
310 

PHENOMENOLOGICAL AND PREDICTIVE STUDIES OF CONFINEMENT 
AND GLOB~L HEATING IN JET NEUTRAL BEAM HEATED LIMITER PLASMAS 

E niompson, D Bartlett , F Bombarda (l), G Bracco(l), DJ Campbell, 
c Challis , J P Christiansen , JG Gordey , S Corti , A Costley, G Duesing , 
R Giannella ( 1), A P H Goede, L Horton, T T C Jones , E Kallne, 0 Kanek·o ( 2) , 
P J Lomas , D Muir , J Snipes , A Staebler (3) , D Stork , PM Stubberfield , 
G Tallents, P R Thomas , K Thomsen, M von Hellerman and M L Watkins. 

JET J oint Undertaki ng , Abingdon , U.K., (1) EURATOM-ENEA Association , 
Frascati , It~ly , (2) Institute o f Plasma Physics, Nagoya, Ja~an , 
(3) IPP Garching , FRG . 

INTRODUCTION 
NBI experiments ha ve been per formed using a wide range of t arget plasmas 
to establish the scaling of the global energy confinement with plasma 
current ( I p), toroidal magnetic f ield (BT) plasma density (ne) and input 
power (PTOT) for both H0 ($65 keV) & D0 ($80 keV) injection into D plasmas . 
This paper describes results obtai ned with the plasma boundary defined by 
either the 8 outboard graphite limiters , or by the graphite inner wall 
protection tiles . The results of NBI experiments in X-point plasmas are 
presented elsewhere [1 ]. 
The JET vacuum vessel and graphite surfaces are conditioned by baking and 
glow discharge cleaning . They were maintained at 290°C during these 
experiments . The plasma density behaviour during NBI varied according to 
limiter configuration and is described in [2] . In summary the onset of 
NBI led to a transient density increase •mder all conditions . For 
outboard limiters the density rises linearly during NB! . On the inner 
wall tiles , a much lower density increase was obtained . This pumping was 
further improved during the ' hot - ion' campaign by conditioning the inner 
wall surfaces using Helium Ohmi c discharges prior to NB! discharges . 

GLOBAL ENERGY CONFINEME NT 
The total plasma energy content from diamagnetic loop measurements (wDIA) 
of all NB! plasmas is well described by a linear functi on of ProT when a ll 
other cont rollable parameters are constant [3) . Energy contents 
determined from poloidal field measurements and kinetic pressure prof iles 
show s i milar behaviour and the three stored energy measurements are i n 
r easonable agreement . The energy contents are roughly proportional to 
plasma current. These dependences have been built into an of fset linear 
scaling law [3) of the form (figure 1) 

1lIA • 0 . 225 neO ·& Ipo ·5 BT0 · 1I + 0. 0117 Ip PTOT (1) . 

The scaling of the energy content of Ohmic discharges is reproduced by the 
scaling of the intercept in (1) . The dependence o f Won the rel evant 
parameters is described equally well by a power law fit , which is shown in 
figure 2 
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0 . 27 PTOT Ip 

0 ·111 0 · 211 
<ne > BT (2) 

The data is also wel l described by L-mode scaling [5) . 
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From local transport analysis [4) which includes the NB! pcwer deposition 
profile it can be concluded that the plasma thermal conduct ivity 
apparently depends upon the pololdal field only . 
The 3 MA data obtained after He conditioning were not used in the above 
fitting procedure and they exh ibit higher values of 'inc (= 6W/6PTOT) than 
high density pulses . The measured density profiles of these discharges 
also show a tendency towards being slightly more peaked than other types 
of NI discharges . 

Heating Efficiency with NB! 

NBI electron heating efficiency on JET has been con~tr·ained by the 
relatively low values of injection energy (30 -60 keV/AMU) . The electron 
heating efficiency (figure 3) tends t o saturate at electron temperature 
values 5-6 keV where the total power input to the electrons (NBI + Ohmic + 

Equipartit ion) has fallen to a low level . 
In contrast , ion heating eff i ciency increases with the power per particle 
(figure 4). The spectroscopic Ni 2

•• temperature measurements shown in 
figure 4 are calculated to be at most 1-2 keV higher than t~e deuterium 
temperature at the highest values . The discharges following helium 
conditioning show the best ion heating , partly because lower densities are 
accessible than in limiter discharges . This results in the decoupling of 
the ions from the electrons as the equipartition t ime (Tei) becomes larger 
than the er.ergy confinement time . 
These ' High_ Ti ' discharges gave the highest neutron rate ob~ained o n JET 
(2 . 8 10 15 s 1 J of which approximately half can be attributed to 
beam-plasma reactions . 

Enhanced Confinement in Inner Wall Discharges 

The energy content of the inner wall (3 MA , 
groups ( 'A' and ' B' in figure 5) . The type 
immediately following helium conditioning . 
evidenced by a steady-state density and the 
light during NBI . 

3. 4 T) plasmas falls i nto 2 
A plasmas were those 
They showed reduced recycling 
l owest values of deuteri um-a 

The measured e l ectron energy contents (We) in the two grou ps were 
identical within errors so the difference in wDIA must reside in t he ions . 
The calculation of stored energy using the measured central ion 
temperature and dilution factor from the measured Zef f indicates that 
t he ion t emperature pr ofile was more peaked than tha t of the electr ons in 
these shots . This is confirmed by preliminary results obtained by a 
neutral particle analyser array . 

Power Ba lance in Hot Ion Plasmas 
The data for 3.0 MA/3 .4 T plasmas with 5 . 0 < PTOT < 7 .0 MW has been 
compared with results from a simple 0-D model . The model uses 
characteristic times based on L-mode scaling for loss rates in both 
channels and classical equiparti tion between them . The predictions of 
this model reproduce the data tolerably well (figure 6) . Ttis indicates 
the energy conf inement is no different in character between hot ion and 
h igh density regimes . 
Local transport analysis is limited by the preliminary nature of ion 
temperature profiles , nevertheless the avai l able data does show that , in 
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contrast to high density plasmas, the i on l oss channel domina; es within 
the cen:ral half min.:>r radius i n hot ion i;lasmas. I on convec~ion and 
conduction have comparable magnitudes in the centre and equipartition 
r eturns a large power fraction to the electrons in t he outer plasma . In 
these respects JET hot ion plasmas are similar to TrTR supershots [6] . 
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figure 1 : Offset linear scaling 
law plotted against J ET NB! stored 
ener~y measured by diamagnetic loop 
(WDI ) • 
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figure 2 : Power law fit to NBI 
DIA 

W meas urements . 
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Figure 3 : Cent ral elec:trort 
temperature from ECE measurements 
for NBI di scharges as a func:t i on of 
total power (Ptot> rtormalised by 
vo lume averaged density (<rte>) . 
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Figure 5 : Diamagneti c stored 
energy measured as a func:tion of 
volume averaged density for 3 
MA/3 . 4 T NBI discharges . · 
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Figure 4 : Centr al ion temperature 
(T.(o)) for Ni 2 • • i~ns in NBI 
di;c:harges measured by Doppler 
shift of the NiXXVII line as a 
function of calc:u l ated power to the 
ioris ( Pbi ) normalised by volume 
averaged density (<ne>) . 
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Fi gure 6 : Measured Ti( o) and 
Te(o) for NB! discharges compared 
to pred i c:tions f rom the simple 0-D 
code (see tex t). 
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