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1 Periodically forced oscillatory media

The control of pattern formation is an important problem in engineering
of spatially extended self-organized systems. A wide class of systems show-
ing spontaneously formed waves and patterns can be summarized under the
generic term “oscillatory media”. They may be considered as a composition
of a large number of coupled subsystems. The dynamics of each subsystem
is oscillatory. Complex phenomena like the formation of patterns and waves
or spatio-temporal chaos comes through the interaction between the subsys-
tems. Despite such complex collective behavior the dynamics is very sensitive
to feedback or to periodic forcing with frequencies close to an integer ratio of
the oscillation frequency of the subsystems.

A well-known example is the Belouzov-Zhabotinsky-Reaction, involving
the oxidation of an organic compound by bromate in acidic solution. It is a
robust oscillatory reaction with striking color changes. Spatiotemporal wave
behavior is exhibited in unstirred reaction mixtures [1, 2]. For this reaction,
application of global periodic forcing was shown to produce various cluster
patterns [3, 4, 5] and induce turbulent regimes [6].

Another example which has been extensively studied is the catalytic CO
oxidation on Pt(110). The interplay between desorption and surface diffusion
of CO, reaction between the two adsorbed species, and an adsobate-driven
structural change of the platinum surface can lead to oscillations of the CO
and oxygen coverage [7]. In experiments where bulk oscillations were unsta-
ble and spatiotemporal chaos spontaneously developed, application of peri-
odic forcing allowed to suppress chemical turbulence, produce intermittent
regimes with cascades of amplitude defects, and generate oscillating cellular
and labyrinthine patterns [8, 9]. Recently, front explosions have been predicted
under periodic forcing [10].
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Fig. 1. Left: Effect of 2:1 resonant periodic forcing on the photosensitive BZ-
reaction. A spiral wave is formed without forcing (upper part). Under the influ-
ence of illumination with light pulsed at twice the natural frequency of the reaction
a labyrithine pattern appear.[3]. Right: Suppression of chemical turbulence in the
catalytic CO oxidation on Pt(110) under global feedback. Upper row: subsequent
PEEM images of the Pt surface illustrating the transition from spiral wave turbu-
lence to homogeneous oscillations. Bright regions are mainly CO-covered. Middle
row: Space-time diagram showing the evolution along the line AB. Bottom: Time
series of the CO partial pressure[8].

2 The forced complex Ginzburg-Landau equation

The universal description of reaction-diffusion systems near a supercritical
Hopf bifurcation is provided by the complex Ginzburg-Landau equation [11].
Action of global periodic forcing on the systems described by this equation
has been first considered by Coullet and Emilsson [12, 13]. Under sufficiently
strong resonant n:1 forcing, oscillations are entrained and stationary or trav-
eling 2π/n-fronts become possible. The 2π phase fronts for the 1:1 forcing
are known as kinks (or phase slips). They represent traveling localized struc-
tures, because the states differing by the phase of 2π are physically identical.
Therefore, as noticed in Ref. [13], they bear similarity with pulses in excitable
media. Traveling π-fronts under 2:1 forcing represent nonequilibrium Bloch
walls [14]. Kinks and traveling Bloch walls are elementary wave patterns un-
der forcing conditions. Instabilities of kinks lead to backfiring and development
of intermittent regimes with reproduction of amplitude defects [15, 16, 17].
Transverse instabilities of nonequilibrium planar Bloch walls give origin to the
Bloch turbulence [6]. In heterogeneous media near a Bloch-Ising transition,
complex behavior due to reflections of Bloch waves on Ising domains has been
found [18].

Under global resonant n:1 forcing, the complex Ginzburg-Landau equation
(CGLE) for the slow complex oscillation amplitude η is [12]
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.
η = (1 + iν)η − (1 + iα)|η|2η + (1 + iβ)∇2η + B (η∗)n−1 , (1)

where detuning ν = ω0 − ωe/n is determined by the natural (ω0) and forcing
(ωe) frequencies and B is the forcing amplitude. Oscillations are entrained
by forcing in the parameter region known as the Arnold tongue (Fig. 2 (a)).
Inside this region, kinks (n = 1) and Bloch walls (n = 2) traveling at a
constant velocity are possible (see [12, 15, 16]). Moreover, wave trains formed
by periodic sequences of such phase fronts can also be observed there.

3 Phase front propagation reversal

Our attention is focused on the properties of periodic trains formed by kinks or
traveling Bloch walls. Our analysis reveals that, depending on the parameters
of the oscillatory medium and the spatial period of a train, it can undergo
a reversal of its propagation direction [19]. We show how this phenomenon
can be used to design traps for traveling kinks and Bloch walls. Furthermore,
we find that a new kind of patterns - twisted rotated spiral waves - exist in
oscillatory media under the conditions of front propagation reversal.

Any traveling phase front is characterized by its chirality: ”right” if the
phase increases after front propagation and ”left” if it decreases after that. A
similar definition can be accepted for traveling wave trains. It is convenient
furthermore to define the front velocity V in such a way that it is always
positive (V > 0) if a front propagates to increase the oscillation phase and
negative (V < 0) otherwise. With this convention, all ”right” fronts move at
a positive velocity, while the velocity of any ”left” phase front is negative.

The velocity of an individual phase front is uniquely determined by the
properties of the medium and the forcing parameters. For wave trains, it ad-
ditionally depends on the spatial period λ of a train. Figure 2b shows depen-
dences V (λ) for two different values of the coefficient β, obtained by numerical
continuation of wave train solutions of equation (1) with n = 1. When β = 5.0,
velocity V remains positive for all spatial periods. This means that both a soli-
tary kink and any kink train in such a medium possess the ”right” chirality.
In contrast to this, kinks move at a positive velocity (and have the ”right”
chirality) only for sufficiently short spatial periods at β = 1.8. At a critical
spatial period λc, the propagation velocity of the train vanishes and V (λ) < 0
when λ > λc. Thus, solitary kinks and kink trains with large periods have the
opposite ”left” chirality in the latter case.

To illustrate the difference in the properties of wave patterns in such two
media, we consider the following example. Suppose that the local oscillation
frequency is increased in the center of a one-dimensional medium. If periodic
1:1 forcing is applied, the local frequency increase can still be so large that
oscillators in the central region are not entrained and perform autonomous
oscillations. This region acts then as a pacemaker which periodically gener-
ates phase slips propagating away as a kink train with the ”right” chirality .
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Fig. 2. Front propagation reversal (n = 1, α = 0.5). (a) Standing kinks are found
along the dashed line (β = 1.8) in the Arnold tongue. (b) Dependences of velocity V

on spatial train period λ for β = 1.8 (solid line) and β = 5.0 (dashed line); here
ν = 0.5525, B = 0.053. Space-time diagrams showing behavior of wave patterns
after termination of a pacemaker in media with (c) β = 5.0 and (d) β = 1.8 ; the
same other parameters as in part b, local values of Reη(x, t) are shown in gray scale.

Suppose now that this heterogeneity is removed and the activity of the pace-
maker is terminated. When β = 5.0, generated kinks continue to move away
from the center (Fig. 2c). The situation is however different, if β = 1.8 (see
Fig. 2d). As spatial intervals between the kinks get larger, they subsequently
reverse their propagation direction and move into the central region where
repeated annihilations take place. This is because single kinks and the kink
trains with sufficiently large periods are characterized by the ”left” chirality in
this medium and propagate in such a way that the oscillation phase becomes
decreased.

4 Phase approximation

For sufficiently small forcing amplitudes B, the train velocity V (λ) can be an-
alytically estimated. In this parameter region, the dynamics is approximately
described [12] by the reduced equation for the local oscillation phase ϕ,
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.
ϕ = ν − α − B

√

1 + α2 sin nϕ + a (∇ϕ)2 + b∇2ϕ, (2)

where ϕ = φ + arctanα and η = ρ exp (iφ). For brevity, we have intro-
duced here notations b = 1 + αβ and a = α − β. Note that such reduced
phase description is justified, when b > 0 so that uniform oscillations are
modulationally (Benjamin-Feir) stable. The kinks exist for B > BA, where
BA(ν) = |ν − α|/

√
1 + α2.

Applying the Cole-Hopf transformation ϕ = (b/a) lnu, this phase dynam-
ics equation is transformed to a simple form analogous to the equation for
front propagation in one-component bistable media [20],

∂tu = Q(u) + b∂xxu (3)

with the nonlinear function Q(u) = (a/b)u
[

ν − α − B
√

1 + α2 sin (n (b/a) lnu)
]

.
The roots uj of equation Q(u) = 0 under the condition Q′(uj) < 0 correspond
to stable uniform locked states of the system. Explicitely, we have

uj = exp

{

a

nb

[

2πj + arcsin

(

α − ν

B
√

1 + α2

)]}

. (4)

Although the system has an infinite sequence j = 1, 2, 3, ... of such roots, only
n of them represent physically different phase-locked states.

A front train with spatial period λ is a solution of equation (3) satisfying
periodicity conditions ϕ(x+λ/n) = ϕ(x)+2π/n (for n > 1 one spatial period
of the pattern consists of n subsequent 2π/n-fronts). In terms of the variable
u, these conditions take the form

u(x + λ/n) = exp (2πa/nb)u(x). (5)

Thus, the train solutions for u are not periodic, but grow exponentially with
x.

When propagation reversal occurs, a stationary train is possible. In the sta-
tionary case, equation (3) has the first integral (1/2)b(∂xu)2 +W (u) = E. Us-
ing the periodicity condition (5) and the property W (uj+1) = exp (4πa/nb)W (uj),
we find that E = 0 for any stationary train. Thus, the wavelength λst of the
stationary train is given by

λst =

∫ uj+1

uj

√

−bn2

2W (u)
du. (6)

This result does not depend on the choice of the root j.
Solitary 2π/n phase fronts are front solutions of equation (3), such that

u(x, t) → uj for x → −∞ and u(x, t) → uj±1 for x → ∞. They can be also
viewed as a limit of a periodic train with λ → ∞. According to equation
(6), the wavelength of a stationary train diverges, if W (uj) = 0. Solving this
equation, we find that stationary solitary 2π/n fronts exist along the line
B = Bst(ν) given by
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Bst =
1

2a
(α − ν)

√

a2 + n2b2

1 + α2
. (7)

Note that, in the phase approximation, the boundaries of the Arnold tongue
are B = BA(ν). The line B = Bst(ν) is shown as the dashed line in Fig.
2a. Along this line, the reversal of the propagation direction of solitary phase
fronts occurs. Phase fronts with the ”right” chirality (V > 0) are found on
the left side of this line, if β > α.

As follows from (6), the condition for existence of stationary periodic trains
is W (uj) < 0. This means that they are found inside the region of the Arnold
tongue, lying between the line B = Bst(ν) and the (nearest) boundary of the
tongue (see Fig. 1a). Such a region always exists if b > 0. For any given set
of parameters, the wavelength of the stationary train can be computed by
numerical evaluation of the integral in equation (6).

The above analysis shows that front propagation reversal occurs near any
n:1 resonance. For n = 1, stationary kinks (i.e., 2π-fronts) and periodic se-
quences of standing kinks are possible (the existence of stationary solitary
kinks under global feedback conditions has previously been shown [15]). For
n = 1, stationary π-fronts represent standing Bloch walls or their periodic se-
quences. Such standing structures are different from Ising walls, because the
oscillation amplitude does not vanish here.

5 Trapping of phase fronts

The wave propagation reversal can be induced by varying parameters of the
medium. Most conveniently, this can be done by changing the coefficient β
in the CGLE, since this coefficient does not affect uniform oscillations and is
only important for propagating waves.

The dependence of the wave propagation direction on the coefficient β can
be used to trap kinks and Bloch fronts. Such traps can be designed by creating
spatial regions, where the coefficient β is locally changed to reverse the prop-
agation velocity. The left panel in Fig. 3 shows an example of a kink trap in
the one-dimensional medium at the 1:1 resonance. The value of β is decreased
in the central region. No-flux boundary conditions are used in all our simu-
lations. Initially, a rapid pacemaker operates at the left end of the medium.
This pacemaker produces a kink train with a short spatial period. The train
enters the modified central region and passes it with some deceleration. When
the pacemaker is terminated, further kinks are not produced. However, the
kinks inside the central modified region become trapped inside it and form
a stationary pattern with a period corresponding to the velocity reversal. If
the central heterogeneity is removed, the stored pulses would propagate out
of it. The right panel in Fig. 3 demonstrates the trapping of Bloch fronts at
the 2:1 resonance. The pacemaker at the left end of the medium produces a
train of Bloch fronts.
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Fig. 3. Trapping of kinks and Bloch fronts in the 1-d medium. The coefficient β is
set to β = 5 and decreased to β = 1.8 inside the central region of width 300. Left:

Kink trap under the 1:1 resonance, the same parameters as in Fig. 1b. Right: Bloch
front trap under the 2:1 resonance (B = 0.061, the same other parameters as in Fig.
1b).

Fig. 4. Trapping of kinks and Bloch fronts in the two-dimensional medium. The
coefficient β is set to β = 5 and decreased to β = 1.8 in the rectangular central region.
The medium parameters are the same as in Fig. 2. The system size is 1000 × 1000.
Upper panel: Kink trap in 1:1 resonance. The snapshots of the spatial distribution
of Reη are taken at t = 6000, t = 19000 and t = 32000. Lower panel: Bloch wave trap
in 2:1 resonance. Snapshots the spatial distribution of Reη at t = 2000, t = 16000
and t = 46800. (B = 0.061)
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Similar traps for kinks and Bloch fronts can also be constructed in two-
dimensional media. The upper panel of Fig. 4 (see also video 1 [21]) shows
a series of snapshots where trapping of kinks by a central modified region
is seen. A pacemaker in the lower left corner emits a kink train with a short
spatial period. The first snapshot shows the kink train passing the rectangular-
shaped inhomogeneity. Inside the inhomogeneity, the velocity of the kinks
is decreased, resulting in a delay of the kinks at the upper right corner of
the rectangle. In the second snapshot, the rear end of the kink train has
reached the lower left boundary of the inhomogeneity. The kinks inside the
inhomogeneity close to this boundary can no longer propagate and the kinks
outside propagate around the central region. This leads to the formation of
ring-shaped kinks in the upper right part of the inhomogeneity. As long as
new kinks arrive, these rings collapse. When the kink train has passed the
inhomogeneity, the stored kinks form stationary ring-shaped structures. In the
lower panel of Fig. 4 (see also video 2 [21]), trapping of traveling Bloch fronts
at the 2:1 resonance is demonstrated. It proceeds similar to the respective
process for the kinks near the 1:1 resonance. In our simulations, wave traps
with various sizes and with complicated geometries could be created.

In the above discussion, we assumed that the condition β > α was sat-
isfied. If the opposite condition β < α holds, waves in the unforced CGLE
have negative dispersion (see, e.g., [22]). In this case, inwardly rotating spirals
(”antispirals”) and inwardly propagating target patterns are possible. In such
media, reversal of front propagation also takes place and the wavelength of a
stationary train is again given by equation (6). However, the line B = Bst(ν)
lies now on the left side of the Arnold tongue and stationary front trains are
found in the region between this line and the left tongue boundary.

6 Twisted spirals

A special effect, related to kink propagation reversal, is the formation of
twisted spirals near the 1:1 resonance in two-dimensional media (Fig. 5a).
The central and outer parts in such a spiral are wound in opposite direc-
tions. These structures are stable, they are observed in numerical simulations
starting with various initial conditions. A twisted spiral rigidly rotates as a
whole, retaining its shape. In Fig. 5b, three subsequent snapshots of the spiral,
separated by a third of the rotation period each, are superimposed (see also
video 3 [21]). We see that the instantaneous rotation center does not coincide
with the location of the spiral tip. Instead, the oppositely wound central part
of the spiral is steadily rotating. Thus, this regime can also be characterized
as a kind of meandering. Qualitatively, the development of twisted spirals can
be understood by noticing that the waves are tightly wound near the center
and, therefore, their propagation direction should be reversed there. In the
displayed simulation, the medium was characterized by negative dispersion
(β < α). Similar behavior has, however, been found by us in the simulations
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Fig. 5. Rotation of a twisted spiral. Left: Spatial distribution of Reη. Right: Position
of the spiral at times t = 0 (solid), t = 340 (dashed), t = 680 (dotted). Parameters
are α = 4.19, β = 0.992, ν = 3.9895, B = 0.0455, the system size is 500 × 500.
Numerical integration using the explicit Euler scheme with ∆x = 0.2 and ∆t =
0.0025.

for the media with positive wave dispersion (β > α) [19]. By changing the
forcing intensity and frequency, winding and unwinding of the central part of
the spiral can be controlled.

Our theoretical study has shown that, applying periodic forcing, one can
induce propagation reversal of kinks, Bloch walls and 2π/n phase fronts for
higher resonances with n > 2. Using this effect, traps for propagating kinks
and other phase fronts can be designed by creating appropriate heterogeneities
in the medium. In our simulations, such heterogeneities were introduced by
spatial variation of the coefficient β in the CGLE, but similar effects can
be achieved by varying other parameters of the medium or by applying in-
homogeneous forcing. We have also shown that, in uniform media with 1:1
forcing, steadily rotating twisted spirals can develop. Though our results have
been obtained only for the CGLE, we expect that they should be charac-
terictic for a class of media where oscillations are not strongly relaxational.
Our simulations using a realistic model of the catalytic surface reaction of
CO oxidation on platinum have shown that the wave propagation reversal
under periodic forcing takes place near a supercritical Hopf bifurcation in this
reaction and that the wave traps can be constructed there [19]. Another ex-
perimental system where the predictions of our theory can be tested is the
oscillatory photosensitive Belousov-Zhabotinsky reaction.
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