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Abstract

Ectopic expression of the strawberry (Fragaria3ananassa) gene FaPE1 encoding pectin methyl esterase produced in

the wild species Fragaria vesca partially demethylated oligogalacturonides (OGAs), which conferred partial

resistance of ripe fruits to the fungus Botrytis cinerea. Analyses of metabolic and transcriptional changes in the

receptacle of the transgenic fruits revealed channelling of metabolites to aspartate and aromatic amino acids as well

as phenolics, flavanones, and sesquiterpenoids, which was in parallel with the increased expression of some genes

related to plant defence. The results illustrate the changes associated with resistance to B. cinerea in the transgenic

F. vesca. These changes were accompanied by a significant decrease in the auxin content of the receptacle of the
ripe fruits of transgenic F. vesca, and enhanced expression of some auxin-repressed genes. The role of these OGAs

in fruit development was revealed by the larger size of the ripe fruits in transgenic F. vesca. When taken together

these results show that in cultivated F. ananassa FaPE1 participates in the de-esterification of pectins and the

generation of partially demethylated OGAs, which might reinforce the plant defence system and play an active role in

fruit development.
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Introduction

Fruit growth and ripening are complex developmental

processes that involve many events contributing to the

textural and constitutional changes in the fruits and de-

termining their final composition. Cell wall disassembly is
one of the main processes occurring at the end of the

ripening period and its rate and extent are crucial for the

maintenance of fruit quality and integrity (Matas et al.,

2009). For this reason, maintenance of firmness has long

been the target for breeders in many crops to minimize

post-harvest decay. Since strawberry is particularly sensitive

to such textural changes, this characteristic currently limits

the breadth of its commercialization (Perkins-Veazie, 1995).

Polysaccharide solubilization and depolymerization have

previously been reported in ripening strawberry fruits (Rosli

et al., 2004). They are the combined result of activity by

enzymes such as polygalacturonases, pectate lyases, and
pectin methyl esterases (PMEs) acting on pectins (Nogata

et al., 1993; Medina-Escobar et al., 1997; Castillejo et al.,

2004; Quesada et al., 2009); cellulases degrading cellulose

(Abeles and Takeda, 1990); and endo b-1,4-glucanases and

b-xylosidases acting on hemicelluloses (Harpster et al.,

1998; Trainotti et al., 1999; Bustamante et al., 2006;

Mercado et al., 2010). In addition, b-galactosidase and a-L-
arabinofuranosidase are involved in the cleavage of the side

Abbreviations: IAA, indole-3-acetic acid; OGA, oligogalacturonide; PME, pectin methyl esterase; PR proteins, pathogenesis-related proteins; RLK, receptor-like kinase.
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chains of the cell wall polymers (Trainotti et al., 2001; Rosli

et al., 2009). The sequential action of this suite of enzymes

results in changes in cell wall properties leading to fruit

softening.

In parallel with these changes in the cell wall in many

fruits a dramatic increase in susceptibility to necrotrophic

pathogens has been reported (Prusky, 1996). It is now

accepted that cell wall disassembly can be a key component
of this susceptibility (Flors et al., 2007; Cantu et al., 2008).

However, there is increasing evidence that molecules that are

either components of the cell wall or the result of their partial

degradation, such as the oligogalacturonides (OGAs), con-

tribute to disease resistance (Hématy et al., 2009).

Pectin is a cell wall polymer that suffers major changes

during fruit ripening since it is not only the target of

degrading enzymes (Medina-Escobar et al., 1997; Castillejo
et al., 2004), but also the source of OGAs, which have been

shown to display elicitor activity (Ridley et al., 2001).

OGAs elicit responses ranging from fortification of the cell

wall to the synthesis of defence molecules, such as

phytoalexins, pathogenesis-related (PR) proteins, and re-

active oxygen species (De Lorenzo and Ferrari, 2002; Field

et al., 2006; Van Loon et al., 2006). The effectiveness of

OGAs as eliciting molecules rests on specific structural
requirements, such as their size (Aziz et al., 2004) and

degree of methyl esterification (Wiethölter et al., 2003;

Osorio et al., 2008). In addition to their eliciting capacity, it

is known that the OGAs also affect several aspects of plant

growth and development (Côté and Hahn, 1994; Melotto

et al., 1994). On this point the antagonism found between

OGAs and auxin actions is relevant (Ferrari et al., 2008).

Pectin methyl esterase (PME) is a key enzyme of pectin
degradation catalysing the demethylation of galacturonyl

residues of high-molecular-weight pectin. Four PME genes

in strawberry (FaPE1–4) have been reported previously

(Castillejo et al., 2004) and isoelectric focusing of cell wall

extracts from ripe fruits has revealed up to six basic

isoforms (Draye and Van Cutsem, 2008). In a previous

study the fruit-specific FaPE1 was ectopically expressed in

Fragaria vesca; two major effects were found (Osorio et al.,
2008). First, the pectin of the red fruits in the transgenic

F. vesca displayed a lower degree of methyl esterification in

a block-wise pattern. This is important in fruit softening

since this esterification pattern has a positive effect on Ca2+

binding to the pectin, and eventually in cell wall integrity

(Willats et al., 2001). In tomato this role has been assigned

to the PME Pmeu1 since silencing of the corresponding

gene resulted in enhanced fruit softening during ripening
(Phan et al., 2007). The second effect was the appearance of

partially demethylated OGAs in parallel with increased

resistance of the ripe fruits to Botrytis cinerea.

Here the results of transcriptomic and metabolomic

analyses of the ripe receptacle of F. vesca overexpressing

FaPE1 are presented. The objective was to shed light on the

role played by the strawberry enzyme FaPE1 in the

generation of partially demethylated OGAs and the sub-
sequent role played by these compounds in plant defence

and/or development.

Materials and methods

Plant material and sample collection

F. vesca and two independent transgenic lines with the PME
(FaPE1) cDNA in the sense orientation under control of a single
constitutive (CaMV35S) promoter (line 4 and line 15; described in
Osorio et al., 2008), and Fragaria3ananassa Duch. cv. Camarosa
plants were grown in a greenhouse under natural light conditions.
Transgenic F. vesca plants used in this work correspond to the
second, third, and fourth vegetative generation.
The F. ananassa fruits harvested in four different developmental

stages corresponded to: green, G; white, W; turning (at least 25%
surface red), T; red, R. Pools of fruits from a single plant have
been considered single biological replicates (eight plants were used
in total). Analyses of both primary and secondary metabolites in
transgenic F. vesca were performed in six separate pools of red
fruits of ;30 fruits each. Each pool was from one individual plant.
All fruits were frozen immediately in liquid nitrogen and achenes
were removed using a scalpel on frozen fruits. For microarray
analysis, one biological replicate was considered as a pool of red
fruits collected from F.vesca wild type and line 4 from eight
individual plants each. The two biological replicates are pools
from different seasons. For the qRT-PCR analysis, red fruits were
harvested as pools of two individual plants for each replicate (eight
plants divided into four groups). Red fruits of F. vesca at identical
ripening stage were used for auxin content measurement.

Protein extraction, immunoblot analysis, and PME activity

Protein extraction, immunoblot analyses, and PME activity from
F.ananassa fruits were performed according to Osorio et al. (2008).

Degree of pectin esterification and chemical de-esterification of

OGAs

Degree of esterification and chemical de-esterification of OGAs
from F. ananassa red fruits were analysed according to Osorio
et al. (2008).

RNA isolation and gene expression analysis

Total RNA was isolated from F. vesca fruits without achenes
according to the method described by Manning (1991). Integrity of
the extracted RNA was checked by electrophoresis under de-
naturing conditions after treating the RNA with RNase-free
DNaseI (Roche). First-strand cDNA synthesis of 2 lg of RNA in
a final volume of 20 ml was performed with Moloney murine
leukaemia virus reverse transcriptase, Point Mutant RNase H
Minus (Promega), according to the supplier’s protocol using
oligo(dT) T19 primer.
Expression of PR5 by real-time qRT-PCR was as previously

described (Osorio et al., 2008). Expression of LRR1 (Acc.No.
DY671714), LRR2 (Acc.No. DY668749), LRR3 (Acc.No. AJ871783),
WRKY1 (Acc.No. DY667265), WRKY2 (Acc.No. AJ871772),
b-xylosidase (Acc.No. AY486104), (1,4)-b-mannan endohydrolase
(Acc.No. GT149809), and PR5 (Acc.No. EU289405) was analysed
by real-time qRT-PCR using the fluorescent intercalating dye
SYBR Green in an iCycler detection system (Bio-Rad; http://
www.bio-rad.com/). Relative quantification of the target expres-
sion level was performed using the comparative Ct method. The
list of primers used is provided as supporting information
(Supplementary Table S4 at JXB online). Expression data were
normalized to reference 18S–26S ribosomal gene (interspacer)
(Casado-Dı́az et al., 2006).

Microarray analysis

Oligo (60-mer length) design for expression analysis was performed
by NimbleGen Systems Inc. after receiving >14 500 sequences
from F. vesca (GenBank), F. ananassa (GenBank and the authors’
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ad hoc generated strawberry database), and Prunus persica
(GenBank) in a file in FASTA format. A minimum of three oligos
was printed per probe and three blocks were printed per dataset.
RNA was extracted from the receptacle of ripe red fruits from

two biological replicates of the wild type and L4 as described
above. These two replicates comprised eight different plants each,
and were harvested in two different seasons. The RNA was then
used for the synthesis of double-stranded cDNA according to the
protocol described in the Invitrogen SuperScript� Double-
Stranded cDNA Synthesis Kit. Sample labelling and hybridization
with three probes per target, were performed by NimbleGen
Systems Inc. The data were loaded into R, and expression
estimates were generated using RMA (Bolstad et al., 2003) as
suggested by the expression analysis section of the NimbleGen
users’ manual (www.nimblegen.com). The Bioconductor package
limma (Smyth, 2004) was used to identify differentially expressed
genes using a moderated t test and false discovery rate control
(Benjamini and Hochberg, 1995).

Extraction, derivatization, and analysis of polar metabolites using

GC-MS

Metabolite analysis by GC-MS was carried out essentially as
described by Lisec et al. (2006) and Fernie et al. (2004). The mass
spectra were cross-referenced with those in the Golm Metabolome
database (Kopka et al., 2005).

Extraction and analysis of semi-polar metabolites and UPLC-FT-

ICR-MS measurements

Metabolite extraction and UPLC-FT-ICR-MS were performed as
described previously (Giavalisco et al., 2008). In brief, 250 mg of
frozen red fruits without achenes was extracted in 1 ml of
chloroform/metanol/water (1:2.5:1). The homogenized tissue was
incubated for 20 min at 30 �C on an orbital shaker followed by
a 10-min sonication. The sample was then centrifuged at 4000 g for
5 min and the supernatant was transferred to a fresh Eppendorf
tube before concentrating it to dryness in a Speed-vac (Centrivac,
Heraeus, Hanau, Germany).
Chromatographic separation, mass spectrometric measurements,

and data analysis were performed using a Waters Acquity UPLC
system (Waters, Milford, MA, USA) using an HSS T3 C18 reverse
phase column (10032.1 mm i.d., 1.8-lm particle size; Waters) and
a LTQ FT-ICR-Ultra mass spectrometer (Thermo-Fisher, Bremen,
Germany), as described by Giavalisco et al. (2009). Mass peaks
from these spectra were picked and aligned (SIEVE; Thermo-
Fisher) leading to peak lists containing accurate mass, retention
time, and intensity of each detected peak from each sample. The
accurate masses of each detected peak were searched against
a compiled version of three biological databases [KNApSAcK
(http://kanaya.naist.jp/KNApSAcK/), Metabolome.Jp (http://
www.metabolome.jp/), and KEGG (http://www.genome.jp/kegg/)]
leading to the assignment of an elemental composition and
a compound name to the masses that found a match in the
database. The annotations for all the peaks that showed significant
differences between wild-type and transgenic plants were validated
by manual inspection of the correct assignment of the assigned
adducts and search for masses derived from in-source fragmenta-
tion. The mass error for the database searches and the fragment
assignments was always <2 parts per million (average value 0.8
ppm) resulting in confident elemental composition assignments.
The MS/MS fragmentation of the metabolites was compared with
candidate molecules found in databases, and verified with earlier
literature on similar compounds, especially when the presence of
the metabolite was reported in strawberry.

Determination of indole-3-acetic acid

Determination of indole-3-acetic acid (IAA) was performed
essentially as described by Peng et al. (1999). In brief, frozen red

fruits without achenes (6 g) were homogenized and extracted
overnight in 20 ml of 80% methanol. After extraction, each sample
was reduced in vacuo and diluted with 20 ml of water. The aqueous
phase was adjusted to pH 2.8 with 1 M HCl and partitioned four
times with equal volumes of ethyl acetate. The ethyl acetate
extracts were combined and evaporated to dryness. The residue
was dissolved in 1 ml of 10% methanol and applied to a pre-
equilibrated C18 cartridge (Waters; http://www.waters.com). The
column was washed with aqueous acetic acid (pH 3.0), and then
IAA was eluted with 80% methanol. After evaporation to dryness,
the samples were derivatized as described (Lisec et al., 2006) and
analysed by comparison with authentic standard using GC-MS.

Results

FaPE1 participates in pectin de-esterification during
strawberry fruit ripening

Polyclonal antibodies raised against two antigenic peptides

derived from the conserved C-terminal portion of the

FaPE1–4 proteins (Osorio et al., 2008) detected a single

band of 67 kDa (Fig. 1A). Western blot showed that the

PME protein content of the strawberry fruits increased

Fig. 1. Analysis of F. ananassa fruits. (A) Immunoblot analysis of

proteins from F. ananassa fruits. Equal amounts of proteins from

fruits at different ripening stages were loaded. Molecular mass is

indicated on the right. (B) PME activity of extract from F.ananassa

fruits at different stages of ripening. (C) Percentage of pectin

methyl esterification from F.ananassa fruits at different stages of

ripening. Results are the mean values of four individual plants.

Values marked with a different letter differ significantly from each

other (P<0.05). Stages of fruits: G, green; W, white; T, turning; R,

red.
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during ripening, reaching its maximum abundance at the

(red) ripe stage (Fig. 1A). This pattern correlated with

measurements of total PME activity (Fig. 1B), which

showed an increase in protein after the white stage, and

reached and maintained a maximum value at the turning

and red stages. In the opposite direction, the degree of

pectin methyl esterification decreased from green to red

fruits (Fig. 1C). However, this inverse relationship was not
perfect since the high increase in activity between the white

and turning stages was not paralleled by a decrease in the

degree of methylation. Our best explanation is that changes

in total PME activity measured in vitro are the result of

changes in isoenzymes, whose contribution to demethyla-

tion of pectin in vivo might be different for each. Effectively,

it is known that the action of these enzymes in muro within

the cell wall is influenced by a wide range of factors, such as
pH and the presence of inhibitors, and their effects are

specific for each isoenzyme (Pelloux et al., 2007). This

means that not all the isoenzymes have the same demethy-

lation activity in vivo. Therefore, changes in the expression

of isoenzymes would be revealed by western blot (Fig. 1A)

and total PME activity in vitro (Fig.1B), but not necessarily

by demethylation in planta (Fig. 1C).

Ripe fruits of strawberry F. ananassa produce eliciting
OGAs

Transgenic F. vesca lines exhibiting ectopic expression of the

fruit-specific FaPE1 of F. ananassa have been previously
generated. These transgenic lines had modified oligosacchar-

ides (OGAs) (Osorio et al., 2008). Here the size of OGAs from

ripe fruits of F. ananassa, which naturally expresses FaPE1,

were analysed and compared with the size of OGAs extracted

from ripe F. vesca fruits of wild type and one transgenic line

(L4) (Fig. 2A). The gel filtration profile of the F. vesca OGAs

has been previously published (Osorio et al., 2008), but they

are also included in Fig. 2A to facilitate comparison with the
F. ananassa OGAs. It is clear that OGAs from the F. ananassa

fruits showed the same size as the OGAs from the transgenic

line, but were smaller than the OGAs from wild-type F. vesca.

When OGAs from F. vesca fruits of wild-type and transgenic

(L4) plants, and from F. ananassa were de-esterified they

eluted in the same fraction (Fig. 2A). From these results it

might be concluded that OGAs from F. ananassa and from

F. vesca have the same degree of polymerization but differ in
their degree of esterification.

It was known that OGAs from transgenic F. vesca fruits

overexpressing FaPE1 had eliciting capacity, reflected by the

induction of PR5 gene expression when ripe fruits of F. vesca

were inoculated with them, but this increased PR5 expression

did not occur when the OGAs were de-esterified (Osorio

et al., 2008). PR5 expression in ripe fruits of both F. vesca

and F. ananassa was then analysed after injection of 500 lg
of OGAs extracted from F. vesca or from F. ananassa, before

and after de-esterification (Fig. 2B). Expression of PR5 was

clearly up-regulated in fruits of both species injected with

OGAs from F. ananassa and from transgenic F. vesca

compared with fruits injected with OGAs from wild-type

F. vesca. This increased expression did not occur with

chemically de-esterified OGAs from different sources (Fig.
2B). Taken together these results associate partial esterifica-

tion of OGAs with their capacity to increase PR5 expression,

as shown previously (Osorio et al., 2008). Whether or not

this is a defence-specific response should be studied. To this

purpose the focus in this work was on the metabolic and

transcriptional changes associated with the presence of

partially demethylated OGAs. F. vesca was selected as

a model since comparison between the wild-type and trans-
genic lines was direct because they represent near-isogenic

lines, the only difference being the FaPE1 gene.

Metabolites in ripe fruits of wild-type and transgenic F.
vesca overexpressing FaPE1

The changes in metabolites in two independent transgenic

lines (L4 and L15) overexpressing FaPE1, which showed

Fig. 2. Analysis of OGAs from F. ananassa fruit, and their effect on

PR5. (A) Gel-filtration profiles of OGAs extracted from ripe fruits

and after de-esterification of wild type and FaPE1 line 4 (black

symbols) and F. ananassa (red symbols). A Bio-Gel P-4 column

was used. Fractions (0.8 ml) were assayed for uronic acid content.

(B) Quantitative RT-PCR of PR5 in ripe fruits of F. vesca (solid bars)

and F. ananassa (lined bars) 48 h after injection of 500 lg of the

specific OGAs shown in (A). An asterisk denotes values that are

significantly different as determined by t test (P<0.01). Results are

the means of independent assays (n¼4). Data from wild type and

FaPE1 line 4 have been published previously in Osorio et al.

(2008).
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a similar phenotype of resistance to B. cinerea (Osorio et al.,

2008), were analysed and compared with the wild type. The

receptacle of ripe fruits was analysed using an established

GC-MS protocol (Fernie et al., 2004; Lisec et al., 2006)

(Table 1). The two transgenic lines exhibited significantly

higher content of aromatic amino acids phenylalanine,

tryptophan, and tyrosine (Phe, Trp, Tyr), and aspartate

(Asp). Simultaneously, a significant decrease was found in
the proteinogenic amino acids alanine (Ala) and proline

(Pro), and the non-proteinogenic b-alanine and 4-amino-

butyrate (GABA). O-acetylserine, which also decreased in

the transgenic lines, is an intermediate in the incorporation

of inorganic sulphur into the amino acid cysteine (Wirtz

et al., 2001) and probably reflects changes in this amino acid

(which was itself undetected using the authors’ own pro-

tocol). Of particular interest is the significant decrease in
spermidine, one of the polyamines known to play a major

signalling role in plants (Kusano et al., 2008).

Our data displayed significant decreases in the main

hexoses glucose and fructose (Glc and Fru), their corre-

sponding 6-phosphate derivatives as well as in glucose

oxidation products such as saccharic acid and the disaccha-

ride sucrose and the trisaccharide raffinose. Among these,

changes in Glc, Fru, and sucrose appear to be more relevant
since they are by far the main components of the sugar

content in the receptacle of the ripe cultivated strawberry

(Olsson et al., 2004) continuously increasing during ripening

(Fait et al., 2008). Regarding the organic acids there were

no significant changes in tricarboxylic acid cycle intermedi-

ates, but a decrease was found in glyceric and tartaric acids,

and an increase in D-galacturonic acid. This latter is

probably a consequence of the higher PME activity, which
in turn will result in higher demethylation of the pectins

(Osorio et al., 2008). When summed together these changes

suggest a dramatic shift in the primary metabolism of the

transgenic fruits when the metabolites were quantified

absolutely (Supplementary Table S1, at JXB online).

Given that Phe is the obligate precursor of the phenyl-

propanoid pathway and presented a 5-fold increase (Ta-

ble 1), altered composition of intermediates of this pathway
in the transgenic fruits was predicted. Therefore an exhaus-

tive analysis of secondary metabolite profiling was con-

ducted, using a non-targeted approach, of extracts derived

from the receptacle of both the F. vesca transgenic lines (L4

and L15), and wild type. Methanol-soluble constituents

were analysed using UPLC-FT-ICR-MS in positive and

negative ionization mode. A total of 1524 chromatographic

peaks were analysed of which 57 showed alterations
between the two transgenic lines and wild type. Following

the identification process these 57 secondary metabolites

were tentatively assigned to specific compound classes

(Supplementary Table S2, at JXB online).

The results, summarized in a heat map (Fig. 3), show

a significant decrease in most of the galloyl derivatives and

ellagitannin, which are derived directly from the shikimate

pathway. Many of the hydroxylated derivatives of cinnamic
and benzoic acids, precursors of benzoates, salicylates,

coumarins, lignin, and flavonoids, increased in both

Table 1. Primary metabolite levels in the receptacle of red fruits of

F. vesca plants overexpressing FaPE1

Metabolites were determined in the receptacle from red fruits. Data
are normalized to the mean response calculated for the wild type.
Values presented are mean6standard error of six replicates. Values
in bold denote significant differences as determined by ANOVA
analysis (P<0.01).

Amino acids Wild type Line 4 Line 15

Alanine 1.0060.04 0.5960.04 0.6260.05

b-Alanine 1.0060.02 0.6060.04 0.7360.04

Asparagine 1.0060.07 0.8860.05 0.8960.05

Aspartate 1.0060.03 1.6060.05 1.4560.04

GABA 1.0060.02 0.4360.02 0.9060.01

Glutamate 1.0060.06 1.0660.04 1.1160.03

Glycine 1.0060.07 0.7260.06 0.6960.08

Methionine 1.0060.04 1.1560.05 0.9860.02

Phenylalanine 1.0060.02 5.1560.18 4.3260.08

Proline 1.0060.03 0.4160.01 0.5560.02

Serine 1.0060.03 0.8060.02 0.8760.05

Threonine 1.0060.03 1.0960.04 0.9660.05

Tryptophan 1.0060.05 1.6560.07 1.8660.04

Tyrosine 1.0060.05 1.9160.05 1.6360.05

Valine 1.0060.04 1.2960.13 1.10 60.12

Organic acids

2-Oxoglutaric acid 1.0060.08 1.0960.06 1.1560.05

Dehydroascorbic

acid

1.0060.04 1.4060.04 1.6960.07

Fumaric acid 1.0060.07 1.2060.06 0.8660.06

Galacturonic acid 1.0060.06 8.1060.11 6.3260.23

Glucuronic acid 1.0060.08 1.3060.07 0.9660.05

Glyceric acid 1.0060.03 0.7160.02 0.7060.04

Malic acid 1.0060.04 1.2060.07 0.8960.04

Quinic acid 1.0060.02 1.0060.04 0.9360.06

Saccharic acid 1.0060.05 0.4260.04 0.8260.01

Succinic acid 1.0060.09 0.9360.04 1.3360.02

Tartaric acid 1.0060.03 0.5260.02 0.7960.02

Sugars and sugar alcohols

Erythritol 1.0060.03 1.1460.02 0.9360.03

Fucose 1.0060.06 0.8960.05 0.8160.08

Fructose 1.0060.02 0.5060.03 0.8060.04

Fructose-6-P 1.0060.05 0.8260.02 0.5960.02

Galactinol 1.0060.07 0.7160.02 1.1260.04

Glucose 1.0060.05 0.4660.03 0.7660.04

Glucose-6-P 1.0060.07 0.7560.05 0.9360.03

1-O-Methylglucopyranoside 1.0060.04 1.1260.03 0.9660.07

Maltose 1.0060.07 0.7460.05 0.9760.04

Maltitol 1.0060.10 1.3460.05 0.8860.04

Maltotriose 1.0060.08 1.2060.05 1.0560.07

Raffinose 1.0060.06 0.5160.02 0.4560.04

Sucrose 1.0060.05 0.5360.02 0.7460.02

Trehalose a a’ 1.0060.04 1.1260.05 0.8460.08

Xylose 1.0060.08 0.7260.09 1.3560.07

Miscellaneous

Glycerol 1.0060.08 0.6760.10 0.8060.07

myo-Inositol 1.0060.04 0.6160.03 0.8060.02

Inositol-1-P 1.0060.08 1.3260.07 0.7160.09

Phosphoric

acid

1.0060.06 1.1460.08 0.8160.03

O-Acetylserine 1.0060.03 0.5160.03 0.6960.02

Spermidine 1.0060.05 0.6260.02 0.8160.02
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transgenic lines. Thirteen products of the flavonoid path-

way, flavonols, flavanols, and flavanones, exhibited a dra-

matic increase in both transgenic lines and only three were

down-regulated. Apart from metabolites derived from the

shikimate and phenylpropanoid pathways, significantly

differing terpenoid derivative metabolites were detected. In

the class monoterpene iridoids, three and one metabolites,

respectively, were up- and down-regulated in both trans-
genic lines and in the triterpenoid class two were up-

regulated and one down-regulated. Dramatic accumulation

of four sesquiterpenoids was also observed, and only one

metabolite in this class was down-regulated.

Transcript changes in transgenic F. vesca
overexpressing FaPE1

A custom array was prepared from 14 785 non-redundant

DNA sequences from F. vesca, F. ananassa, and P. persica.

A total of 7697 sequences from F. vesca, which were freely
available in public databases, were selected. Since global

comparison between homologous sequences from F. vesca

and F. ananassa revealed an average identity of >93%, 5957

non-redundant sequences from F. ananassa were selected,

which were added for the preparation of the oligonucletide

microarray. Finally, the opportunity of using a considerable

number of sequences from P. persica, a species of the same

Rosaceae family as the Fragaria species (Shulaev et al.,

2008) was assessed. The average identity between homolo-

gous F. vesca and P. persica sequences was >87%. This high

level of homology was sufficient to consider some of the

P. persica sequences as a potential source of new probes to

be used in the expression studies. A selection of 1131
sequences of this species that were annotated for metabolic

pathways relevant in fruit ripening and not represented in

the annotated F. vesca and F. ananassa sequences were

selected. In total these three sequence sets accounted for the

14 785 probes used in the expression studies. Taking

account of the number of genes for a closely related species

like P. persica (http://www.rosaceae.org/peach/genome) it is

estimated that around one-third of the F. vesca tran-
scriptome is represented in the microarray.

The microarray was used to compare transcript levels in

the receptacle of red fruits from the wild type and the

transgenic line L4 (Supplementary Table S3, at JXB online).

Stringency conditions used in the assay allowed a distinction

to be made between the non-homologous probes selected

for the design of the microarray. Extracting significantly

changed genes after Benjamini Hochberg correction

Fig. 3. Distribution of tentatively identified secondary metabolites in F. vesca red fruits overexpressing FaPE1. The colours indicate the

proportional content of each putatively identified metabolite among the samples as determined by the intensity of each detected peak

using UPLC-FT-ICR-MS. The lowest intensity is depicted as red and the highest intensity blue (see colour bar at the bottom). The exact

values of each metabolites peak are provided in Supplementary Table S3 at JXB online.
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(P<0.05) gave a total of 729 non-redundant sequences that

showed higher expression in the transgenic line and 667

with lower expression.

To make tables within the article not too exhaustive,

a conservative P-value cut-off of 0.01 was used. The genes

showing significant changes (P<0.01) are reproduced in

Tables 2 and 3 (for a more comprehensive list see

Supplementary Table S2 at JXB online). The overexpres-
sion of FaPE1 produces a general activation of biosynthetic

processes of the carbon metabolism, including genes in-

volved in photosynthetic electron transport. Genes with

highest values for fold change are classified in the arbitrary

categories of signalling, defence, hormone action, and cell

wall metabolism (Table 2). Of special interest are the genes

related to auxin action due to the antagonism proposed

between the action of auxin and oligosaccharides (OGAs)
(Ferrari et al., 2008). Moreover, interplay between auxin

and pathogen responses has been proposed to take place at

multiple levels, such as biosynthesis, transport, signalling,

and response (Kazan and Manners, 2009). The auxin

content of the receptacle of transgenic red fruits of F. vesca

was then measured, and found to be significantly lower than

the wild type (Fig. 4A). The diminished content of auxin

also occurred in transgenic L15, which was not used in the

microarray experiments but presented the same resistance

phenotype as L4. Interestingly, red fruits of these two
transgenic lines were larger in size than fruits of F. vesca

wild type (Fig. 4B)

Analysis of genes with lower expression in the transgenic

line showed distribution associated with carbohydrate

metabolism at different steps, as occurs with the hydrolysis

of linear glucans by b-amylase and at the final step of

glycosylation represented by the UDP-glucose glucosyl-

transferase (Table 3). Other metabolic processes affected
are lignin biosynthesis represented by cinnamoyl CoA

reductase, laccase, and peroxidase, and cysteine biosynthesis

Table 2. Sequences up-regulated in the receptacle of red fruits of transgenic line L4 of F. vesca overexpressing FaPE1

The expression study was performed in a microarray system as described in the Materials and methods. Sequences were selected after
establishing a P<0.01. The Bioconductor package limma (Smyth, 2004) was used to identify differentially expressed genes using a moderated t
test and false discovery rate control (Benjamini and Hochberg, 1995).

GenBank Acc. No. Sequence description Fold change L4/wild type

Metabolism

CO816702 Chlorophyll binding (LHCA1) 8.4

GT151146 Chlorophyll a/b binding protein 7.9

CO817454 Chlorophyll a/b binding 7.7

GT149794 Chloroplast chlorophyll a/b binding protein 7.0

CO817033 Photosystem II light harvesting complex gene 1.5 6.9

DY667514 RuBisCO activase 6.7

CX661120 Chlorophyll a/b binding protein CP29 6.5

CX661807 Chlorophyll binding (LHCA1) 6.4

DY672111 Fructose-bisphosphatase precursor 6.2

DY672688 Chlorophyll a/b binding protein 6.0

DY671922 Photosystem II subunit Q-2 5.7

DY674768 Chlorophyll binding (LHCA1) 5.4

DY669570 Chloroplast ribulose–bisphosphate carboxylase oxygenase activase large protein isoform 5.2

CX661883 Photosystem II light harvesting complex gene 1.4 5.0

DV438556 Photosystem II subunit Q-2 5.0

DY674975 23 kDa polypeptide of oxygen-evolving complex 4.9

DY671983 Photosystem II oxygen-evolving complex protein 3-like 4.7

CO816905 Probable photosystem I chain XI precursor 4.6

DY675836 Photosystem II subunit Q-2 4.6

DY673544 Light harvesting complex of photosystem II 5 4.2

GT150608 RuBisCO activase 4.1

DY668266 Sucrose-phosphate synthase-like protein 4.1

DY673647 Phosphoenolpyruvate carboxykinase 3.9

GT149612 Glyceraldehyde-3-phosphate dehydrogenase a, chloroplast precursor 3.7

GT149992 Glyceraldehyde-3-phosphate dehydrogenase a, chloroplast precursor 3.7

CO817015 Fructose-bisphosphate aldolase 3.5

CO817284 Glycosyl hydrolase family 1 protein 3.1

DY670922 Chlorophyll a/b binding protein 1 3.0

CO817839 Photosystem II subunit Q-2 3.0

CX309712 Fructose-bisphosphate aldolase 2.9

DY672627 Cytochrome P450 2.5

DY673749 Pyruvate orthophosphate dikinase 2.2
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Table 2. Continued

GenBank Acc. No. Sequence description Fold change L4/wild type

GT151838 Succinic semialdehyde dehydrogenase 6.2

DY667672 Cytochrome p450 monooxygenase 6.1

CX661274 Acyltransferase 3.0

GT151410 Oleo1 (Oleosin1) 2.2

Signalling

DY671714 Receptor-like kinase 23.3

GT150375 Mitogen activated protein kinase 17.5

GT151311 Phosphoinositide-specific phospholipase C family protein 2.9

DY668719 ATP binding/kinase/protein serine/threonine kinase 2.5

AY429427 MADS domain-containing transcription factor 2.4

DV439963 ATP binding/kinase/protein serine/threonine kinase 1.7

Defence

DY667796 Metallothionein-like protein 26.7

DY667992 DNAJ heat shock N-terminal domain-containing protein 15.6

DY670442 DNAJ-like protein 11.8

CO381839 NADPH oxidase 7.4

GT148982 Allergen Pru2 4.7

Auxin

GT149402 Auxin-repressed kDa protein 23.3

DY676028 Auxin-repressed protein 15.2

DV440644 Auxin-repressed 12.5 kDa protein 14.9

GT149171 Auxin-repressed protein 8.9

CO817753 IAA-induced protein 4 4.6

Ethylene

AJ851829 1-Aminocyclopropane-1-carboxylate oxidase 3.1

Cell wall

DY674083 b-Xylosidase 25.5

AY486104 b-Xylosidase 20.5

GT150504 Pectinesterase family protein 12.4

AY324809 Pectinesterase family protein (FaPE1) 8.4

CX661881 Pectinesterase family protein 8.1

DY672512 Xyloglucan endotransglucosylase/hydrolase 9 3.4

DY675164 Xyloglucan endotransglucosylase/hydrolase 9 3.0

DY673321 b-Glucosidase 2.4

GT150520 Glucan endo-1,3-b-glucosidase 2.2

DY666944 UDP-D-glucuronate 4-epimerase 6 2.2

DY668670 Glucan endo-1,3-b-glucosidase 1.9

Others

DY674021 Potassium channel 21.0

CO379585 NA 17.0

DY671017 Amino acid permease-like protein 15.7

DV438739 NA 13.7

DY670699 NA 11.6

DY667933 Ankyrin repeat family protein 9.5

DY668571 Peptide transporter 8.5

DY675427 NA 7.9

DY674019 Amino acid transporter family protein 7.8

DY675639 Unknown protein 6.3

DY670803 Serine carboxypeptidase II 6.3

DY669100 Cyclic nucleotide-regulated ion channel protein 6.1

DY671564 Asterase/lipase/thioesterase family protein 5.5

DY669965 NA 5.1

AB219569 NA 5.0
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Table 2. Continued

GenBank Acc. No. Sequence description Fold change L4/wild type

GT151822 NA 4.8

GT149428 NA 4.7

CO379857 NA 4.6

CO817860 Ankyrin repeat family protein 4.6

GT149739 NA 4.2

DY671828 Metal ion binding 4.1

CO817838 DNA binding 4.0

DY669494 Cyclase family protein 3.9

DV440102 NA 3.9

CO381427 NA 3.5

DV440453 NA 3.5

GT151230 Prunin precursor 3.4

CX661321 Zinc transporter 5 precursor 3.3

GT151587 Oligopeptide transporter (yellow stripe-like 2) 3.3

DY672846 Potassium transporter 2 3.2

CX661150 NA 3.2

DY672106 NA 3.1

DV438897 NA 3.1

CO818160 NA 3.1

GT150558 Inositol transporter 4 3.0

DV438540 Cyclin-dependent protein kinase regulator/protein binding 3.0

CX661035 Protein binding/ubiquitin–protein ligase/zinc ion binding 3.0

DY672730 MATE efflux family protein 2.8

GT152272 Nutrient reservoir (Cruciferina) 2.8

DV439423 NA 2.8

GT151843 Nutrient reservoir (Cruciferina) 2.8

DY672238 NA 2.8

GT150218 Nutrient reservoir (Cruciferina) 2.7

DV438492 NA 2.6

CO381589 Nutrient reservoir (Cruciferina) 2.6

DY671641 NA 2.6

DY670874 Histone H3 2.5

DV438317 Metal ion binding 2.5

CO380103 NA 2.4

DY672929 NA 2.4

GT151774 Nutrient reservoir (Cruciferina) 2.4

CO816755 Calmodulin binding/catalytic 2.3

CO817458 NA 2.3

DY674055 Zinc finger (C2H2 type) family protein 2.3

DY672630 Binding 2.2

DY666754 Calcium-dependent cysteine-type endopeptidase/cysteine-type endopeptidase 2.1

DY667692 NA 2.1

DY674677 NA 2.1

DY672812 EDA30 (embryo sac development arrest 30) 2.1

DY668283 NA 2.0

CO816895 NA 2.0

DV438752 Xanthine/uracil permease family protein 1.9

DY672213 Male sterility MS5 family protein 1.9

Table 3. Sequences down-regulated in the receptacle of red fruits of transgenic line L4 of F. vesca overexpressing FaPE1

The expression study was performed in a microarray system as described in the Materials and methods. Sequences were selected after
establishing a P<0.01. The Bioconductor package limma (Smyth, 2004) was used to identify differentially expressed genes using a moderated t
test and false discovery rate control (Benjamini and Hochberg, 1995).

GenBank Acc. No. Sequence description Fold change wild type/L4

Metabolism

DY668170 b-Amylase 39.1

GT151071 Glycosyl hydrolase family expressed 22.4
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Table 3. Continued

GenBank Acc. No. Sequence description Fold change wild type/L4

CO816906 b-Amylase 20.2

CO817208 Glycosyl hydrolase family expressed 18.4

CO817751 O-acetylserine (thiol) lyase (OAS-TL) isoform A1 18.0

DY668554 UDP-glucose glucosyltransferase 17.5

GT152052 Cysteine synthase 16.3

CO817617 Carbonic anhydrase 13.2

GT151016 UDP-glucose glucosyltransferase 5.5

CX661291 Carbonic anhydrase 1 5.1

DY671280 UDP-glucose glucosyltransferase 4.8

DY669935 UDP-glycosyltransferase 4.4

DY671623 Cinnamyl-alcohol dehydrogenase 3.9

CO816952 Serine acetyltransferase 1 3.8

DY670430 UDP-glucose glucosyltransferase 3.8

CO381569 Alternative oxidase 1A 3.7

GT151580 Sulphate adenylyltransferase (ATP) 2.5

DY675250 2-Oxoglutarate-dependent dioxygenase 2.4

DY670982 Pyridoxine biosynthesis 1.2 2.3

DY674635 Oxidoreductase 2.1

Signalling

DY668308 Serine threonine protein kinases 15.5

DY672721 Sterol regulatory element-binding protein site 2 protease 8.2

DY670038 Sterol regulatory element-binding protein site 2 protease 7.8

DY668034 Leucine zipper 5.1

Defence

GT149690 Small heat shock protein 34.6

CX309745 Heat shock protein 34.3

DY671878 Heat shock protein 18 12.7

DV439408 Thioredoxin-like 5.1

CX661962 Pathogenesis-related thaumatin family protein 4.8

GT151254 Lipid transfer protein 4.7

GT150102 Heat shock protein 18.2 3.2

GT150184 Heat shock protein 18.2 2.6

CO817046 Pollen Ole e 1 allergen and extensin family protein 2.5

DY673431 Disease resistance protein (NBS-LRR class) 2.5

CX662137 Heat shock protein 18.2 2.5

CO817988 Heat shock protein 18.2 2.4

GT148962 Heat shock protein 17.4 2.4

DY667157 Heat shock protein 17.6 kDa class II 2.3

GT150281 Heat shock protein 17.6 kDa class II 2.1

DY670885 Heat shock protein 18.2 2.1

CX661280 Heat shock N-terminal domain-containing protein 2.1

CX309670 Heat shock protein 70 2.0

CX662201 Mitochondrion-localized small heat shock protein 23.6 1.9

Hormone

DY676220 ABA- and ripening-induced protein 4.3

DV439312 Abscisic stress ripening-like protein 4.1

Cell wall

DY675690 Pectinesterase inhibitor 10.7

DV439771 Peroxidase 7.6

DY635780 Peroxidase 6.0

Others

DY667655 NA 134.1

CO381782 NA 105.2

CX662074 Protein 73.3

GT150988 Protein 44.0

DY676171 NA 32.1
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Table 3. Continued

GenBank Acc. No. Sequence description Fold change wild type/L4

CX661434 NA 31.4

GT149209 NA 30.0

CX661917 Hypothetical protein 27.2

GT151111 NA 24.8

CX661399 Hypothetical protein 21.9

GT149504 NA 20.1

GT149218 NA 19.3

DY671058 Polynucleotide phosphorylase polyadenylase 19.0

CO378910 NA 9.5

DY671369 Hypothetical protein 9.3

CO381802 NA 9.2

DY675861 Glutamate receptor 2.3 8.8

GT151351 Unknown protein 7.7

DY666709 Hypothetical protein 6.7

GT151547 Hypothetical protein 6.4

DY673480 Multidrug efflux family protein 6.2

CO816985 Hypothetical protein 6.1

DY669410 Hypothetical protein 6.1

DY670906 Porin-like protein 5.6

DV440632 NA 4.9

CO381788 NA 4.9

DV439808 NA 4.8

DV438560 Unknown protein 4.8

GT150021 Cinnamoyl CoA reductase-like protein 4.8

DY671815 NA 4.7

DV439862 NA 4.6

GT150217 NA 4.6

DY671827 NA 4.6

DY670432 NA 4.4

DY672652 NA 4.2

DY668601 NA 4.1

DY667680 RPT2 (root phototropism 2) protein binding 4.0

DY669461 NA 3.9

DV439643 NA 3.8

CX661927 NA 3.8

DY674943 NA 3.6

CO380657 NA 3.6

CO380695 NA 3.6

CO381358 NA 3.4

CX661524 Yellow-leaf-specific gene 8 3.3

CX661866 UVB-resistance protein-related/regulator of chromosome condensation (RCC1) family protein 3.3

CO378645 NA 3.1

DY674097 NA 3.1

CO379715 NA 3.1

DY673421 Vacuolar sorting protein 9 domain-containing protein 3.0

DY671602 DNA-binding family protein 3.0

DY668516 Phytoclock 1; DANN binding 2.9

DY668737 Low PSII accumulation 1 2.8

GT149149 NA 2.8

CX661552 Fibrillin 2.8

DY667414 Mitochondrial substrate carrier family protein 2.8

DY671736 Lipocalin 2.7

DV439266 Sugar transport protein 13 2.7

CO381215 NA 2.7

CO380557 NA 2.6

DY675350 GTP binding/GTPase 2.6

GT151004 NA 2.5

DY675275 NA 2.5

DV440067 NA 2.5
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as reflected by the changes in cysteine synthase,

O-acetylserine lyase, and serine acetyltransferase (Table 3).

Also noteworthy are the changes in genes involved in

signalling pathways such as the sterol regulatory element-
binding protein site 2 protease, which has been described to

be directly involved in the regulation of lipid metabolism

(Duncan et al., 1997), and a serine threonine protein kinase.

However, major changes occur in genes encoding proteins

of unknown function.

Fruits of two independent lines of F. vesca
overexpressing FaPE1 exhibit higher expression of
defence-related and cell wall-modifying genes than
wild-type F. vesca

The drastic changes found in the expression of transgenic
line 4 (L4) compared with wild type, were further confirmed

by qRT-PCR studies. Moreover, the study was extended to

another independent transgenic line (L15), which showed

a similar phenotype to L4. Thus, amongst the genes that are

up-regulated in transgenic F. vesca L4 compared with wild

type, one of the largest fold changes (>23-fold) was

exhibited by a sequence (Acc. No. DY671714) annotated as

encoding a protein kinase belonging to the family of
receptor-like kinases (RLKs) (Table 2), here named LRR1.

Some members of this family play a central role in signal-

ling during pathogen recognition, and subsequent activation

of plant defence mechanisms (Afzal et al., 2008). In the

authors’ microarray analysis another RLK (Acc. No.

DY668749), named LRR2, was identified that displayed

a >5-fold increase in expression in the transgenic line L4

(P<0.05; Supplementary Table S2 at JXB online). The
expression of LRR1 and LRR2 was further evaluated by

qRT-PCR in the receptacle of red fruits of wild-type F.

vesca and two different transgenic lines (L4 and L15)

overexpressing FaPE1. As shown in Fig. 5A, LRR1 and

LRR2 showed increased expression in the transgenic lines

Table 3. Continued

GenBank Acc. No. Sequence description Fold change wild type/L4

DY669887 Zinc finger (B-box type) family protein 2.5

CO380577 NA 2.5

CO380259 NA 2.5

CO816724 NA 2.5

DY673668 Potassium:hydrogen antiporter 2.4

DY675052 SOUL-1; binding 2.4

DY669425 Camphor resistance CrcB family protein 2.3

CO381340 NA 2.3

CO380041 NA 2.3

DY671656 NA 2.2

DY675816 NA 2.2

DY670526 DNA binding/calmodulin binding/transcription factor (TGA1) 2.2

GT151076 Temperature-induced lipocalin 2.1

CX661704 NA 2.0

CO381906 NA 2.0

DV439251 NA 2.0

DY673901 Hydrolase, a/b-fold family protein 2.0

GT151835 Identical protein binding/serine-type endopeptidase 1.9

DY672131 WD-40 repeat family protein 1.8

Fig. 4. Analysis of auxin content and size of red fruits of F. vesca

overexpressing FaPE1. (A) Auxin (IAA) content (ng g�1 FW) from

F.vesca wild-type and FaPE1 transgenic plants (line 4 and line 15).

Size, large and wide, of red fruits from F.vesca wild-type and

FaPE1 transgenic plants (line 4 and line 15). An asterisk denote

values that are significantly different as determined by t test

(P<0.01).
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L4 and L15 compared with the wild type, thus confirming

the microarray results. Previous studies on strawberry tran-

scriptional changes associated with infection by Colletotrichum

identified another member of this family, Falrrk-1 (Acc. No.

AJ871783) whose expression was higher in a moderately

resistant cultivar (Andana) compared with another suscep-
tible cultivar (Camarosa) (Casado-Dı́az et al., 2006). The

expression of this gene, here named LRR3, was not

significantly different in the L4 and L15 transgenic lines of

F. vesca in comparison with the wild type (Fig. 5A).

The microarray study identified a WRKY-type gene

(WRKY1, Acc. No. DY667265), with higher expression in

the ripe receptacle of the L4 F. vesca compared with the

wild type (6.5-fold; P<0.17; Supplementary Table S2).
WRKY proteins form a superfamily of transcription factors

involved in the regulation of various physiological pro-

grammes, including pathogen defence (Eulgem et al., 2000).

Expression analysis in strawberry after Colletotrichum in-

fection also identified a different WRKY-type gene, Fawrky-

1 (WRKY2, Acc. No. AJ871772), whose transcripts were

highly increased after infection (Casado-Dı́az et al., 2006).

Expression of these WRKY-type genes was studied in the
ripe receptacle of F. vesca and the two transgenic lines, L4

and L15. Whereas the expression of WRKY1 was higher in

the transgenic L4 and L15 compared with the wild type of

F. vesca, there was no difference in the expression of

WRKY2 between these lines (Fig. 5A).

It is known that changes in the cell wall might be

a mechanism by which plants protect themselves from

pathogenic penetration (Hückelhoven, 2007; Hématy et al.,

2009). Overexpression of FaPE1 has been shown to produce

significant changes in the composition of the cell wall

(Osorio et al., 2008). In microarray expression analysis it
was found that a gene encoding a b-xylosidase (Acc. No.

AY486104) showed >20-fold increased expression in trans-

genic F. vesca (L4) (Table 2). Analysis of its expression by

real-time PCR in two different transgenic lines of F. vesca

overexpressing FaPE1 (L4 and L15) confirmed the micro-

arrays results (Fig. 5B). Analysis of the expression by qRT-

PCR of other genes involved in cell wall synthesis,

modification, or degradation only gave a significant differ-
ence between wild-type and transgenic F. vesca in the case

of the gene encoding (1,4)-b-mannan endohydrolase (Acc.

No. GT149809) (2.6-fold; P<0.02; Supplementary Table S2,

at JXB online), which was induced in the transgenic lines

(Fig. 5B).

Discussion

Transgenic F. vesca fruits display characteristics of
active defence response

Metabolomic and transcriptomic studies were restricted to

the receptacle of the ripe fruit where resistance to

Fig. 5. Expression of defence and cell wall-related genes in F. vesca red fruits overexpressing FaPE1. (A) Expression of kinases and

WRKY transcription factor genes. (B) Cell wall-related genes. The values represent the mean6standard error of four individual plants. An

asterisk indicates values determined by t test to be significantly different from the wild-type value (P<0.01). Genes are as follows: LRR1,

DY671714; LRR2, DY668749; LRR3, AJ871783; WRKY1, DY667265; WRKY2, AJ871772; b-xylosidase, AY486104; (1,4)b-mannan

endohydrolase, GT149809.
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inoculation by fungal spores was previously found (Osorio
et al., 2008). An overview of the changes in metabolites and

expression of corresponding genes after overexpression of

FaPE1 in F. vesca is presented in Fig. 6.

In relation to metabolic changes a general decrease of the

most abundant sugars in the receptacle of ripe fruits

coincident with the up-regulation of many genes involved in

the photosynthetic carbon assimilate processes was ob-

served. The metabolic fate of these assimilates would appear
to be aromatic amino acids, and secondary metabolites

derived thereof, especially phenolic compounds, flavanones,

and terpenoid derivatives. In this last group, changes are

dramatic for sesquiterpenoids and their hexose derivatives.

Plant secondary metabolites with antimicrobial activity, also

known as phytoalexins, are low-molecular-weight com-

pounds that are structurally diverse and often restricted in

their occurrence to a limited number of plant species. It is
known that in Solanaceus plants sesquiterpenoid phytoalex-

ins are synthesized (Kuc, 1995). Although the final chemical

structure of the sesquiterpenoids found in F. vesca are not

known it can be hypothesized that they might play a defence

role in this species. Equally, a defence role against B. cinerea

can be attributed to the increase in some of the phenolic

compounds in transgenic F. vesca, since in the cultivated
strawberry it has been reported that lower content of these

compounds led to higher susceptibility to B. cinerea

(Hanhineva et al., 2009). In the case of amino acids higher

changes were in Asp and aromatic amino acids, and

a genome-wide in silico analysis found that a group of the

Asp-family catabolic genes and the highly coordinated

aromatic amino acid groups were both positively associated

with fungal response genes (Less and Galili, 2009).
Regarding transcript changes, in addition to those di-

rectly related to the metabolic changes (Fig. 6), changes

associated with a defence response are reported here. In this

category should be included genes encoding PR10 proteins,

WRKY (Eulgem et al., 2000), and metallothioneins (Butt

et al., 1998; Dauch and Jabaji-Hare, 2006). Also, the

diminished expression of the glucosyltransferase genes may

also represent a specific defence response. Glycosyltrans-
ferases constitute a broad family of enzymes that are able to

recognize very different substrates, from hormones to

secondary metabolites, using UDP-glucose as the most

common sugar donor in plants (Bowles et al., 2006). It has

been recognized that glycosylation/deglycosylation alters

the bioactivity of some defence compounds (Morrissey and

Fig. 6. Overview of changes in metabolites and transcripts upon overexpression of FaPE1 in F. vesca. Transcripts and metabolites are

visualized as small squares and the metabolite name, respectively. Up-regulated transcripts are depicted in shades of blue where up-

regulation of 3 log2 units leads to saturation in blue and down-regulation by 3 log2 units to saturation in red. Metabolites are only shown

in one shade of blue or red, if a significant change was detected to enhance the visibility. Metabolites that were not measured are

depicted in black and metabolites where no significant change could be detected in either line are shown in grey. Secondary metabolite

classes are depicted as coloured boxes, where the colour of the box is either red, if most metabolites are down-regulated, blue if most

are up-regulated, or white if no clear response was detected. Transcripts responsible for the interconversion of metabolites in these

classes are shown within the boxes. Solid arrows represent a single reaction whereas dashed arrows indicate a sequence of reactions.
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Osbourn, 1999). Moreover, the antimicrobial activity of

some metabolites such as saponins is related to the

maintenance of the sugar residues (Morrissey and Osbourn,

1999). Finally, induced expression of a gene encoding ACC

oxidase could be associated with defence since at least in

tomato ethylene responses are important for resistance of

tomato to B. cinerea (Dı́az et al., 2002).

The relative contribution to B. cinerea resistance of cell
wall modifications and concomitant production of second-

ary antimicrobial metabolites has often been questioned.

Here, significant transcriptional changes in genes encoding

b-xylosidase and (1,4)-b-mannan endohydrolase are

reported. The polymer target of these two genes is hemi-

cellulose (Martı́nez et al., 2004; Moreira and Filho, 2008).

Whilst the exact function of these two hemicellulose-

degrading enzymes is not clear within the plant defence
response, there are reports on the induction of endoxyla-

nases as elicitors of defence responses in plants (Beliën

et al., 2006) that could potentially also hold true for

necrotrophic pathogens such as B. cinerea. In summary,

these metabolic and expression data support that defence

response is activated in the receptacle of transgenic F. vesca

overexpressing FaPE1.

Auxin is involved in the defence response and
developmental changes in transgenic F. vesca
overexpresing FaPE1

The presence of OGAs, with some requirements of size and
degree of methylation, has been previously associated with

plant defence response (De Lorenzo and Ferrari, 2002;

Field et al., 2006; Van Loon et al., 2006). There is also

a documented role for these compounds in plant develop-

ment (Côté and Hahn, 1994; Melotto et al., 1994). In

addition to OGAs, auxin has been directly involved in this

crosstalk between defence and development in plants. In

addition to the largely known role played by auxin in plant
development (Zhao, 2010) more recently it has been

demonstrated effectively that this hormone modulates plant

defence responses (Wang et al., 2007; Zhang et al., 2007;

Kazan and Manners, 2009). More interestingly, there are

also reports illustrating antagonism between auxin and the

action of OGAs (Ferrari et al., 2008).

It was found that transgenic plants of F. vesca had an

altered development pattern. The greater size in two in-
dependent lines expressing FaPE1 was clear at the vegeta-

tive stage (results not shown) and in fruits. Mediation of

auxin in these developmental changes is supported by the

following arguments. First, and most pertinently, auxin

content in the receptacle of the transgenic fruits at the ripe

stage was significantly lower, and this is accompanied by

enhanced expression of several auxin-repressed genes.

Second is that growth of the strawberry fruit receptacle is
known to be dependent on auxin delivered from the achenes

in the early stages (Nitsch, 1950), but later in development it

is the decrease in auxin in the receptacle that triggers the

ripening process since there are many ripening genes that

are negatively regulated by auxin (Aharoni et al., 2002). It is

anticipated that this pivotal role played by auxin in

strawberry fruit development holds true for the fruits of

F. vesca. The question remains as to whether this reduced

auxin content is also related to the defence phenotype

presented by the transgenic fruits (Osorio et al., 2008). At

least in other species that seems to be the case; for instance

in Arabidopsis, pathogen defence against Pseudomonas

syringae (Chen et al., 2007) and against B. cinerea (Llorente
et al., 2008) appears to be modulated by the auxin produced

following pathogen challenge, since a functional auxin

signalling pathway is required for an effective defence

response. Furthermore, there are reports that directly link

auxin changes to plant defence response (Park et al., 2007;

Ding et al., 2008)

Ripe transgenic fruits were not only lower in auxin

content when compared with wild type but also contained
a new fraction of partially demethylated OGAs with

eliciting capacity (Osorio et al., 2008). Both compounds,

OGAs and auxin, have been reported to be involved in

plant development and plant defence with many reports

showing antagonistic roles for OGAs and auxin in different

aspects of plant development and defence (Branca et al.,

1988; Bellincampi et al., 1993; Ferrari et al., 2008). It would

be important to know whether or not they act indepen-
dently or if there is an interaction between their signalling

pathways. For this purpose it is important to consider that

the first event in this model is the demethylating activity of

PME and the subsequent generation of partially demethy-

lated OGAs. Accordingly, the molecular changes that

follow, including a change in auxin content, would be

downstream processes initiated by this initial change.

Therefore, change in auxin content is a direct or indirect
consequence of the partially demethylated OGA build-up in

the transgenic fruits. Intermediate steps in this crosstalk are

presently unknown. It is speculated here that the first

interaction of OGAs occurs with RLK proteins, which have

been reported to play a central role in pathogen recognition

and downstream steps of plant defence (Afzal et al., 2008).

The corresponding genes are among those with highest

increased expression in transgenic F. vesca.

FaPE1 in F. ananassa has a role in the production of
partially demethylated OGAs in ripe fruits

The expression of three PME-encoding genes in the fruits of
strawberry (F. ananassa) that show a different pattern

during development has been reported previously (Castillejo

et al., 2004). Here it is shown that the global content of all

PMEs increases in the fruits as they ripen, and discrepancy

between enzyme level and demethylation of pectins might

be indicative of the different capacity of demethylating

pectins in muro. FaPE1 is one of these enzymes specifically

expressed in fruit that displays increasing expression during
the ripening process up to a maximum at the turning stage

(Castillejo et al., 2004). When FaPE1 is expressed in wild-

type F. vesca the occurrence of a new OGA fraction (Osorio

et al., 2008) that has a deep effect on defence and fruit

development of the transgenic plants has been detected.
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This OGA fraction is also present in the ripe fruits of

strawberry (F. ananassa) that naturally expresses FaPE1. It

is here proposed that FaPE1 plays a central role in the

endogenous production of OGAs in the fruits of this

species, in addition to a possible role in demethylating

pectins.

OGAs are a-1,4-oligogalacturonides probably resulting

from the action of endo-polygalacturonase on the pectin
polymers of the cell wall (Ridley et al., 2001). In strawberry

two genes encoding endo-polygalacturonases have been

reported to be expressed in fruits with different patterns as

development proceeds, and it has been proposed that one

(FaPG1) is involved in the release of OGAs (Quesada et al.,

2009). The presence of partially demethylated OGAs here

reported will require the activity of a PME in addition to

the polygalacturonase activity. Since it is known that
FaPE1 is able to produce block-wise demethylation of

pectins in transgenic F. vesca (Osorio et al., 2008), and the

highest expression of FaPE1 in F. ananassa fruits is at the

turning stage (Castillejo et al., 2004), prior to the peak of

FaPG1 expression (Quesada et al., 2009), we deduce that

activity of FaPE1 might proceed to FaPG1 activity. All

together, these data and those in the literature indicate that

FaPE1 in cultivated F. ananassa plays a role not only in
pectin disassembly during fruit ripening, but also in the

generation of the fraction of partially demethylated OGAs.

Concluding remarks

The combined results presented here demonstrate that the

eliciting OGAs produced in the diploid F. vesca, as a result

of the expression of FaPE1, trigger a highly coordinated

and specific response that is evident at both transcriptional

and metabolite levels (MapMan; http://tinyurl.com/Osor-

ioReviewerLink; Supporting online information; Usadel

et al., 2009). It is contested here that these results reflect the
role played by naturally produced OGAs in plant defence.

In addition, the specificity of the chemical composition and

structure of these OGAs is also emphasized as it is

demonstrated that the degree of demethylation is critical

for the triggering of the plant response. The presence of

partially demethylated OGAs is associated with a decrease

in the auxin content, thus providing an example of the

interaction of these two compounds in plant developmental
and defence responses. Exhaustive analysis performed here

of two F. vesca genotypes, differing in the expression of

a single gene encoding PME, provides an important system

for advancing the knowledge of this pathogen response–

development interplay with OGAs and auxin as active

compounds.

Supplementary data

The following materials are available in the online version

of this article.

Supplementary Table S1. Absolute metabolites concen-

trations (lg g�1 FW) of red fruits of F.vesca plants

overexpressing FaPE1. Value are presented as mean6SE of

six replicates; values set in bold type were determined by

ANOVA analysis to be significantly different (P<0.05) from

the wild type.

Supplementary Table S2. Tentatively identified metabo-

lites in the UPLC-FT-ICR-MS and their abundancy in red

fruits of Fragaria vesca plants overexpressing FaPE1.

Metabolites were determined in receptacle from red fruits.
Data are normalized to the mean response calculated for

the wild type. Values presented are mean6standard error of

six replicates and are significant differences by ANOVA

analysis (P<0.01).

Supplementary Table S3. Microarray expression data.

Supplementary Table S4. Primers.

Supporting online data. MapMan; http://mapman.gabipd.

org/web/guest/mapmanweb.
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