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ABSTRACT

Resistive walls, located closely to the plasma boundary, reduce the growth rates of external kink

modes to resistive time scales. For such slowly growing resistive wall modes the stabilization by

an active feedback system becomes feasible. The fully three-dimensional stability code STAR-

WALL, and the feedback optimization code OPTIM have been developed [P. Merkel, et al.,

21st IAEA Fusion Energy Conference 2006, Chengdu, China, paper TH/P3-8] to compute the

growth rates of resistive wall modes in the presence of non-axisymmetric, multiply-connected

wall structures and to model the active feedback stabilization of these modes. In order to demon-

strate the capabilities of the codes and to study the effect of the toroidal mode coupling caused

by multiply-connected wall structures, the codes are applied to test equilibria using the resistive

wall structures currently under debate for ITER [M. Shimada, et al., Nuclear Fusion 47, S1

(2007)] and ASDEX Upgrade [W. Köppendörfer, et al., Proc. of the 16th Symp. on Fusion

Technology, London, 1990, Vol. 1, p. 208].
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I. INTRODUCTION

A high plasma beta is a necessary condition for a working power plant. However, if neoclassical

tearing modes are avoided by a suitable choice of the current profile, external kink modes can

limit the achievable plasma beta in tokamak devices. These are ideal instabilities, growing on a

very short time scale of t � 10
� 6 s. They could be stabilized by an ideal wall sufficiently close

to the plasma boundary. But, in presence of a resistive wall the instabilities grow on a resistive

time scale of t � 10
� 2 � 10

� 3 s. Since these resistive wall modes (RWMs) grow on a longer

time scale, their feedback stabilization is technically feasible.

While tokamak plasmas are approximately axisymmetric, a realistic external wall will have

a complex three-dimensional shape. Designs for walls in ITER [1, 2] and for an additional,

closely fitting wall in ASDEX Upgrade (AUG) [3, 4] show multiply-connected structures (i.e.,

with holes), as shown in Fig. 1. These walls and the magnetic fields generated by the feedback

coils cause a violation of the axisymmetry resulting in a toroidal mode coupling, and, there-

fore, making a three-dimensional numerical treatment of the feedback stabilization problem

necessary.

Already existing codes for RWMs and feedback studies are either completely two-dimensional,

such as the MARS-F code [5] and the KINX code [6], or they use a three-dimensional model

for the wall and the feedback coils only, such as the MARS-F/CARIDDI code [7] and the

VALEN code [8]. All these codes neglect the toroidal mode coupling in their plasma stability

calculations.

For self-consistent, three-dimensional feedback stabilization studies, the stability code STAR-

WALL and the feedback optimization code OPTIM have been developed [9]. Taking several

toroidal harmonics simultanously into account, the STARWALL code is able to compute open-

loop and with a given set of feedback parameters also closed-loop resistive wall eigenmodes in

the presence of non-axisymmetric, multiply-connected wall structures. In order to find an op-

timal set of feedback parameters making the system stable an optimization procedure (OPTIM
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code) has been developed.

The goal of this paper is twofold. First of all, the capabilities of the codes are demonstrated

by studies of 3D effects caused by multiply-connected wall structures. Especially, for the first

time the toroidal mode coupling is taken into account. Secondly, the strength of the toroidal

mode coupling is compared for the ITER and AUG wall structures, which are currently under

debate. In Sec. II a brief introduction into the solution method of the three-dimensional feedback

stabilization problem is presented (for details see Refs 9,10). Sec. III contains a test case study.

Two similar test equilibria have been chosen in order to study the 3D effects for ITER and AUG

wall structures. In Sec. III A the test equilibria are described, whereas in Sec. III B their ideal

stability properties are investigated. Stability studies with resistive wall structures are presented

in Sec. III C, while the feedback stabilization of the RWMs is discussed in Sec. III D. Finally,

in Sec. IV the results are summerized and an outlook for further investigations is given.

II. THREE-DIMENSIONAL STABILITY STUDIES

The energy principle of the ideal MHD can be extended to the description of RWMs. In this

case the kinetic energy Wk, the potential energy of the plasma Wp, and the energy flux across

the plasma surface Ws, have to satisfy

� γ2Wk
���
ξ � �ξ � � Wp

���
ξ � �ξ � � Ws � 0 � (1)

This equation holds for eigenvalues γ, and normal eigenmodes
�
ξ assuming a time dependence

eγt . The general form of the energy flux

Ws � 1
2µ0

�
Sp

d f
� �n � �ξ � � �

B � �
B0 � (2)

can be expressed by

Ws � 1
2µ0

�
Vvac

dVB2 	 1
2γσd

�
Sw

d f J2
w (3)
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with permeability µ0, plasma surface Sp, volume of the vacuum region Vvac, exterior normal

�n, displacement vector
�
ξ, equilibrium magnetic field

�
B0, vacuum magnetic field perturbation

�
B � ∇ � �

A, and the resistive wall quantities: surface Sw, surface current
�
Jw, conductivity σ, and

wall thickness d.

Using flux co-ordinates (s � u � v), the displacement vector
�
ξ � �

ξs � ξu � ξv � is expanded in (u � v)-

Fourier space:

�
ξ

� �r � t � � eγt ∑
m � n

�
ξs

m � n �
s � sin

�
2π

�
mu 	 nv ��� 	 �

ξc
m � n �

s � cos
�
2π

�
mu 	 nv ��� � (4)

The radial co-ordinate s labels the magnetic surfaces (normalized toroidal flux), (u � v) are poloidal

and toroidal magnetic co-ordinates on the surfaces, and (m,n) are the poloidal and toroidal

Fourier indices. In radial direction a finite element approach is used.

In the vacuum region the vector potential
�
A has to satisfy Maxwell’s equations and boundary

conditions at the plasma-vacuum interface and the conducting wall. For the resistive wall the

boundary condition follows from Faraday’s and Ohm’s laws. With the time dependence
�
A � eγt ,

one finds for the thin wall approximation

�n � �
A �

���� ���
�

� �n � �ξ � �
B0 on Sp (plasma-vacuum interface),

0 on Sw (ideal wall),
or

� 1
σdγ

�n � �
Jw on Sw (resistive wall).

(5)

With the CAS3D stability code [11] internal and external eigenmodes of 3D equilibria can

be calculated without and with an ideally conducting wall (σ � ∞). With the STARWALL

code resistive wall modes are computed. Assuming the RWM is growing sufficiently slow,

the kinetic energy of the plasma perturbation is neglected: Wk
� �
ξ � �ξ � � 0. The plasma potential

energy matrix Wp
���
ξ � �ξ � is provided by the CAS3D code. The contribution Ws of the vacuum

region containing the resistive wall is determined by the magnetic field perturbation
�
B � ∇ � �

A.

The vector potential
�
A can be generated by surface current densities

�
js on the plasma-vacuum

interface, on the resistive wall, and in the feedback coils. A divergence-free surface current

density can be derived from a current potential Φ:
�
js � �n � ∇Φ. Discretizing the boundaries
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into triangles and assuming a constant current density on the triangles, the current potential Φ

is determined by a finite element method using a variational procedure [9].

III. APPLICATIONS

A. EQUILIBRIA

The numerical procedures are applied to two similar test equilibria which are unstable with re-

spect to n=1 and n=2 external kink modes. Fixed-boundary equilibria are calculated with the

VMEC code [12] for chosen plasma boundaries, pressure and advanced safety factor profiles

shown in Fig. 2 and Fig. 3. The shapes of these profiles and the form of the plasma bound-

aries are chosen intentionally identical in order to compare the effect of the toroidal mode

coupling, caused by different multiply-connected wall structures. Whereas, the following pa-

rameters have been chosen according to the ITER and AUG design: ITER/AUG: major radius

R0=6.40/1.71 m, minor radius a0=1.17/0.44 m, plasma current Ip=9.2/0.8 MA, magnetic field

strength B0=5.24/1.97 T, plasma pressure at the magnetic axis pa=530/73 kPa, volume-averaged

plasma pressure � p � =297/41 kPa, volume-averaged plasma beta � β � =2.53/2.50%, and beta

normalized βN=2.51/2.62.

B. IDEAL STABILITY

Without a conducting wall the equilibria are unstable with respect to external kink modes. Be-

cause of the axisymmetry of the equilibria, the eigenmodes are classified by one toroidal index

n only. With the CAS3D stability code n=1 and n=2 kink modes are calculated. As an example,

Fig. 4 shows the leading harmonics ξs � s
m � n, ξs � c

m � n of the radial displacment ξs versus the toroidal

flux s for the n=1 (Fig. 4a) and n=2 (Fig. 4b) kink modes of the ITER case. The growth rates of

these modes are γ � 19000 1/s for n=1 and γ � 7201 1/s for n=2.

In order to stabilize such modes, conducting walls have been designed for ITER, and for AUG
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additional wall structures are under consideration. In Figs 1 and 2 preliminary designs of the

walls and feedback coils are shown.

The ITER wall is poloidally and toroidally closed. There are 45 holes at the low field side

in approximately equidistant poloidal and toroidal distances. The outer wall of the ITER wall

structure has been neglected because its additional stabilizing effect is only of the order of

5-10%.

The additional conducting wall for AUG consists of a toroidally closed segment, located at the

low field side, where the amplitudes of the kink modes are largest. The relatively large area of

the 16 holes in the AUG wall reduces the stabilizing effect of the wall considerably. Therefore,

it is advantageous that the relative plasma-wall distance of the AUG wall ∆w
�
a0 will be much

smaller compared to the ITER case (ITER/AUG: ∆w
�
a0 = 0.50/0.17, see Fig. 2).

C. STABILITY STUDIES WITH RESISTIVE WALL STRUCTURES

Analogous to the method presented in Ref. 13, the resistive wall mode and feedback stabi-

lization problem is separated into two parts: the open- and the closed-loop problem. In the

open-loop part, a complete set of eigenfunctions of the plasma-resistive wall system is deter-

mined. The feedback coils are included in the resistive wall configuration. They are additional

passive resistive elements without an applied external voltage.

Taking the finite resistivity of the wall structures into account, the growth rates of the resistive

wall modes for the ITER and AUG examples are calculated with the STARWALL code for two

different wall structures (axisymmetric, closed walls and multiply-connected walls). For ITER,

the closed wall is obtained from the multiply-connected wall by closing the holes, while for

AUG the wall segment is also extended in poloidal direction. It is important to note at this place

that for the 3D case both torodial Fourier indices n=1 and n=2 are simultaniously taken into

account. For ITER as well as for AUG four unstable resistive wall modes have been found.

Table I summarizes the normalized growth rates γµ0σd of these modes. Comparing the results
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for the multiply-connected walls (column: 3D) and for axisymmetric, closed walls (column:

2D) the eigenvalues for the most unstable modes are found to be 4.4 m
� 1 for the 3D ITER case

and 10.32 m
� 1 for the 3D AUG case. The eigenvalues of the 2D closed wall configurations

are two-fold degenerate, while they are non-degenerate in the 3D case. As expected, the AUG

wall breaks the axisymmetry stronger than the ITER wall. Note that the toroidal Fourier index n

given in Table I characterizes the modes in case of an axisymmetric, closed wall. In the 3D case,

the modes are dominated by the given n, but also the other toroidal Fourier index contributes to

these modes.

Figure 5 shows the leading harmonics ξs � s
m � n, ξs � c

m � n of the eigenfunctions for the above-given

eigenvalues which represent the most unstable modes. Shown is the radial component ξs of

the displacement vector
�
ξ as a function of the radial co-ordinate s for ITER (Fig. 5a) and AUG

(Fig. 5b). While for ITER the leading harmonics have the same toroidal Fourier index (n=2), for

AUG Fourier harmonics with n=1 and n=2 contribute to the eigenfunction. That is, the complex

3D structure of the AUG wall leads to a toroidal mode coupling.

Finally, Figs 6a,b show contour plots of the current potential Φ on the wall for the most unstable

modes of ITER and AUG. The vertical and horizontal axes of the flat projection of the wall

indicate the poloidal and toroidal directions, respectively. The contour lines are the current

lines of the surface current density. The figures illustrate the reduction of the stabilizing wall

currents by the holes, leading to an increase of the growth rates (see Table I).

D. FEEDBACK STABILIZATION

In the closed-loop part, which includes sensor loops and feedback logics, voltages are applied

to the feedback coils. In the voltage-control feedback model, which is used in this study, all

coils and sensors are grouped into one or more toroidal bands. Each coil band k (k=1,...,K) is

linked to each sensor band l (l=1,...,L) via a proportional gain matrix Gk � l. These matrices map

the sensor signals onto voltages which are applied to the coils. In addition, a cascade control
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is applied to each coil, which feeds back the current flowing in a coil onto the coil voltage by

an additional gain factor � RC
k which is equal for each member of the k-th coil band. This is

equivalent to changing the coil’s resistance artificially by RC
k . The voltage applied to the i-th

coil in the k-th toroidal band is then given by

Uk
i �

L

∑
l � 1

NS
l

∑
j � 1

Gk � l
i � j Sl

j
� RC

k Ik
i � i � 1 � � � � � NC

k (6)

where Gk � l
i � j denotes the element (i,j) of the matrix Gk � l. NC

k and NS
l are the total numbers of coils

in the k-th toroidal band and of the sensors in the l-th sensor band, respectively. Ik
i is the current

flowing in the i-th coil, and Sl
j the signal measured by the j-th sensor in that band.

The problem is to find Gk � l and RC
k so that the system is stable. However, to run the closed-loop

computations repeatedly for different Gk � l and RC
k until all eigenvalues have negative real parts

is computationally very tedious. Instead, the problem is reduced in a physically reasonable

manner. First of all, the gain matrices Gk � l are constructed in such a way that each coil band

produces a field classified by one toroidal Fourier index n in response to measured perturbations

with the same n. This response is a linear combination of a response having the same toroidal

phase as the perturbation, and another one which is phase shifted by 90/n degrees. Thus,

Gk � l
i � j � ∑

n
αk � l

n cos
�
nϕk � l

i � j � 	 βk � l
n sin

�
nϕk � l

i � j � � (7)

where ϕk � l
i � j is the toroidal angle between coil i of coil band k and sensor j of sensor band l. The

sum runs over all n’s to be controlled. Here, n=1,2 is used. Secondly, the dimension of the

system is reduced by projecting the system’s matrix onto a subspace. This subspace is defined

by those open-loop eigenvectors which are considered to be most important for the problem.

In order to determine the remaining free parameters αk � l
n , βk � l

n , and RC
k of the reduced problem

the OPTIM code is applied. It uses the so-called gradient bundle method [14] for the nonlinear

search of the feedback parameters with the objective to minimize the real parts of all eigenvalues

[9]. Having self-consistently solved the problem for the reduced system does not necessarily
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imply that all modes are stable for the full system. For a final check the full system is solved

with the STARWALL code using the parameters obtained for the reduced system.

Figure 7 shows the complex normalized eigenvalues γµ0σd for the STARWALL open-loop, and

STARWALL/OPTIM closed-loop computations obtained for ITER (Fig. 7a) and AUG (Fig. 7b).

For the STARWALL open- and closed-loop computations, 5199 (ITER) and 9022 (AUG) eigen-

vectors have been used, whereas the dimension of the reduced OPTIM subspace is 1024 (ITER)

and 1536 (AUG). The figures show that, in both cases, a stabilizing parameter set has been

found, as all eigenvalues’ real parts are negative. As expected, there are moderate deviations

between the eigenvalues obtained with reduced and full-size calculations.

IV. SUMMARY AND OUTLOOK

In this paper a brief report on the current status and the first results of fully 3D resistive wall

mode and feedback stabilization computations are presented. Two similar test equilibria have

been used to investigate the toroidal mode coupling caused by multiply-connected wall struc-

tures which are currently under debate for ITER and AUG. Taking torodial mode coupling into

account, four unstable resistive wall modes have been found for both test cases. Feedback sta-

bilization was applicable for all the cases. The results also indicate that for ITER toroidal mode

coupling may be insignificant. However, in comparison to the respective closed wall, the holes

in the wall lead to a considerable increase of the growth rate for both, ITER and AUG. Further-

more, the computations show that the complex structure of the additional AUG wall segment

leads to a significant coupling of the n=1 and n=2 Fourier harmonics.

Clearly, a detailed analysis of the parameter space of the equilibria, dimensional effects (2D

vs. 3D), and the sensitivity with respect to the feedback parameters is needed. However, this is

beyond the scope of this paper but currenly under intensive investigation.
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FIGURE CAPTIONS

Fig. 1: 3D representation of preliminarily designed resistive wall structures and feed-

back coils for (a) ITER and (b) AUG.

Fig. 2: Cross-sections of (a) ITER and (b) AUG test equilibria showing flux surfaces

and plasma boundaries, as well as the locations of resistive walls, feedback coils

(ITER: 2 toroidal bands, AUG: 3 toroidal bands), and sensors (ITER/AUG: 1

toroidal band) measuring the poloidal magnetic field perturbation.

Fig. 3: (a) Pressure and (b) q-profiles as function of ρtor � �
s (s = normalized toroidal

flux) for ITER (solid line) and AUG (dashed line) test equilibria.

Fig. 4: Harmonics ξs � s
m � n, ξs � c

m � n of the radial displacement ξs as function of s for the unsta-

ble (a) n=1 (γ=19000 1/s) and (b) n=2 (γ=7201 1/s) kink modes of the ITER test

equilibrium without external walls and coils.

Fig. 5: Harmonics ξs � s
m � n, ξs � c

m � n of the radial displacement ξs as function of s for the most

unstable RWM of the (a) ITER (γµ0σd � 4 � 4 1/m) and the (b) AUG test equillib-

rium (γµ0σd � 10 � 32 1/m).

Fig. 6: (Color online) Contour plots of the current potential Φ on the (a) ITER and (b)

AUG wall. The current potential distributions are produced by the RWMs shown

in Figs 5a and 5b. The vertical and horizontal axes of the flat projections of the

walls indicate the poloidal and toroidal directions, respectively.

Fig. 7: Open and closed-loop eigenvalue spectra for (a) ITER and (b) AUG.
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Table I: unstable normalized
eigenvalues γµ0σd [1/m]

ITER ITER AUG AUG
n 2D 3D 2D 3D
1 0.79 1.65 1.79 10.32
1 0.79 1.64 1.79 9.91
2 1.65 4.40 1.69 6.24
2 1.65 4.38 1.69 5.86
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