-specific linear transformation of signals from the
preceding layer is performed in each hidden or output
neuron, whereas a network-specific nonlinear function,
called activation function, is subsequently applied to the
results of the linear transformations in hidden and

Input neurons

Output neurons

Incoming signals Hidden neurons Outgoing signals

Fig.4 Simple generic artificial neural network architecture.
(Reproduced from Ref. [102].)
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Fig.5 Example of multilayer perceptron with one layer of hidden
neurons, employed to approximate an unknown dependency
of propene yield on catalyst composition. (Reproduced from
Ref. [102].)

sometimes also in output neurons. Such ANNs are called
feedforward neural networks, and their most prominent
example is the multilayer perceptron (MLP; see Fig. 5), in
which the activation functions are S-formed functions
known as sigmoidal functions.

A MLP with n; input neurons and np output
neurons computes a function from the space of n;-
dimensional vectors to the space of np-dimensional
vectors. The precise form of that function depends
on the specific linear transformations connected with
individual hidden and output neurons. It is the set of
computable functions that accounts for the most useful
feature of multilayer perceptrons, which is their universal
approximation property. This property means that even to
a very general unknown dependency, and to any prescribed
arbitrarily small distance in an appropriate function space,
a MLP can always be found, with as few as one layer of
hidden neurons, such that the function computed by
this MLP lies within the prescribed distance from the
unknown dependency. In catalysis, one is most often
interested in dependencies of product yields, reactant
conversions, and product selectivities on input variables.

In order to obtain a neural network that computes such
a function, two crucial steps are needed:

1. To choose an appropriate architecture which, in the
case of a MLP, means choosing an appropriate number

of hidden layers plus an appropriate number of
neurons in each of them.

2. To connect, in a process called network training, to each
hidden and output neuron the linear transformation
that fits the available data best. The quality of the overall
fit of all those linear transformations may be assessed
using various measures [89]. The most commonly used
measure is the mean sum of squared errors; that is, the
mean sum of squared distances between the output
values that the network computes for a given sequence
of inputs, and the output values that for those inputs
have been obtained experimentally.

In reality, the choice of the number of hidden neurons
cannot be separated from network training, since to
assess the appropriateness of a particular architecture
for the available data, a number of networks with that
architecture must first be trained.

A Dbetter fit to the data used for training does not
necessarily entail a better approximation of the ultimate
unknown dependency. To assess the quality of the desired
approximation, an independent set of data called test data
is needed, obeying the unknown dependency but unseen
by the network during training. The phenomenon of
overtraining — that is, of a good fit to the training data
accompanied by a bad fit to the test data —is the main
problem faced during neural network training. Up to
now, various methods have been developed that reduce
that phenomenon, such as early stopping or Bayesian
regularization (Fig. 6). Nevertheless, to fully exclude an
influence of overtraining to the choice of the number of
neurons, that choice must be based on the fit to the test
data. (For details, see Ref. [89].)

The architecture of a trained neural network and
the mapping computed by the network inherently
represent the knowledge contained in the data used to
train the network, i.e., deriving and knowledge about
relationships between the input and output variables,
for example, about relationships between component
fractions and yield. Such a representation is not very
human-comprehensible, however, as it is far from
the symbolic and modular manner in which people
represent knowledge by themselves. Therefore, various
knowledge extraction methods have been developed with
the aim of transforming the network architecture and
the computed mapping into a representation that is
more acceptable to humans, namely into representation
by means of logical rules. For dependencies of output
variables on input variables, logical rules are of the general
form:

o IF the input variables fulfill an input condition
Cinput
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Fig. 6 An example of overtraining encountered when training a MLP with the data analyzed in Ref. [35], using the Levenberg—Marquardt
training method (left), and an example of overtraining reduction using the early-stopping method (right). (Reproduced from Ref. [102].)

e THEN the output variables are likely to fulfill an output
condition Coutput.

For examples of such rules, see Fig. 7.

Detailed information about ANNs is available in spe-
cialized monographs [90-96]. Applications of multilayer
perceptrons to catalysis on solid materials have been re-
ported in [23, 24, 57, 87, 97-107], along with applications
of other types of neural network [23, 56, 58,71, 86, 87, 108].

2.2.43 Concluding Remarks
In Section 2.2.4 we dealt with the relationships between
various objects, properties and phenomena described by
catalytic data, which primarily are relationships between
input variables and catalyst performance in particular
reactions. The relationships to be investigated may
either be hypothesized by the researcher, or searched
for based on the available data. In the former case,
statistical data analysis methods are used, whereas in
the latter, data mining methods are appropriate, notably
methods of exploratory statistics or machine learning.
Among the latter, ANNs have been frequently used in
catalytic research. As the area of machine learning is still
undergoing rapid development, other relevant methods
may become comparably important in the next few years,
including decision trees [23, 24, 86, 87] and support vector
machines [109].

Both, data analysis and data mining are performed in
a stepwise manner, and the result of any one particular

35%

Mg

30%
Ga

35%

Fig. 7 Visualization of the three-dimensional projection to the
dimensions corresponding to Ga, Mg, and Mo of the antecedents
(left-hand sides) of three logical rules extracted from an artificial
neural network trained with data on oxidative dehydrogenation of
propane. (Reproduced from Ref. [102].)

Rule 1:

IF the concentrations fulfill 24% < Ga < 33% AND 31% < Mg
< 39% AND 0% < Mo < 7% AND the remaining concentrations
are 0%, THEN yield of propene > 8%

Rule 2:

IF the concentrations fulfill Ga~ 36% AND 28% < Mg < 38% AND
the remaining concentrations are 0%, THEN yield of propene > 8%
Rule 3:

IF the concentrations fulfill 0% < Fe <12% AND GCa ~ 38%
AND 29% < Mg < 36% AND 0% < Mo < 9% AND the remaining
concentrations are 0%, THEN yield of propene > 8%.
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Tab.1 Application of computational tools in catalyst design, data assessment and optimization
Computational tools for Catalytic reactions Potential catalytic elements, References Year
experimental design and data compounds and supports
assessment
First principles, periodic DFT Ethylene to ethylene oxide Cu/Ag alloys, a-Al; O3 [13] 2004
calculations
Combinatorial computational Methanol synthesis Co, Cu, Ru, Pd, Ag, Re, Os, Ir, Pt, Au [15] 2002
DFT chemistry as metals and cations
Combinatorial computational Fischer—Tropsch synthesis Feg clusters Additives for FesM M = [14] 2004
chemistry based on DFT Fe, Si, Mn, Ge, Zr, Mo
Combinatorial computational DeNOy reaction Rh, Pd, Ag, Ir, Au as clusters [16] 2004
chemistry based on DFT
Combinatorial computational DeNOj reaction Cut, Agt, Au™, Fe?t, Co?*, Ni?t, 11 2000
chemistry based on DFT Pd2+, pt2t, Cr3t, Fedt, I3+, T3+
ZSM-5
GA, factorial design Paraffin (Cs to Ce) Me oxide supports: y-Al,03, ZrO,, [32, 55] 2003
isomerization TiOz (+ SO, BO3~, PO}~, WO,.
Metals: Pt, Ce, Pd, Sn, Ni, Mn, Nb
Factorial design, multivariate Zeolite synthesis (NaOH, KOH, 1,4-dibromopentane, [33] 2003
analysis 1-methylpiperidine, Sylobloc 47
(Grace),
aluminium-tri-iso-propoxide
GA Low-temperature oxidation of Pt, Pd, Rh, Ru, Au, Cu, Ag, Mn on [52] 2001
low-concentration propane TiO;
in air
GA, ANN Oxidative dehydrogenation of Redox MeO of V, Mo, Mn, Fe, Ga; [54] 2004
propane non-reducible MeO of La; acidic &
basis MeO of B, Mg.
GA, ANN Methanol synthesis Oxides of Cu, Zn, Al, Sc, B, Zr (at [56, 73] 2004
different preparation condi-tions)
GA, ANN, clustering and Epoxidation of cyclohexene by Synthesis conditions of [58, 86] 2005
factorial analysis tert-butylhydroperoxide Ti-silicate-based catalysts
GA Selective oxidation of CO Au, Cu, Pt and oxides of Mo, Nb, V [59] 2005
supported on TiO2, ZrO2, CeO;
GA, ANN Oxidative coupling of methane Oxides of Na, W, P, S, Zr, Mn [68, 100] 2003, 2001
ANN Oxidation of butane MgO, Al O3, SiO, TiO2, ZnO, ZrO,, [97] 1995
Sn0O3, Bi, 03
ANN Decomposition of NO into N, Cuy/ZSM—5x: variable & different [98] 1995
and O, conditions
ANN Propane ammoxidation Oxides of V, Sb, W, Sn (P, K, Cr, Mo) [99] 1997
on Al,03/SiO;
ANN CO3 hydrogenation to Ag, Al, Au, Ce, Co, Cr, Cu, Fe, Ga, La, [101] 2001
hydrocarbons Mn, Mo, Ni, Pd, Pt, Ru, Si, Ti, W,
Zn, Zr; supports ZrOz, A O3,
ZnO, TiO,
GA, ANN Oxidative dehydrogenation of Oxides of Ga, Cu, Mn, Mo, W, Sn, Cr, [53, 72] 2003, 2002
ethane Co, Zr, Ca, La, Au
Holographic research strategy ~ Total oxidation of methane Oxides of Co, Zr, Cr, La, Cu, Pt, Pd, [110] 2005
and ANN Au; Support CeO3, La;03
Factorial design, ANN Selective CO oxidation in Coy/SrCO3x: variable [107] 2005

excess Hj

GA, genetic algorithms; ANN, artificial neural networks.

step might then be used in later steps. This is especially
apparent in the following two situations:

e The objective of an initial stage of data analysis or data
mining is to determine which input variables play the

most important role in the investigated relationships,
or which of them play in that relationship similar
roles. Such an initial stage is called feature selection, and
this leads ultimately to the dimensionality reduction of
the space of input variables, allowing subsequently a




more thorough analysis in that less-dimensional space
[23, 24, 86].

e The results of data analysis are used in the next step to
improve catalyst optimization [2]. In particular, ANNs
are frequently combined with GAs [54, 56-58, 68,
71-73] or other optimization methods [49, 68, 110].

2.2.5
Conclusions

Today, computer-aided catalyst design includes a com-
prehensive arsenal of tools which are used to predict and
optimize the catalytic performance of materials, either on
a theoretical basis (i.e., by combinatorial computational
catalytic chemistry) or on an experimental basis. The lat-
ter approach includes the design of experiments and the
assessment of experimental data by computer-aided meth-
ods originating from statistics, optimization, and machine
learning. The fundamentals of the various procedures
have been applied in many cases; selected examples,
which have been reported in the literature are detailed in
Table 1.

In the present authors’ opinion, knowledge within
the broad field of computer-aided catalyst design has
progressed significantly during the past five to 10 years,
and this trend will surely continue as it offers a high
potential for further development. As a joint effort,
combinatorial computational catalytic chemistry and
high-throughput experimentation will undoubtedly foster
catalyst development in the years to come.

It is also believed that the results of high-throughput
experimentation based on combinatorial approaches,
together with sophisticated data analysis, will in the long
run contribute to a better understanding of catalysis and
supplement our fundamental knowledge gained by other
means.
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