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Seed dormancy determines the timing of germination, thereby

contributing to successful seedling establishment and plant

fitness. The induction and release of dormancy are controlled

by various regulators like plant hormones and dormancy

proteins. The relative strengths of these regulators are

influenced by environmental factors during seed maturation

and storage. In the last few years additional processes have

been identified to be involved in the release of dormancy during

seed storage with an important role for non-enzymatic

oxidative reactions. However, the relations between the

different dormancy regulators are not fully understood yet.

Finally, all accumulated information will be processed in the

seed during early seed imbibition and lead to the decision to

germinate or not.
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Introduction
Plants need to be optimally adapted to their environment

to obtain a high fitness. Therefore, developmental transi-

tions should be properly timed to coincide plant growth

stages with their favourable seasons. It is especially

important that plants start their life cycle at the beginning

of the growth season. In order to establish seedlings at the

right time, seeds of most plant species have evolved the

ability to time their germination. This is controlled by

seed dormancy, which is defined as the incapacity of an
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intact viable seed to complete germination under favour-

able conditions [1,2]. Dormancy is particularly important

to prevent germination during short spells of favourable

conditions in an unfavourable season for plant growth.

Seed dormancy is an unwanted trait for crops that require

rapid and uniform germination after sowing. During the

domestication of most crop species low dormancy levels

have been selected. This level has to be well balanced

because very low dormancy can cause pre-harvest sprout-

ing and reduce the quality of harvested seeds [3,4]. A

good understanding of dormancy will benefit ecological

understanding of plants and lead to practical applications

in crops. Several types of seed dormancy have been

described based on the physiological state and physical

structure of the seed [5]. Here, we will discuss its most

prevalent form, physiological dormancy. This review is

focussed on processes occurring during dry seed storage

and early imbibition, as well as on dormancy cycling in the

soil, because important progress has been obtained in

these areas during the last few years.

The influence of the environment
The induction of seed dormancy occurs during seed

maturation and is developmentally regulated. Environ-

mental factors experienced by the mother plant during

seed maturation like temperature, light, and soil nitrate

influence the level of dormancy [6�]. Assuming that these

conditions are predictive for the following growth season,

this mechanism can support the next generation to adapt

to the local environment. Especially temperature was

shown to be an important factor. In the model plant

Arabidopsis low temperatures during seed maturation

enhance dormancy levels [7,8]. Surprisingly, it was re-

cently shown that low temperature could even enhance

seed dormancy levels when experienced by the mother

plant before flowering, indicating the existence of a

memory mechanism [9�]. Seeds harvested from a single

plant usually show variation in their dormancy levels.

This enables bet hedging, preventing all seeds from

germinating simultaneously and reducing the mortality

risk of the entire progeny. Probably, environmental vari-

ation during seed maturation leads to different levels of

dormancy between individual seeds [10,11].

Freshly harvested seeds have a relatively high dormancy

level that is gradually released during subsequent dry

seed storage (so-called after-ripening). During this release

of dormancy, the window of environmental conditions at

which the seed can germinate is slowly opening [2]. Seeds

stored in the soil under natural conditions monitor their
www.sciencedirect.com
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environment to adjust their dormancy level. For instance,

dormancy can be lost in imbibed seeds after a short

exposure to low temperatures (stratification) [2] or by

compounds present in smoke [12].

The molecular regulation of seed dormancy
The genetic and molecular regulation of seed dormancy

has been studied using both induced and natural variation

in several species with an emphasis on the model plant

Arabidopsis. This revealed its complex regulation by

multiple semi-independent pathways. The main regula-

tors can be grouped as follows:

Hormones

The roles of the plant hormones abscisic acid (ABA) and

gibberellins (GA) in dormancy and germination were

identified over 50 years ago [13,14] and have been con-

firmed by genetic, physiological and molecular experi-

ments since then. ABA is required for the induction of

dormancy during seed maturation and GA for germination.

These two hormones negatively influence each other’s

biosynthesis and signalling pathways. It is especially the

balance between both hormones that determines germi-

nation capacity [15–17] (Figure 1a). More recently, addi-

tional hormones have been demonstrated to contribute to

dormancy and germination. Among them, an important

role has been identified for ethylene, partially by counter-

acting ABA effects as reviewed previously [16,18].

Dormancy-specific regulators

A few genes have been identified that exclusively regu-

late dormancy and germination. These regulators have a
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seed-specific expression pattern and show strong dorman-

cy mutant phenotypes. The main representative genes of

this group are DELAY OF GERMINATION 1 (DOG1) and

REDUCED DORMANCY 5 (RDO5) [19,20�]. These two

genes also play important roles in natural variation for

dormancy and have been identified as quantitative trait

loci for dormancy in Arabidopsis [19,21,22]. DOG1 is

involved in the enhancement of dormancy by low tem-

peratures during seed maturation [7,8,23] (Figure 1b).

The role of DOG1 is conserved throughout the plant

kingdom and encodes a protein with unknown function

[19,24,25,26�]. RDO5 is a pseudophosphatase that influ-

ences the phosphoproteome during early seed imbibition

[21]. RDO5 and DOG1 protein levels in freshly harvested

seeds correlate with seed dormancy levels and apparently

act independent from ABA [20�,23]. Both ABA and

DOG1 are absolutely required to induce seed dormancy

[8,19,23,25] suggesting that their signalling pathways

converge at a critical downstream step. The DOG1 pro-

tein amount is stable during seed storage and still present

in imbibed non-dormant after-ripened seeds suggesting

that it loses its activity during storage [23] (Figure 2a).

Another gene in this group is MOTHER OF FT AND
TFL1 (MFT), which encodes a member of the plant

phosphatidyl ethanolamine binding protein (PEBP) fam-

ily. MFT regulates germination in both Arabidopsis and

wheat [27,28]. Its function has not been clarified, but it

was shown to have a negative feedback role in ABA

signalling [29]. Additional dormancy regulators were re-

cently identified by cloning quantitative trait loci for

dormancy in crops. Some of these are seed-specific, like
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Processes occurring in seeds during dry after-ripening and imbibition. (a) An increase in oxidative level during dry storage of seeds correlates with

reduced DOG1 activity and reduced dormancy level. The intensity of the colours in the bars indicates the strength of the indicated processes and

factors. (b) Selective translation in fresh and after-ripened seeds during imbibition leads to different developmental outcomes. Increased after-

ripening time is indicated from left to right, increased imbibition time is indicated from top to bottom.
Alanine Aminotransferase (AlaAT) in barley [30] and Seed
dormancy 4 (Sdr4) in rice [31]. Others are more generally

expressed, like Mitogen-Activated Protein Kinase Kinase
(MKK3), which was identified in barley [32] and wheat

[33]. The relation of these genes with known dormancy

pathways still has to be determined, although Sdr4 was

shown to influence the expression level of a rice homolog

of DOG1 [31].

Chromatin modifiers

The developmental transitions that occur during seed

development, dormancy and germination are associated

with major transcriptional changes and chromatin restruc-

turing [34,35], suggesting epigenetic regulation. During

the last ten years an increasing number of studies on

chromatin regulation in seeds has indeed revealed a role

for chromatin modifiers in seed dormancy and germina-

tion. In particular, seed dormancy phenotypes have been

described for a number of chromatin mutants influencing

acetylation, methylation, or ubiquitination of histone tails

as reviewed previously [17,36]. These mutants showed

pleiotropic phenotypes in accordance with their general

role in the transcriptional regulation of genes. In addition,

changes in dormancy levels have been shown to correlate

with changes in repressive (histone H3 lysine27 trimethy-

lation) and activating (histone H3 lysine4 trimethylation)
Current Opinion in Plant Biology 2017, 35:8–14 
chromatin marks at dormancy genes [37,38,39�]. Overall,

these studies showed that transcription levels of dorman-

cy genes are regulated by chromatin modifications

(Figure 1b).

The release of seed dormancy
After the induction of dormancy during seed maturation,

its level is relatively high in fully matured seeds. Changes

in seed dormancy continue to happen after seeds have

been shed from their mother plant and become apparent

upon imbibition by the ability of the seed to germinate or

not. Evolution of dormancy acted on seeds stored in the

seed bank experiencing fluctuating environmental condi-

tions, including changes in temperature and humidity.

Seed storage under agricultural or lab conditions usually

take place in controlled dry environments. We should

therefore separate events that occur during dry (controlled)

storage from those happening in the soil seed bank.

Dry seed storage

Relative humidity and temperature are critical parame-

ters that determine the nature of the reactions occurring

during seed storage. For Arabidopsis seeds a moisture

content (MC) of 0.06 g H2O g�1 dry weight corresponds

to the threshold above which the free available water can

allow catalytic reactions. Dormancy release at high MC
www.sciencedirect.com
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has similarities to that of (partially) imbibed seeds in the

soil seed bank. Below this critical MC (i.e. lab/agricultural

storage conditions) the nature of the reactions is non-

enzymatic [40�].

Several works have shown that transcription/translation,

degradation of metabolites (i.e. ABA), as well as enzy-

matically catalysed post-translational modifications of

proteins do not occur in the fully dry state [41,42��,43–
46]. Consequently, the molecular events occurring in dry

seeds are limited to passive reactions such as oxidation

and Amadori–Maillard reactions. Interestingly, reactive

oxygen species (ROS) are produced during dry storage of

orthodox seed species [47] causing oxidative reactions

and the formation of peroxy-lipids, carbonylated proteins,

and oxidized mRNA [48–53]. Although ‘passive’, these

oxidative reactions seem to selectively target a subset of

proteins and mRNAs as reviewed previously [54]. This

suggests an evolutionary mechanism that increased the

sensitivity to oxidation of some molecular components

related to the control of dormancy. The selective oxida-

tion of mRNAs and proteins that gradually occurs during

storage (oxidative imprinting) will turn into effect during

the first few hours of imbibition leading to the mainte-

nance or release of germination inhibition (Figure 2). The

levels of ROS and nitric oxide (NO) further increase

during early imbibition of non-dormant seeds and have

been demonstrated to contribute to the release of seed

dormancy [55–58]. This function of ROS and NO is at

least partially mediated by the N-end rule pathway

through degradation of group VII ethylene response

transcription factors indicating a role of protein degrada-

tion in dormancy release [59–61].

Three pioneering studies [42��,44,62��] have revealed the

importance of translational control for germination. In

sunflower and Arabidopsis the association of mRNA with

polysomes (active state of translation) is absent in dry

seeds. After 3 h imbibition in the dark the loading of

mRNA on polysomes increased gradually and translation

metabolism is fully active after 16 h imbibition [42��,44].

In agreement, proteomics analysis of radiolabelled neo-

synthesised polypeptides in Arabidopsis seed revealed

that de novo protein synthesis started at low rates during

the first 8 h of imbibition and that the 8–24 h imbibition

window coincides with the highest rate of polypeptide

production [62��]. The absence of correlation between

transcriptome and translatome in the same seed material

suggested that the regulation of germination is mainly

controlled by translation instead of transcription [42��].
The identity of mRNAs loaded into polysomes in the 16–
24 h imbibition window shows significant differences

between dormant and non-dormant seeds [42��]. Surpris-

ingly, in non-dormant seeds the proteins synthesized

during the first hours of imbibition are associated with

the seed maturation program, the germination program

being activated only later during the 8–24 h imbibition
www.sciencedirect.com 
window [62��]. This suggests a maintenance of the non-

germination metabolism during the first hours of imbibi-

tion, which opens a short decisional window. Altogether,

these recent advances indicate that after an early ‘deci-

sion phase’, a selective translation of mRNA occurs

depending on the outcome of the selected developmental

program, germination or dormancy (Figure 2b). Features

of the 50-UTR of mRNA have been proposed to play a

role in this selective recruitment [42��,62��].

The precise mechanism by which oxidative imprinting in

dry seeds is converted to molecular signals has still to be

discovered. It has been hypothesized that damaged

mRNA might fail to be translated and that stored carbo-

nylated proteins will be degraded by the 20S proteasome

[54]. The pro-oxidative environment in after-ripened

seed raises the hypothesis that redox regulation of protein

in early steps of imbibition might be part of the mecha-

nism. This is of particular interest since reversible redox

modifications of proteins are considered as molecular

switches controlling developmental processes as

reviewed previously [63–65].

Dormancy cycling in the seed bank

Dormant seeds that are shed from their mother plant in

the field accumulate in the soil to form a soil seed bank

(SSB). Seeds stored in the SSB will alternate between dry

and imbibed states imposed by annual and temporal

changes in soil humidity. Therefore, metabolic reactions

can take place including transcription and translation,

which are not considered in lab experiments with seeds

stored under dry conditions. Seeds in the SSB are able to

sense changes in the local soil environment and continu-

ally adjust their dormancy levels to complete germination

and seedling establishment in their preferred time of the

year [2]. Especially soil temperature and moisture indi-

cate a temporal window for germination and affect the

depth of dormancy and the sensitivity to spatial sensing

signals, such as light and nitrate [66–68]. If these signals

are not perceived, the seeds acquire dormancy again. This

secondary dormancy can be induced and relieved in the

same seed for several cycles until the environment is

favourable for seedling establishment [69].

In a pioneering study, dormancy genes identified in

laboratory experiments were analysed for their expression

in Arabidopsis seeds stored in the SSB in a temperate

climate [69]. Dormancy of these seeds increased during

winter as soil temperature declined, coinciding with an

increase in expression of ABA synthesis and GA catabo-

lism genes. This was linked to an initial increase in

endogenous ABA. A further increase in dormancy was

correlated with enhanced transcript levels of ABA signal-

ling genes. Dormancy declined in spring and summer. At

the same time, endogenous ABA levels decreased along

with transcript levels of positive ABA signalling genes,

whereas ABA catabolism and GA synthesis genes
Current Opinion in Plant Biology 2017, 35:8–14
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Figure 3
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Processes occurring in buried seeds. Gradual changes in environmental and seed factors during the year correlate with dormancy cycling in the

soil seed bank in a temperate climate. The intensity of the colours in the bars indicates the strength of the indicated processes and factors.
increased in expression [69] (Figure 3). Therefore, the

roles of ABA and GA in dormancy identified in lab

experiments are consistent with changes in transcript

levels of their biosynthesis and signalling genes in the

SSB.

DOG1 transcript levels showed a strong correlation with

both dormancy levels and soil temperature in buried

seeds [69]. These changes in transcript levels correlated

with changes in repressive histone marks at the DOG1
locus [39�]. This suggests an important role for DOG1 as

temperature sensor in seeds and is consistent with its

identified role as a major regulator of seed dormancy in lab

experiments (Figure 3). MFT expression also showed a

strong correlation with dormancy in the field, although its

relation with temperature seemed genotype dependent

[70]. During the low dormancy period in spring and

summer, environment sensing becomes more important

to detect the proper spatial signals for germination. This

was reflected by changes in nitrate sensing and expression

levels of genes involved in light and nitrate detection

[70,71].

Conclusions and future perspectives
The main factors involved in dormancy induction have

probably been identified. However, their interactions and

their regulation by developmental and environmental

signals need further elucidation. The release of seed

dormancy during dry seed storage and its cycling in the

seed soil bank is less understood, although some regula-

tory processes have been identified in the last few years.

We foresee important progress in this area in the near

future, especially concerning the relations between iden-

tified regulators. For instance, it might be expected that

major dormancy regulators, like DOG1, play a central role

in the integration of oxidative imprinting during early

imbibition. In addition, we anticipate that the identifica-

tion of proteins at the convergence point of different

dormancy pathways will be instrumental for our further

understanding of dormancy. Finally, future research
Current Opinion in Plant Biology 2017, 35:8–14 
should be directed at the events that take place during

early imbibition of seeds when all available information is

combined, accumulating in the binary decision to germi-

nate or not.
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