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Abstract

Background

Biomedical knowledge bases (KB’s) have become important assets in life sciences.
Prior work on KB construction has three major limitations. First, most biomedical
KBs are manually built and curated, and cannot keep up with the rate at which new
findings are published. Second, for automatic information extraction (IE), the text genre
of choice has been scientific publications, neglecting sources like health portals and
online communities. Third, most prior work on IE has focused on the molecular level
or chemogenomics only, like protein-protein interactions or gene-drug relationships, or
solely address highly specific topics such as drug effects.

Results

We address these three limitations by a versatile and scalable approach to automatic KB
construction. Using a small number of seed facts for distant supervision of pattern-based
extraction, we harvest a huge number of facts in an automated manner without requiring
any explicit training.

We extend previous techniques for pattern-based IE with confidence statistics, and we
combine this recall-oriented stage with logical reasoning for consistency constraint
checking to achieve high precision. To our knowledge, this is the first method that uses
consistency checking for biomedical relations. Our approach can be easily extended to
incorporate additional relations and constraints.

We ran extensive experiments not only for scientific publications, but also for
encyclopedic health portals and online communities, creating different KB’s based on
different configurations. We assess the size and quality of each KB, in terms of number
of facts and precision. The best configured KB, KnowLife, contains more than 500,000
facts at a precision of 93% for 13 relations covering genes, organs, diseases, symptoms,
treatments, as well as environmental and lifestyle risk factors.

Conclusion

KnowLife is a large knowledge base for health and life sciences, automatically
constructed from different Web sources. As a unique feature, KnowLife is harvested
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from different text genres such as scientific publications, health portals, and online
communities. Thus, it has the potential to serve as one-stop portal for a wide range of
relations and use cases. To showcase the breadth and usefulness, we make the KnowLife
KB accessible through the health portal (http://knowlife.mpi-inf.mpg.de).

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0549-5) contains
supplementary material, which is available to authorized users.

Introduction
Large knowledge bases (KB’s) about entities, their properties, and the relationships
between entities, have become an important asset for semantic search, analytics, and smart
recommendations over Web contents and other kinds of Big Data [1,2]. Notable projects
are DBpedia [3], Yago [4], and the Google Knowledge Graph with its public core Freebase
(freebase.com).

In the biomedical domain, KB’s such as the Gene Ontology, the Disease Ontology, the
National Drug File - Reference Terminology, and the Foundational Model of Anatomy
are prominent examples of the rich knowledge that is digitally available. However, each
of these KB’s is highly specialized and covers only a relative narrow topic within the life
sciences, and there is very little interlinkage between the KB’s. Thus, in contrast to the
general-domain KB’s that power Web search and analytics, there is no way of obtaining
an integrated view on all aspects of biomedical knowledge. The lack of a “one-stop” KB
that spans biological, medical, and health knowledge, hinders the development of advanced
search and analytic applications in this field.

In order to build a comprehensive biomedical KB, the following three bottlenecks must be
addressed.

Beyond manual curation. Biomedical knowledge is advancing at rates far greater than any
single human can absorb. Therefore, relying on manual curation of KB’s is bound to be a
bottleneck. To fully leverage all published knowledge, automated information extraction
(IE) from input texts is mandatory.

Beyond scientific literature. Besides scientific publications found in PubMed Medline and
PubMed Central, there are substantial efforts on patient-oriented health portals such as Mayo
Clinic, Medline Plus, UpToDate, Wikipedia’s Health Portal, and there are also popular
online discussion forums such as healthboards.com or patient.co.uk. All this constitutes a
rich universe of information, but the information is spread across many sources, mostly in
textual, unstructured and sometimes noisy form. Prior work on biomedical IE has focused on
scientific literature only, and completely disregards the opportunities that lie in tapping into
health portals and communities for automated IE.

Beyond molecular entities. IE from biomedical texts has strongly focused on entities and
relations at the molecular level; a typical IE task is to extract protein-protein interactions.
There is very little work on comprehensive approaches that link diverse entity types,
spanning genes, diseases, symptoms, anatomic parts, drugs, drug effects, etc. In particular,
no prior work on KB construction has addressed the aspects of environmental and lifestyle
risk factors in the development of diseases and the effects of drugs and therapies.

Background
The main body of IE research in biomedical informatics has focused on molecular entities
and chemogenomics, like Protein-Protein Interactions (PPI) or gene-drug relations. These

http://knowlife.mpi-inf.mpg.de
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efforts have been driven by competitions such as BioNLP Shared Task (BioNLP-ST) [5]
and BioCreative [6]. These shared tasks come with pre-annotated corpora as gold standard,
such as the GENIA corpus [7], the multi-level event extraction (MLEE) corpus [5], and
various BioCreative corpora. Efforts such as the Pharmacogenetics Research Network and
Knowledge Base (PharmGKB) [8], which curates and disseminates knowledge about the
impact of human genetic variations on drug responses, or the Open PHACTS project [9],
a pharmacological information platform for drug discovery, offer knowledge bases with
annotated text corpora to facilitate approaches for these use cases.

Most IE work in this line of research relies on supervised learning, like Support Vector
Machines [10-13] or Probabilistic Graphical Models [14,15]. The 2012 i2b2 challenge
aimed at extracting temporal relations from clinical narratives [16]. Unsupervised
approaches have been pursued by [17-20], to discover associations between genes and
diseases based on the co-occurrence of entities as cues for relations. To further improve
the quality of discovered associations, crowdsourcing has also been applied [21,22].
Burger et al. [23] uses Amazon Mechanical Turk to validate gene-mutation relations
which are extracted from PubMed abstracts. Aroyo et al. [24] describes a crowdsourcing
approach to generate gold standard annotations for medical relations, taking into account the
disagreement between crowd workers.

Pattern-based approaches exploit text patterns that connect entities. Many of them [25-28]
manually define extraction patterns. Kolá#ik et al. [29] uses Hearst patterns [30] to identify
terms that describe various properties of drugs. SemRep [31] manually specifies extraction
rules obtained from dependency parse trees. Outside the biomedical domain, sentic patterns
[32] leverage commonsense and syntactic dependencies to extract sentiments from movie
reviews. However, while manually defined patterns yield high precision, they rely on expert
guidance and do not scale to large and potentially noisy inputs and a broader scope of
relations. Bootstrapping approaches such as [33,34] use a limited number of seeds to learn
extraction patterns; these techniques go back to [35,36]. Our method follows this paradigm,
but extends prior work with additional statistics to quantify the confidence of patterns and
extracted facts.

A small number of projects like Sofie/Prospera [37,38] and NELL [39] have combined
pattern-based extraction with logical consistency rules that constrain the space of fact
candidates. Nebot et al. [40] harness the IE methods of [38] for populating disease-centric
relations. This approach uses logical consistency reasoning for high precision, but the small
scale of this work leads to a very restricted KB. Movshovitz-Attias et al. [41] used NELL to
learn instances of biological classes, but did not extract binary relations and did not make
use of constraints either. The other works on constrained extraction tackle non-biological
relations only (e.g., birthplaces of people or headquarters of companies). Our method builds
on Sofie/Prospera, but additionally develops customized constraints for the biomedical
relations targeted here.

Most prior work in biomedical Named Entity Recognition (NER) specializes in recognizing
specific types of entities such as proteins and genes, chemicals, diseases, and organisms.
MetaMap [42] is the most notable tool capable of recognizing a wide range of entities. As
for biomedical Named Entity Disambiguation (NED), there is relatively little prior work.
MetaMap offers limited NED functionality, while others focus on disambiguating between
genes [43] or small sets of word senses [44].

Most prior IE work processes only abstracts of Pubmed articles; few projects have
considered full-length articles from Pubmed Central, let alone Web portals and online
communities. Vydiswaran et al. [45] addressed the issue of assessing the credibility of
medical claims about diseases and their treatments in health portals. Mukherjee et al. [46]
tapped discussion forums to assess statements about side effects of drugs. White et al. [47]
demonstrated how to derive insight on drug effects from query logs of search engines.
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Building a comprehensive KB from such raw assets has been beyond the scope of these
prior works.

Contributions
We present KnowLife, a large KB that captures a wide variety of biomedical knowledge,
automatically extracted from different genres of input sources. KnowLife’s novel approach
to KB construction overcomes the following three limitations of prior work.

Beyond manual curation. Using distant supervision in the form of seed facts from
existing expert-level knowledge collections, the KnowLife processing pipeline is able
to automatically learn textual patterns and harvest a large number of relational facts
from such patterns. In contrast to prior work on IE for biomedical data which relies on
extraction patterns only, our method achieves high precision by specifying and checking
logical consistency constraints that fact candidates have to satisfy. These constraints are
customized for the relations of interest in KnowLife, and include constraints that couple
different relations. The consistency constraints are available as supplementary material (see
Additional file 1). KnowLife is easily extensible, since new relations can be added with little
manual effort and without requiring explicit training; only a small number of seed facts for
each new relation is needed.

Beyond scientific literature. KnowLife copes with input text at large scale – considering
not only knowledge from scientific publications, but also tapping into previously neglected
textual sources like Web portals on health issues and online communities with discussion
boards. We present an extensive evaluation of 22,000 facts on how these different genres
of input texts affect the resulting precision and recall of the KB. We also present an error
analysis that provides further insight on the quality and contribution of different text genres.

Beyond molecular entities. The entities and facts in KnowLife go way beyond the
traditionally covered level of proteins and genes. Besides genetic factors of diseases, the
KB also captures diseases, therapies, drugs, and risk factors like nutritional habits, life-style
properties, and side effects of treatments.

In summary, the novelty of KnowLife is its versatile, largely automated, and scalable
approach for the comprehensive construction of a KB – covering a spectrum of different
text genres as input and distilling a wide variety facts from different biomedical areas as
output. Coupled with an entity recognition module that covers the entire range of biomedical
entities, the resulting KB features a much wider spectrum of knowledge and use-cases than
previously built, highly specialized KB’s. In terms of methodology, our extraction pipeline
builds on existing techniques but extends them, and is specifically customized to the life-
science domain. Most notably, unlike prior work on biomedical IE, KnowLife employs
logical reasoning for checking consistency constraints, tailored to the different relations
that connect diseases, symptoms, drugs, genes, risk factors, etc. This constraint checking
eliminates many false positives that are produced by methods that solely rely on pattern-
based extraction.

In its best configuration, the KnowLife KB contains a total of 542,689 facts for 13
different relations, with an average precision of 93% (i.e., validity of the acquired facts)
as determined by extensive sampling with manual assessment. The precision for the
different relations ranges from 71% (createsRisk: ecofactor × disease) to 97% (sideEffect:
(symptom # disease) × drug). All facts in KnowLife carry provenance information, so that
one can explore the evidence for a fact and filter by source. We developed a web portal that
showcases use-cases from speed-reading to semantic search along with richly annotated
literature, the details of which are described in the demo paper [48].
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Methods
Our method for harvesting relational facts from text sources is designed as a pipeline of
processing stages; Figure 1 gives a pictorial overview. A fact is a triple consisting of two
entities e1,e2 and a relation R between them; we denote a fact by R(e1,e2). In the following,
we describe the input data and each stage of the pipeline.

Figure 1

Overview of the KnowLife KB and processing pipeline.

Input sources
Dictionary We use UMLS (Unified Medical Language System) as the dictionary of
biomedical entities. UMLS is a metathesaurus, the largest collection of biomedical
dictionaries containing 2.9 million entities and 11.4 million entity names and synonyms.
Each entity has a semantic type assigned by experts. For instance, the entities IL4R and
asthma are of semantic types Gene or Genome and Disease or Syndrome, respectively.
The UMLS dictionary enables KnowLife to detect entities in text, going beyond genes and
proteins and covering entities about anatomy, physiology, and therapy.

Relations KnowLife currently supports 13 binary relations between entities, each with a
type signature constraining its domain and range (i.e., its left and right argument types).
Table 1 shows that, for instance, the relation affects only holds between diseases and organs,
but not between diseases and drugs. Each type signature consists of multiple fine-grained
semantic types defined by UMLS; specifics for all relations are provided as supplementary
material (see Additional file 2).

Table 1

KnowLife relations, their type signatures, and number of seeds
Relation Domain Range Seed facts
AffectsDiseaseOrgan23AggravatesEcofactorDisease21AlleviatesDrugDisease18CausesDiseaseDisease70ComplicationOfDiseaseDisease5ContraindicatesDrugDisease26CreatesRiskEcofactorDisease103DiagnosesDeviceDisease29InteractsDrugDrug9IsSymptomSymptom
or DiseaseDisease69ReducesRiskDrug or BehaviorDisease24SideEffectSymptom or
DiseaseDrug12TreatsDrugDisease58

Seed facts. A seed factR(e1,e2) for relation R is a triple presumed to be true based on expert
statements. We collected 467 seed facts (see Table 1) from the medical online portal
uptodate.com, a highly regarded clinical resource written by physician authors. These seed
facts are further cross-checked in other sources to assert their veracity. Example seed facts
include isSymptom(ChestPain,MyocardialInfarction) and createsRisk(Obesity,Diabetes).

Text Corpus. A key asset of this work is that we tap into different genres of text; Table
2 gives an overview. PubMed documents are scientific texts with specialized jargon; they
have been the de-facto standard corpus for biomedical text mining. We took all PubMed
documents published in 2011 that are indexed with disease-, drug-, and therapy-related
MeSH (Medical Subject Heading) terms. We further prune out documents from inapplicable
journals such as those not in the English language, or those about medical ethics. Web
portals and encyclopedic articles are collaboratively or professionally edited, providing
credible information in layman-oriented language. Examples include uptodate.com,
mayoclinic.com, and the relevant parts of en.wikipedia.org. In contrast, discussion forums
of online communities, where patients and physicians engage in discussions (often
anonymously), have a colloquial language style, sometimes even slang. We tap into all three
genres of text to demonstrate not only the applicability of our system, but also the amount
of information buried in all of them. We use the Stanford CoreNLP software to preprocess



6 KnowLife: a versatile approach for constructing a large knowledge graph for biomedical sciences

all texts, such that they are tokenized, split into sentences, tagged with parts-of-speech,
lemmatized, and parsed into syntactic dependency graphs.

Table 2

Overview of KnowLife’s input corpus
Genre Source Documents Sentences Scientific PublicationsPubMed
Medline580,8925,875,006PubMed Central12,5322,765,580Encyclopedic
ArticlesDrugs.com31,8377,586,236Mayo Clinic2,166570,325Medline
Plus3,076197,055RxList2,5151,102,791Wikipedia Health20,893787,148Social
SourcesHealthboards.com752,77837,270,371Patient.co.uk44,6101,081,420 Total 1,451,299
57,235,932

Entity recognition
The first stage in the KnowLife pipeline identifies sentences that may express a relational
fact. We apply entity recognition to every sentence: a sentence with one or more entities
is relevant for further processing. To efficiently handle the large dictionary and process
large input corpora, we employ our own method [49], using string-similarity matching
against the names in the UMLS dictionary. This method is two orders of magnitude faster
than MetaMap [42], the most popular biomedical entity recognition tool, while maintaining
comparable accuracy. Specifically, we use locality sensitive hashing (LSH) [50] with min-
wise independent permutations (MinHash) [51] to quickly find matching candidates. LSH
probabilistically reduces the high-dimensional space of all character-level 3-grams, while
MinHash quickly estimates the similarity between two sets of 3-grams. A successful match
provides us also with the entity’s semantic type. If multiple entities are matched to the same
string in the input text, we currently do not apply explicit NED to determine the correct
entity. Instead, using the semantic type hierarchy of UMLS, we select the most specifically
typed entities. Later in the consistency reasoning stage, we leverage the type signatures to
futher prune out mismatching entities. At the end of this processing stage, we have marked-
up sentences such as

• Anemia is a common symptom of sarcoidosis.

• Eventually, a heart attack leads to arrythmias.

• Ironically, a myocardial infarction can also lead to pericarditis.

where myocardial infarction and heart attack are synonyms representing the same canonical
entity.

Pattern gathering
Our method extracts textual patterns that connect two recognized entities, either by the
syntactic structure of a sentence or by a path in the DOM (Document Object Model) tree
of a Web page. We extract two types of patterns: Sentence-level Patterns: For each pair
of entities in a sentence, we extract a sequence of text tokens connecting the entities in
the syntactic structure of the sentence. Specifically, this is the shortest path between the
entities in the dependency graph obtained from parsing the sentence. However, this path
does not necessarily contain the full information to deduce a relation; for instance, negations
are not captured or essential adjectives are left out. Therefore, for every captured word
the following grammatical dependencies are added: negation, adjectival modifiers, and
adverbial modifiers. The resulting word sequence constitutes a sentence-level pattern.
An example is shown in Figure 2(a). Document-structure Patterns: In Web portals like
Mayo Clinic or Wikipedia, it is common that authors state medical facts by using specific
document structures, like titles, sections, and listings. Such structures are encoded in the
DOM tree of the underlying HTML markup. First, we detect if the document title, that is,
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the text within the <h1> tag in terms of HTML markup, is a single entity. Next, we detect if
an entity appears in an HTML listing, that is, within an <li> tag. Starting from the <h1> tag,
our method traverses the DOM tree downwards and determines all intermediate headings,
i.e. <h2> to <h6> tags, until we reach the aforementioned <li> tag. The document title
serves as left-hand entity, the intermediate headings as patterns, and the <li> text as right-
hand entity. These are candidates for a relation or an entity argument in a relational fact.
Figure 2(b) shows an example.

Figure 2

Pattern gathering in KnowLife.(a) Sentence-level pattern: Dependency graph of a sentence
with recognized entities anemia and sarcoidosis. By computing the shortest path (bold
lines) between the two entities, the word sequence symptom of is extracted. This sequence
is extended by an adjectival modifier (amod) which results in the extracted pattern common
symptom of. (b) Document-structure pattern: The entity Diclofenac is found within the
document title and Belching within an <li> element. Take Diclofenac as the left-hand entity.
By traversing the DOM tree downwards and coming across the heading Side Effects, we
extract the heading’s text as a pattern. Further traversal leads us to Belching, which yields
the right-hand entity for the pattern.

Pattern analysis
The goal of the pattern analysis is to identify the most useful seed patterns out of all the
pattern candidates gathered thus far. A seed pattern should generalize the over-specific
phrases encountered in the input texts, by containing only the crucial words that express a
relation and masking out (by a wildcard or part-of-speech tag) inessential words. This way
we arrive at high-confidence patterns.

We harness the techniques developed in the Prospera tool [38]. First, an itemset mining
algorithm is applied to find frequent sub-sequences in the patterns. The sub-sequences are
weighed by statistical analysis, in terms of confidence and support. We use the seed facts
and their co-occurrences with certain patterns as a basis to compute confidence, such that the
confidence for a pattern q in a set of sentences S is defined as

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym}
\usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}
\usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt}
\begin{document} $$\begin{array}{*{20}l} {}&confidence(q) =\\ {}&\frac{|\{s \in S ~|
~ \exists (e_{1},e_{2}) \in SX(R_{i})\: \ q,e_{1},e_{2} \ occur \ in \ s\}|}{|\{s \in S ~|~
\exists (e_{1},e_{2}) \in SX(R_{i}) \cup CX(R_{i}) \: \ q,e_{1},e_{2} \ occur \ in \ s\}|}
\end{array} $$ \end{document}

where SX(Ri) is the set of all entity tuples (e1,e2) appearing in any seed fact with relation Ri

and CX(Ri) is the set of all entity tuples (e1,e2) appearing in any seed fact without relation
Ri. The rationale is that the more strongly a pattern correlates with the seed-fact entities of
a particular relation, the more confident we are that the pattern expresses the relation. The
patterns with confidence greater than a threshold (set to 0.3 in our experiments) are selected
as seed patterns.

Each non-seed pattern p is then matched against the seed pattern set Q using Jaccard
similarity to compute a weight w associating p with a relation.

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym}
\usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}
\usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt}
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\begin{document} $$w = max\{Jaccard(p, q) \times confidence(q) ~|~ q \in Q \} $$
\end{document}

The pattern occurrences together with their weights and relations serve as fact candidates.
Table 3 shows sample seed patterns computed from seed facts. The table also gives
examples for automatically acquired patterns and facts.

Table 3

Examples of seed facts and seed patterns as well as automatically acquired patterns
and facts
Seed facts Seed patterns Relations Confidences Patterns Harvested facts c a u s e
s(T u b e r c u l o s i s,P e r i c a r d i t i s)progresscreatesRisk0.5which progresses to c a
u s e s(P e r i c a r d i t i s,T a m p o n a d e) c r e a t e s R i s k(O b e s i t y,D i a b e t e
s)causes0.5still progressing to c r e a t e s R i s k(W a r t,S k i n c a r c i n o m a) c r e a t e s
R i s k(O b e s i t y,A s t h m a)risk factorcreatesRisk1.0children risk factors c r e a t e s R i s
k(W o o d D u s t,A s t h m a) c r e a t e s R i s k(M a l a r i a,S t i l l b i r t h)have risk factors
c r e a t e s R i s k(G o l f,T e n d i n i t i s)known risk factors c r e a t e s R i s k(G B v i r u
s C,H e p a t i t i s) i s S y m p t o m(P a i n,C r o h n D i s e a s e)occuraffects0.67occurs
anywhere a f f e c t s(H a s h i m o t o # s,T h y r o i d G l a n d) a f f e c t s(P e r i c a r d i t i
s,H e a r t)isSymptom0.33occurs patients i s S y m p t o m(A n e m i a,S a r c o i d o s i s)

Consistency reasoning
The pattern analysis stage provides us with a large set of fact candidates and their supporting
patterns. However, these contain many false positives. To prune these out and improve
precision, the last stage of KnowLife applies logical consistency constraints to the fact
candidates and accepts only a consistent subset of them.

We leverage two kinds of manually defined semantic constraints: i) the type signatures
of relations (see Table 1) for type checking of fact candidates, and ii) mutual exclusion
constraints between certain pairs of relations. For example, if a drug has a certain symptom
as a side effect, it cannot treat this symptom at the same time. These rules allow us to handle
conflicting candidate facts. The reasoning uses probabilistic weights derived from the
statistics of the candidate gathering phase.

To reason with consistency constraints, we follow the framework of [37], by encoding all
facts, patterns, and grounded (i.e., instantiated) constraints into weighted logical clauses.
We extend this prior work by computing informative weights from the confidence statistics
obtained in the pattern-based stage of our IE pipeline. We then use a weighted Max-Sat
solver to reason on the hypotheses space of fact candidates, to compute a consistent subset
of clauses with the largest total weight. Due to the NP-hardness of the weighted Max-Sat
problem, we resort to an approximation algorithm that combines the dominating-unit-clause
technique [52] with Johnson’s heuristic algorithm [53]. Suchanek et al. [37] has shown that
this combination empirically gives very good approximation ratios. The complete set of
consistency constraints is in the supplementary material (see Additional file 1).

Results and discussion
We ran extensive experiments with the input corpora listed in Table 2, and created different
KB’s based on different configurations. We assess the size and quality of each KB, in terms
of their numbers of facts and their precision evaluated by random sampling of facts. Tables
4 and 5 give the results, for different choices of input corpora and different configurations
of the KnowLife pipeline, respectively. Recall is not evaluated, as there is no gold standard
for fully comprehensive facts. To ensure that our findings are significant, for each relation,
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we computed the Wilson confidence interval at # = 5%, and kept evaluating facts until
the interval width fell below 5%. An interval width of 0% means that all the facts were
evaluated. Four different annotators evaluated the facts, judging them as true or false based
on provenance information. As for inter-annotator agreement, 22,002 facts were evaluated;
the value of Fleiss’ Kappa was 0.505, which indicates a moderate agreement among all
four annotators. The complete set of evaluated facts is in the supplementary material (see
Additional file 3).

Table 4

Evaluation of different text genres
Relation Precision Harvested facts Encyclopedic Scientific Encyclopedic +
Encyclopedic + Encyclopedic Scientific Encyclopedic + Encyclopedic + sources
sources scientific scientific + sources sources scientific scientific + sources social
sources sources social sources Affects0.855 ±0.0470.762 ±0.049 0.825 ±0.047 0.767
±0.0481,278450 2,388 5,053Aggravates0.810 ±0.0410.459 ±0.044 0.829 ±0.049
0.785 ±0.049130371 432 708Alleviates0.953 ±0.0390.735 ±0.048 0.786 ±0.046 0.736
±0.0489034,433 4,530 6,790Causes0.904 ±0.0390.674 ±0.049 0.801 ±0.049 0.792
±0.04928,11919,203 47,463 62,407Complication0.917 ±0.0390.397 ±0.049 0.897 ±0.041
0.869 ±0.0461,0111,475 1,524 1,566Contraindicates0.874 ±0.0480.710 ±0.000 0.961
±0.030 0.908 ±0.04851249 1,808 1,831CreatesRisk0.878 ±0.0470.569 ±0.049 0.720
±0.040 0.620 ±0.0494,40724,695 18,508 32,211Diagnoses0.964 ±0.0350.839 ±0.049
0.860 ±0.048 0.840 ±0.0478135,920 4,832 9,743Interacts0.964 ±0.0350.709 ±0.000 0.965
±0.034 0.957 ±0.034164,912103 164,912 164,912IsSymptom0.891 ±0.0420.482 ±0.050
0.858 ±0.048 0.694 ±0.0484,8782,320 6,395 11,017ReducesRisk0.797 ±0.0450.637 ±0.046
0.762 ±0.048 0.751 ±0.0491,7124,684 4,489 5,865SideEffect0.956 ±0.0380.826 ±0.000
0.964 ±0.035 0.971 ±0.026270,600139 270,709 271,416Treats0.850 ±0.0480.581 ±0.045
0.898 ±0.041 0.566 ±0.04811,9159,318 14,699 35,803Aggregated # 0.9510.630 0.933
0.892491,19073,160 542,689 609,322

*Precision values are averaged and numbers of harvested facts are summed.

Table 5

Evaluation of the impact of different components
Relation Precision Harvested facts Full pipeline Without Without Without Full
pipeline Without Without Without encyclopedic + document statistical consistency
encyclopedic + document statistical consistency scientific sources structure analysis
reasoning scientific sources structure analysis reasoning Affects0.825 ±0.0470.882
±0.0440.821 ±0.0480.171 ±0.0512,3882,3504,08829,477Aggravates0.829 ±0.0490.833
±0.0360.598 ±0.0490.592 ±0.0534324315921,730Alleviates0.786 ±0.0460.778
±0.0500.320 ±0.0490.289 ±0.0624,5304,38718,14216,943Causes0.801 ±0.0490.800
±0.0460.631 ±0.0480.490 ±0.06947,46330,56366,83391,784Complication0.897
±0.0410.781 ±0.0480.376 ±0.0500.739 ±0.0501,5247004,8122,955Contraindicates0.961
±0.0300.914 ±0.0430.122 ±0.0490.630 ±0.0591,80836526,29815,279CreatesRisk0.720
±0.0400.750 ±0.0440.386 ±0.0470.406 ±0.06718,50817,28277,15848,159Diagnoses0.860
±0.0480.887 ±0.0440.802 ±0.0490.303 ±0.0634,8324,0027,46735,326Interacts0.965
±0.0340.858 ±0.0460.953 ±0.0470.941 ±0.049164,912392200,935187,201IsSymptom0.858
±0.0480.691 ±0.0500.625 ±0.0490.328 ±0.0646,3952,9209,54329,776ReducesRisk0.762
±0.0480.729 ±0.0500.228 ±0.0460.406 ±0.0674,4894,04311,02314,729SideEffect0.964
±0.0350.938 ±0.0480.941 ±0.0460.879 ±0.050270,709924270,427338,645Treats0.898
±0.0410.784 ±0.0500.549 ±0.0500.402 ±0.06714,69914,05723,47345,439Aggregated #

0.9330.7840.7770.707542,68982,416720,791857,443

*Precision values are averaged and numbers of harvested facts are summed.
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Impact of different text genres
We first discuss the results obtained from the different text genres: i) scientific (PubMed
publications), ii) encyclopedic (Web portals like Mayo Clinic or Wikipedia), iii) social
(discussion forums). Table 4 gives, column-wise, the number of facts and precision figures
for four different combinations of genres.

Generally, combining genres gave more facts at a lower precision, as texts of lower quality
like social sources introduced noise. The combination that gave the best balance of precision
and total yield was scientific with encyclopedic sources, with a micro-averaged precision
of 0.933 for a total of 542,689 facts. We consider this the best of the KB’s that KnowLife
generated.

The best overall precision was achieved when using encyclopedic texts only. This confirmed
our hypothesis that a pattern-based approach works best when the language is simple
and grammatically correct. Contrast this with scientific publications which often exhibit
convoluted language, and online discussions with a notable fraction of grammatically
incorrect language. In these cases, the quality of patterns degraded and precision dropped.
Incorrect facts stemming from errors in the entity recognition step were especially rampant
in online discussions, where colloquial language (for example, meds, or short for medicines)
led to incorrect entities (acronym for Microcephaly, Epilepsy, and Diabetes Syndrome).

The results vary highly across the 13 relations in our experiments. The number of facts
depends on the extent to which the text sources express a relation, while precision reflects
how decisively patterns point to that relation. Interacts and SideEffect are prime examples:
the drugs.com portal lists many side effects and drug-drug interactions by the DOM
structure, which boosted the extraction accuracy of KnowLife, leading to many facts at
precisions of 95.6% and 96.4%, respectively. Facts for the relations Alleviates, CreatesRisk,
and ReducesRisk, on the other hand, mostly came from scientific publications, which
resulted in fewer facts and lower precision.

A few relations, however, defied these general trends. Patterns of Contraindicates were too
sparse and ambiguous within encyclopedic texts alone and also within scientific publications
alone. However, when the two genres were combined, the good patterns reached a critical
mass to break through the confidence threshold, giving rise to a sudden increase in harvested
facts. For the CreatesRisk and ReducesRisk relations, combining encyclopedic and scientific
sources increased the number of facts compared to using only encyclopedic texts, and
increased the precision compared to using only scientific publications.

As Table 4 shows, incorporating social sources brought a significant gain in the number
of harvested facts, at a trade-off of lowered precision. As [46] pointed out, there are facts
that come only from social sources and, depending on the use case, it is still worthwhile
to incorporate them; for example, to facilitate search and discovery applications where
recall may be more important. Morever, the patterns extracted from encyclopedic and
scientific sources could be reused to annotate text in social sources, so as to identify existing
information.

Taking a closer look at the best experimental setting, we see that scientific and encyclopedic
sources in KnowLife contribute to a different extent to the number of harvested facts. Table
6 shows the number of fact occurrences in our input sources. Recall that a fact can occur in
multiple sentences in multiple text sources. Our experiments show that encyclopedic articles
are more amenable for harvesting facts than scientific publications.

Table 6

Number of fact occurrences in text sources
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Genre Source Fact occurrences Scientific PublicationsPubMed Medline39,266PubMed
Central6,979Encyclopedic ArticlesDrugs.com461,130Mayo Clinic35,300Medline
Plus6,559RxList5,818Wikipedia Health17,588

Impact of different components
In each setting, only one component was disabled, and the processing pipeline ran with all
other components enabled. We used the KnowLife setting with scientific and encyclopedic
sources, which, by and large, performed best, as the basis for investigating the impact
of different components in the KnowLife pipeline. To this end, we disabled individual
components: DOM tree patterns, statistical analysis of patterns, consistency reasoning –
each disabled separately while retaining the others. This way we obtained insight into how
strongly KnowLife depends on each component. Table 5 shows the results of this ablation
study.

No DOM tree patterns: When disregarding patterns on the document structure and solely
focusing on textual patterns, KnowLife degrades in precision (from 93% to 78%) and
sharply drops in the number of acquired facts (from ca. 540,000 to 80,000). The extent
of these general effects varies across the different relations. Relations whose patterns
are predominantly encoded in document structures – once again Interacts and SideEffect
– exhibit the most drastic loss. On the other hand, relations like Affects, Aggravates,
Alleviates, and Treats, are affected only to a minor extent, as their patterns are mostly found
in free text.

No statistical pattern analysis: Here we disabled the statistical analysis of pattern
confidence and the frequent itemset mining for generalizing patterns. This way, without
confidence values, KnowLife kept all patterns, including many noisy ones. Patterns that
would be pruned in the full configuration led to poor seed patterns; for example, the single
word causes was taken as a seed pattern for both relations SymptomOf and Contraindicates.
Without frequent itemset mining, long and overly specific patterns also contributed to poor
seed patterns. The combined effect greatly increased the number of false positives, thus
dropping in precision (from 93% to 77%). In terms of acquired facts, not scrutinizing the
patterns increased the yield (from ca. 540,000 to 720,000 facts).

Relations mainly extracted from DOM tree patterns, such as Interacts and SideEffect, were
not much affected. Also, relations like Affects and Diagnoses exhibited only small losses
in precision; for these relations, the co-occurrence of two types of entities is often already
sufficient to express a relation. The presence of consistency constraints on type signatures
also helped to keep the output quality high.

No consistency reasoning: In this setting, neither type signatures nor other consistency
constraints were checked. Thus, conflicting facts could be accepted, leading to a large
fraction of false positives. This effect was unequivocally witnessed by an increase in the
number of facts (from ca. 540,000 to 850,000) accompanied by a sharp decrease in precision
(from 93% to 70%).

The relations Interacts and SideEffect were least affected by this degradation, as they are
mostly expressed in the via document structure of encyclopedic texts where entity types are
implicitly encoded in the DOM tree tags (see Figure 2). Here, consistency reasoning was not
vital.

Lessons learned: Overall, this ablation study clearly shows that all major components of
the KnowLife pipeline are essential for high quality (precision) and high yield (number
of facts) of the constructed KB. Each of the three configurations where one component is
disabled suffered substantial if not dramatic losses in either precision or acquired facts, and
sometimes both. We conclude that the full pipeline is a well-designed architecture whose
strong performance cannot be easily achieved by a simpler approach.
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Error analysis
We analyzed the causes of error for all 760 facts annotated as incorrect from the
experimental setting using the full information extraction pipeline and all three text genres.
This setting allows us to compare the utility of the different components as well as the
different genres. As seen in Table 7, we categorize the errors as follows: Preprocessing:
At the start of the pipeline, incorrect sentence segmentation divided a text passage into
incomplete sentences, or left multiple sentences undivided. This in turn lead to incorrect
parsing of syntactic dependency graphs. In addition, there were incorrectly parsed DOM
trees in Web portal documents. Not surprisingly, almost all preprocessing errors came
from encyclopedic and social sources due to their DOM tree structure and poor language
style, respectively. Entity Recognition: Certain entities were not correctly recognized.
Complex entities are composed of multiple simple entities; examples include muscle
protein breakdown recognized as muscle protein and breakdown, or arrest of cystic
growth recognized as arrest and cystic growth. Paraphrasing and misspelling entities cause
their textual expressions to deviate from dictionary entries. Idiomatic expressions were
incorrectly picked up as entities. For instance, there is no actual physical activity in the
English idiom in the long run. Entity Disambiguation: Selecting an incorrect entity out
of multiple matching candidates caused this error, primarily due to two reasons. First,
the type signatures of our relations were not sufficient to futher prune out mismatching
entities during fact extraction. Second, colloquial terms not curated in the UMLS dictionary
were incorrectly resolved. For example, meds for medicines was disambiguated as the
entity Microcephaly, Epilepsy, and Diabetes Syndrome. Coreferencing: Due to the
lack of coreference resolution, correct entities were obscured by phrases such as this
protein or the tunnel structure. Nonexistent relation: Two entities might co-occur within
the same sentence without sharing a relation. When a pattern occurrence between such
entities was nevertheless extracted, it resulted in an unsubstantiated relation. Pattern
Relation Duality: A pattern that can express two relations was harvested but assigned
to an incorrect relation. For example, the pattern mimic was incorrectly assigned to
the relation isSymptom. Swapped left and right-hand entity: The harvested fact was
incorrect because the left- and right-hand entities were swapped. Consider the example fact
isSymptom(Anemia,Sarcoidosis), which can be expressed by either sentence:

1. Anemia is a common symptom of sarcoidosis.

Table 7

Error analysis (number of facts in brackets)
Percentage based on text genre Percentage Cause of error Encyclopaedic
Scientific Social sources sources sources 8.16% (62)Preprocessing38.71% (24)3.23%
(2)58.06% (36)27.24% (207)Entity Recognition13.04% (27)45.41% (94)41.55%
(86)32.11% (244)Entity Disambiguation12.30% (30)26.23% (64)61.48% (150)1.97%
(15)Coreferencing13.33% (2)13.33% (2)73.33% (11)13.68% (104)Nonexistent
Relation23.08% (24)29.81% (31)47.12% (49)9.21% (70)Pattern Relation
Duality24.29% (17)27.14% (19)48.57% (34)3.29% (25)Swapped left and right-hand
entity28.00% (7)24.00% (6)48.00% (12)3.03% (23)Negation17.39% (4)21.74%
(5)60.87% (14)1.32% (10)Factually Wrong40.00% (4)10.00% (1)50.00% (5)

2. A common symptom of sarcoidosis is anemia.

In both cases, the same pattern is a common symptom of is extracted. In sentence 2,
however, an incorrect fact would be extracted since the order in which the entities occur
is reversed. Negation: This error was caused by not detecting negation expressed in the
text. The word expressing the negation may occur textually far away from the entities, as
in It is disputed whether early antibiotic treatment prevents reactive arthritis, and thus
escaped our pattern gathering method. In other cases, the negation phrase will require subtle
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semantic understanding to tease out, as in Except for osteoarthritis, I think my symptoms
are all from heart disease. Factually Wrong: Although our methods successfully harvested
a fact, the underlying text evidence made a wrong statement. Lessons learned: Overall,
this error analysis confirms that scientific and encyclopedic sources contain well-written
texts that are amenable to a text mining pipeline. Social sources, with their poorer quality
of language style as well as information content, were the biggest contributor in almost all
error categories. Errors in entity recognition and disambiguation accounted for close to 60%
of all errors; overcoming them will require better methods that go beyond a dictionary, and
incorporate deeper linguistic and semantic understanding.

Coverage
The overriding goal of KnowLife has been to create a versatile KB that spans many areas
within the life sciences. To illustrate which areas are covered by KnowLife, we refer to the
semantic groups defined by [54]. Table 8 shows the number of acquired facts for pairs of the
thirteen different areas inter-connected in our KB. This can be seen as an indicator that we
achieved our goal at least to some extent.

Table 8

Top-20 pairs of inter-connected biomedical areas within KnowLife
Biomedical areas Connections
DisordersChemicals310482ChemicalsChemicals190160DisordersDisorders36677DisordersProcedures14169ChemicalsPhysiology5397DisordersGenes3831DisordersLiving
Beings2539ChemicalsDrugs2455DisordersAnatomy2895DisordersDevices792DisordersActivities592DisordersDrugs511DisordersObjects505ChemicalsProcedures544DisordersPhysiology370ProceduresPhysiology123ProceduresLiving
Beings99DisordersGeographical Areas82GenesPhysiology51DisordersPhenomena50

The predominant number of facts involves entities of the semantic group Disorders, for two
reasons. First, with our choice of relations, disorders appear in almost all type signatures.
Second, entities of type clinical finding are covered by the group Disorders, and these are
frequent in all text genres. However, this type also includes diverse, non-disorder entities
such as pregnancy, which is clearly not a disorder.

Conclusions

Application benefit
To showcase the usefulness of KnowLife, we developed a health portal (http://knowlife.mpi-

inf.mpg.de) that allows interactive exploration of the harvested facts and their input sources.
The KnowLife portal supports a number of use cases for different information needs [48].
A patient may wish to find out the side effects of a specific drug, by searching for the drug
name and browsing the SideEffect facts and their provenance. A physician may want to
“speed read” publications and online discussions on treatment options for an unfamiliar
disease. Provenance information is vital here, as the physician would want to consider the
recency and authority of the sources for certain statements. The health portal also provides a
function for on-the-fly annotation of new text from publications or social media, leveraging
known patterns to highlight any relations found.

Future work
In the future, we plan to improve the entity recognition to accommodate a wider variety of
entities beyond those in UMLS. For instance, colloquial usage (meds for medicines) and
composite entities (amputation of right leg) are not yet addressed. Entities within UMLS
also require more sophisticated disambiguation. For instance, the text occurrence stress may
be correctly distinguished between the brand name of a drug and the psychological feeling.

http://knowlife.mpi-inf.mpg.de
http://knowlife.mpi-inf.mpg.de
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Finally, we would like to address the challenge of mining and representing the context of
harvested facts. Binary relations are often not sufficient to express medical knowledge. For
example, the statement Fever is a symptom of Lupus Flare during pregnancy cannot be
suitably represented by a binary fact.

We plan to cope with such statements by extracting ternary and higher-arity relations, with
appropriate extensions of both pattern-based extraction and consistency reasoning.
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