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Modeling and simulation are indispensable for the design process of new semiconductor structures. Difficulties arise
from shrinking structure sizes, increasing working frequencies, and uncertainties of materials and geometries. There-
fore, we consider the time-harmonic Maxwell’s equations for the simulation of a coplanar waveguide with uncertain
material parameters. To analyze the uncertainty of the system, we use stochastic collocation with Stroud and sparse
grid points. The results are compared to a Monte Carlo simulation. Both methods rely on repetitive runs of a deter-
ministic solver. To accelerate this, we compute a reduced model by means of proper orthogonal decomposition to reduce
the computational cost. The Monte Carlo simulation and the stochastic collocation are both applied to the full and the
reduced model. All results are compared concerning accuracy and computation time.

KEY WORDS: uncertainty quantification, material uncertainties, stochastic collocation, sparse grid, elec-
tromagnetics, model order reduction

1. INTRODUCTION

Nowadays, the design process of semiconductors is unimaginable without simulations of new micro- and nanoscale
systems due to the expensive production of prototypes. However, the numerical simulation of systems that result
from modeling of microscale structures is computationally demanding. Two aspects make the simulation even more
complicated. One is the ongoing miniaturization of the structures, e.g., the technology improved from 0.35µm (Intel
Pentium 133) in 1995 to∼20 nm (Intel Core i7) in 2012, in combination with an increasing of the working frequencies
from 100 MHz (Intel’s P5 Pentium) in 1995 to 4 GHz (AMD FX 8350) in 2012. This implicates a high-density of
electric conductors and induces parasitic effects like cross talk. In the past, the so-called partial element equivalent
circuit (PEEC) method [1] was used for the numerical modeling of electromagnetic (EM) properties. Using the PEEC
method, the problem is converted from the electromagnetic domain to the circuit domain where traditional circuit
solvers can be employed to analyze the equivalent circuit. However, at higher frequencies and for complicated ge-
ometries and more complex (e.g., inhomogeneous) materials, the PEEC method is not suitable. For such applications,
differential field solvers, such as the finite element method (FEM), are more suitable to compute the EM field by
solving Maxwell’s equations.

In the following, the electric field intensityE and the magnetic field intensityH are described by Maxwell’s
equations

∂t(εE) = ∇× H − σE− J, (1)

∂t(µH) = −∇× E, (2)

∇ · (εE) = ρ, (3)

∇ · (µH) = 0, (4)
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whereρ is the charge density andJ is the impressed current source. Furthermore,ε = εr ·ε0 (permittivity),µ = µr ·µ0

(permeability), andσ (electrical conductivity) are material-dependent parameters. The equations are considered in a
domainG ⊂ R3.

We decouple the full Maxwell’s equations by exploiting the fact that∇ × (∇ϕ) = 0 for scalar potentialsϕ and
∇ · (∇× A∗) = 0 for vector potentialsA∗. Then, (4) yields

∃A∗ : ∇× A∗ = µH.

Substituting into (2) leads to
∇× (E + ∂t(A∗)) = 0,

which implies the existence of a scalar potentialϕ such that

E = −∇ϕ− ∂t(A∗).

By choosingA = A∗+
∫ t

t0
∇ϕdt [2], we obtainE = −∂t(A),∇×A = ∇×A∗, and the vector potential formulation

of Maxwell’s equations (1)–(4)

∇× (µ−1∇× A) + σ ∂t(A) + ε ∂2
t (A) = J.

For a further simplification, we work with the time-harmonic form, i.e., we assumeA to be given in the form
A = Â eift, wheref is the working frequency andi =

√−1 the imaginary unit. With this assumption, the time
derivatives simplify to

∂t(A) = if A, ∂2
t (A) = −f2 A.

Therefore, the vector potential formulation can be written as

∇× (µ−1∇× A) + i f σ A− f2 ε A = J.

By replacingE = −∂t(A) = −ifA [3, 4], we obtain the time-harmonic Maxwell’s equation

∇× (µ−1∇× E) + i f σ E− f2 ε E = −i f J, (5)

for which the solutionE lives in the spaceX = {E ∈ H0
curl(G)|∇ · (εE) = ρ}, where

H0
curl(G) :=

{
E ∈ (L2(G))3|∇ × E ∈ (L2(G))3, E× n = 0 on∂G

}

and

L2(G) =
{

u|
∫

G

u2dx < ∞
}

.

When using the time-harmonic form, we work with a complex electric field. Actually, electric fields are real. Using
complex exponentials bears no advantage other than convenient calculation. The imaginary part of the electric field is
just a phase shift of the real part. Often the imaginary part is neglected after the computations. We will not neglect it,
but work with the absolute value of the electric field.

For the simulation, (5) is discretized by means of the finite element method. This will be further explained in
Section 5.

To allow for fluctuations in the processed materials, the material parameters are treated as uncertain parameters of
the system. In this paper, these uncertain parameters areεr, µr, andσ. Therefore,E is parameter dependent but, for
reasons of simplification, we will not write this dependence explicitly.

Inaccuracies during the lithography, which lead to variations of the feature structure sizes, lead to another aspect
that can no longer be neglected during the simulation. These geometric parameters will not be considered in this work.
This aspect will be treated in the future.

For a variational analysis of the effect of uncertainties on the electromagnetic field, methods for uncertainty quan-
tification (UQ) [5, 6] are required. The existing methods in this field can be divided into intrusive and nonintrusive
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methods. The motivation for nonintrusive methods is that, in the cooperation with industrial partners the discretization
of the system equations is often done by a commercial tool and therefore must be considered as a black box. In this
case, intrusive UQ methods, such as stochastic finite elements [7], which would lead to a new discretization respecting
the uncertainty in the system, cannot be used. Therefore, we will employ nonintrusive approaches in order to design
an algorithm that allows the use of EM field solvers for deterministic problems without accessing the source code.
Possible nonintrusive methods are the well-known Monte Carlo (MC) simulation [8, 9], which yields arbitrary exact-
ness but has a slow convergence, or the stochastic collocation approach [10–13]. In our case, the results computed by
MC serve as reference solutions. Considering stochastic collocation, the choice of collocation points is very important
for the accuracy of the results on the one hand and the effectiveness of the method on the other hand. This will be
further investigated in this work.

Another way of saving computation time is to replace the high dimensional discretized system obtained from (5)
by a system of reduced order. Such systems can be computed by model order reduction (MOR) [14, 15]. We use a
reduced-order model (ROM) instead of the full-order model (FOM) for the MC and the collocation approach. This
ROM is obtained by MOR via proper orthogonal decomposition (POD) [16–22].

In the last several years, UQ became more and more popular for solving problems from different application
areas. Stroud-based collocation has been used for the statistical characterization of coupled voltages in [11]. In [12],
sparse collocation methods with diverse kinds of sample points are applied to electromagnetic scattering by a two-
dimensional cylinder with an uncertain number of wholes with uncertain size and location. The two choices of sample
points, Stroud and sparse grids, are compared in [13] considering as example an elliptic equation. It must be mentioned
that Stroud rules exist just for some specific random distributions and are therefore not generally applicable.

Here, we combine components of the latter papers. We use Stroud points [23] and sparse grids [24] and apply
the stochastic collocation to the time-harmonic Maxwell’s equations in high-frequency range with uncertain material
parameters. The use of nonintrusive methods is driven by the application described in Section 2.

The combination of MOR and UQ is rarely studied up to now. One of the first publications considering UQ and
MOR for microelectronics is [25], where a projection-based MOR method for variational analysis of RLC interconnect
circuits was presented. In [26], a projection based reduction of the state space and a reduction of the random space are
applied to an electric network with uncertain capacitances, inductances, and conductances. Another example is [27],
where a combination of the reduced basis method and stochastic collocation is applied to stochastic versions of the
diffusion equation and the incompressible Navier-Stokes equations.

In this work, we place value on reducing a parameter-affine system once, followed by a repetitive usage of the
obtained ROM in the UQ method. The paper is structured as follows. We describe our model application, a coplanar
waveguide with dielectric overlay, in Section 2. The UQ methods of interest, Monte Carlo and stochastic collocation,
as well as our different choices of collocation points are explained in Section 3. We will give a short introduction to
MOR by POD in Section 4 and show the numerical results in Section 5. A short conclusion is given in Section 6.

2. APPLICATION: A COPLANAR WAVEGUIDE

The application of interest is a coplanar waveguide with dielectric overlay which is shown in Fig. 1. A detailed
description of the coplanar waveguide (only with geometric parameters) can be found in the MOR wiki [28]. The
model consists of three perfectly conducting striplines situated at a height of 10 mm in a shielded box with perfect
electric conductor (PEC) boundary. The system is excited at discrete port 1, and the voltage along port 2 is taken as
output.

Below a height of 15 mm, there is a substrate, the rest of the box is filled with air. The uncertainties of the model
are the material parametersεr,µr, andσ. As the relative permittivityεr and the conductivityσ have different means
for substrate and air, we have to work with two sub-domainsGs (substrate) andGa (air). That means, we splitεr and
σ and treat the system as a system with five uncertain parameters.

Due to physical reasons, the parameters must be positive. Therefore, they are assumed to be log-normally dis-
tributed. The given meansE(pj), standard deviationsstd(pj), and the argumentsµµµj andσσσj for the log-normal distri-
butionsLN (µµµj ,σσσ

2
j ) are given in Table 1, forj = 1, . . . , 5. The assumed probability density function for parameter

pj is
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FIG. 1: Coplanar waveguide.

fpj
(x) :=

1√
2πσσσjx

exp

(
− (ln(x)−µµµj)2

2σσσ2
j

)
, for x ∈ R, x > 0.

We use the vectorsµµµ andσσσ to compute the Stroud and sparse grid points. Then we take the exponential of them as
sample points, because the exponential of a normally distributed random variable is log-normally distributed. The
time-harmonic Maxwell’s equations (5) depending on the five parameters listed in Table 1, can be written as follows:

∇× ((µrµ0)−1∇× E) + if(σs1Gs + σa1Ga)E− f2ε0(εs
r1Gs + εa

r1Ga)E = −ifJ, (6)

where1Gs ,1Ga denote the indicator functions of sub-domainGs, Ga, respectively.
In Section 3, we explain the stochastic background and describe different choices of collocation points and their

usage for the coplanar waveguide.

3. NONINTRUSIVE UNCERTAINTY QUANTIFICATION

Let (Ω,F ,P) be a probability space, whereΩ is the set of all elementary events,F is aσ-algebra of subsets ofΩ, and
P is a probability measure onF . Given a vector of independent square integrable random variablesY : Ω → Γ ⊂ RN ,
with joint probability density functionfY and a measurable, possibly vector-valued, functiong : RN → Cd for a
natural numberd, we are interested in the computation of statistical quantities like the mean

E (g(Y)) := (E (g1(Y)) , . . . ,E (gd(Y)))T
, (7)

TABLE 1: Information about the parameter vector
p = (εs

r, ε
a
r , µr, σ

s, σa)T for the coplanar waveguide

j pj E(pj) std(pj) µµµj σσσj

1 εs
r 4.40 10−2 1.4816 0.0023

2 εa
r 1.07 10−2 0.0676 0.0093

3 µr 1.00 10−2 0.0000 0.0100
4 σs 0.02 10−4 −3.9120 0.0050
5 σa 0.01 10−4 −4.6052 0.0100
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with

E (gk(Y)) :=
∫

Ω

gk(Y(ω))dP(ω), for k = 1, . . . , d, (8)

and the standard deviation
std (g(Y)) := (std (g1(Y)) , . . . , std (gd(Y)))T

with

std (gk(Y)) :=
√
E (|gk(Y)|2)− (|E (gk(Y)) |)2, for k = 1, . . . , d (9)

of the complex-valued random variableg(Y), see [29]. Here,|g(Y)| =
√

Re(g(Y))2 + Im(g(Y))2 denotes the ab-
solute value ofg(Y), which is needed to achieve a real-valued standard deviation. Another reason for the use of this
formula for the standard deviation is that, in the end, we are interested in the behavior of the absolute value ofg(Y).
Therefore, it is important that the standard deviation, which describes the variation of the random vectorg(Y) around
its mean, is also influenced by the absolute value.

For practical computation, a numerical approximation of (8) and (9) is needed. Here, we use nonintrusive methods
that are sampling techniques relying on repetitive runs of a discrete solver.

3.1 Monte Carlo

The most popular UQ method is the MC simulation [8, 9]. The idea behind MC is the law of large numbers, which
describes the result of running the same experiment a large number of times. Given a realization(ξξξ1, . . . ,ξξξn) of a
sample(Y1, . . . , Yn) of the random vectorY, the sample mean ofg(Y) is defined by

mn :=
1
n

n∑

i=1

g(ξξξi).

By the law of large numbers, we havemn → E (g(Y)), for n →∞. Therefore, MC uses a randomly chosen realization
(ξξξ1, . . . ,ξξξn) and equal weights for the approximation ofE (g(Y))

E (g(Y)) ≈ mn =
1
n

n∑

i=1

g(ξξξi), for largen.

The convergence is proportional to1/
√

n. Considering the coplanar waveguide in Section 2, the random vectorY is
the vector of uncertain parametersp, a five-dimensional vector of log-normally distributed random variables, andE is
the functiong in which we are interested.

3.2 Stochastic Collocation

Another approach based on sampling is the stochastic collocation method. Its effectiveness depends strongly on the
choice of collocation points. The idea is to approximate statistical quantities like the mean (7), by an (efficient)
quadrature rule

E (g(Y)) =
∫

Γ

g(x)fY(x)dx ≈
n∑

i=1

g(ξξξi)wi =: Ê (g(Y)) .

Here, the realization(ξξξ1, . . . ,ξξξn), later called the sample points{ξξξi}n
i=1, and the weights{wi}n

i=1 are determined by
use of the probability density functionfY . Higher moments like the standard deviation can be approximated by use of
Ê (g(Y))

std (g(Y)) ≈
√√√√

n∑

i=1

|g(ξξξi)|2wi − |Ê (g(Y)) |2.
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Like MC, stochastic collocation requires only repetitive runs of an existing deterministic solver. The difference is the
choice of sample points and weights. It is always possible to use a tensor product of a one-dimensional quadrature
formula. For many parameters, this becomes very expensive. Therefore, we use two other options that suffer less from
the curse of dimensionality. One way is to use only a part of the tensor grid, which is done by the Smolyak algorithm.
The result is called a sparse grid. Another way to compute the points are the Stroud integration rules, which yield a
very small number of points and have a fixed accuracy. Both options are described below.

3.2.1 Stroud-3 Integration Rules

The Stroud-3 integration rule was introduced in 1957 by Arthur Stroud [23] and is accurate for polynomials up to
degree3. It yields either beta or normally distributed points, which are weighted by1/n, wheren is the number of
points. Besides that, there are the Stroud-2 rule for beta, gamma, or normally distributed points and several Stroud
rules with varying accuracy for the uniform distribution. Stroud published his vast collection of quadrature formulas
in 1971 [30]. In our case only the normally distributed Stroud-3 points are considered. This choice is motivated by the
physics of the considered application (i.e., the fact that the parameters are assumed to be log-normally distributed) as
explained in Section 2.

For a system withN parameters only2N sample points are needed. Thejth component of the normally distributed
points with meanµµµj and standard deviationσσσj is given in [11] as follows:

xi
j = σσσj zi

j + µµµj ,

where fori = 2r − 1, i = 2r, respectively, andr = 1, 2, . . . , bN/2c,

z2r−1
j =

√
2 cos

(
(2r − 1)jπ

N

)
, z2r

j =
√

2 sin
(

(2r − 1)jπ
N

)
.

If N is odd, thenzN
j = (−1)j . Here,bN/2c is the biggest integer number smaller or equal thanN/2.

Stroud-based stochastic collocation has been discussed in [11, 13]. The used Stroud-3 rule is very efficient, es-
pecially for systems with many parameters, because of the very small number of sample points. Unfortunately, the
accuracy is fixed and there are no higher order Stroud rules for the normal distribution. Figure 2(a) shows the standard
normally distributed Stroud points for a system with two parameters. In the case of the coplanar waveguide, Stroud
yieldsn = 10 sample points{ξξξi}10i=1 in the five-dimensional parameter space.

3.2.2 Hermite Genz-Keister Sparse Grids

Sparse grids are constructed by the Smolyak algorithm [31, 32] which is a linear combination of product formulas.
Every one-dimensional quadrature rule can be chosen and the linear combination preserves the interpolation properties

−3 0 3
−3

0

3

(a) Stroud

−3 0 3
−3

0

3

(b) HGK sparse grids levels0–2

−3 0 3
−3

0

3

(c) HGK tensor grid

FIG. 2: Comparison of Stroud, HGK sparse grids of level0 (x), 1 (circles) and2 (dots), and HGK tensor grid in two
dimensions.
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of the univariate case for higher dimensions. We use a one-dimensional Hermite Genz-Keister (HGK) rule [33, 34] as
starting point for the Smolyak algorithm. Genz and Keister [33] developed multidimensional Gauss-Hermite (GH) [35]
schemes that have several nice features. As Gauss-Patterson (GP) rules [12, 36, 37] they are nested but in contrast
to them, they are computed on infinite regions. Furthermore, for a fixed order, the number of grid points growths
moderate exponentially, as is the case for Clenshaw-Curtis and GP. Moderate exponential growth means that we
select the smallest exponential order of the sequence of selected rules so that4L + 1 is smaller or equal to the desired
precision, whereL is the index of the selected rules. As an example, for a desired precision of5 we needL ≤ 1,
which leads to the order2L + 1 = 3. The advantage compared to a usual GH rule is the nestedness.

Because the fact that they are computed using a quite involved scheme, HGK rules do not exist for arbitrary
numbers of generating points. The beginning is a one-point Gauss-Hermite rule, which has degree1. By adding new
generators to that rule, we can achieve rules with degree3, 15, 19, 29, 51, 63, and67 [33]. The higher the level of
the sparse grid is, the higher the number of generating points of the underlying one-dimensional quadrature rule.

To illustrate the sparsity of sparse grids and to show the nestedness of HGK sparse grids, Figure 2(b) shows
the HGK sparse grids of levels0, 1, and 2 (HGK 0, 1, and 2) with n = 1, 5, and 21 grid points, respectively.
Figure 2(c) shows the corresponding tensor grid withn = 81 grid points for a standard normally distributed variable
in two dimensions. In case of the coplanar waveguide, we use HGK sparse grids of levels0, 1, and2 in the five-
dimensional parameter space, which have1, 11, and81 points and are accurate for polynomials up to degree1, 5, and
15, respectively. Certainly, the number of system evaluations needed for our example is rather small. But the described
collocation can also be used for higher dimensional problems with a higher number of parameters, where much more
evaluations of the system are needed.

In Section 4, we explain a POD-based MOR method that combined with either MC or sparse grid interpolation
can reduce the computational effort.

4. MODEL ORDER REDUCTION

UQ via MC or stochastic collocation requires numerous full-order EM field solves which can be a time-consuming
task for complicated3D geometries. It is thus our goal to combine this approach with MOR for the time-harmonic
Maxwell’s equations (6) to reduce the computational cost. We need a ROM that preserves the statistical properties of
the FOM.

In this work, we use a POD-based MOR as described in [19]. POD was first mentioned under this name in [16].
Its central issue is the reduction of data revealing the essential information with the aid of a few basis vectors. We will
explain the close connection to the singular value decomposition (SVD) [38] of rectangular matrices in this section.

For a given matrixY = [y1, . . . , ym2 ] ∈ Rm1×m2 with rankd ≤ min{m1, m2}, the SVD ensures the existence
of real numbersσ1 ≥ σ2 ≥ . . . ≥ σd > 0 and orthogonal matricesU = [u1, . . . , um1 ] ∈ Rm1×m1 andV =
[v1, . . . , vm2 ] ∈ Rm2×m2 such that

UT Y V =
(

D 0
0 0

)
=: Σ ∈ Rm1×m2

with D = diag(σ1, . . . , σd) ∈ Rd×d and zero matrices of appropriate dimensions. For` ∈ {1, . . . , d}, the solution to

max
ũ1,...,ũ`∈Rm1

∑̀

i=1

m2∑

j=1

|〈yj , ũi〉Rm1 |2 , s. t. 〈ũi, ũj〉Rm1 = δij for 1 ≤ i, j ≤ `

is given by the first̀ columns ofU , {ui}`
i=1, which yields the POD basis of rank̀. For a giveǹ ≤ d, the POD

yields the best approximation of the columns ofY among all rank̀ approximations. The vectorsy1, . . . , ym2 are
called snapshots, a designation that was first used in [17]. The usage of POD for our example is further explained in
Section 5.

Volume 5, Number 3, 2015



202 Benner & Schneider

5. NUMERICAL RESULTS

We show some numerical results for the coplanar waveguide in Fig. 1, that are achieved by the previously explained
collocation method. The discretization of the affine system (6) and the assembling of the matrices [39] is done in
FEniCS [40, 41] by use of Ńed́elec finite elements [42, 43]. In the finite element context, a weak solution of (6) is
searched instead of a classical one. Therefore, we employ a variational formulation, i.e., we multiply (6) by a test
functionv ∈ Hcurl(G) := {v ∈ (L2(G))3|∇ × v ∈ (L2(G))3} and integrate overG. This leads to

∫

G

∇× ((µrµ0)−1∇× E)vdx +
∫

G

if(σs1Gs + σa1Ga)Evdx

−
∫

G

f2ε0(εs
r1Gs

+ εa
r1Ga

)Evdx = −
∫

G

ifJvdx.

Now the first integral is integrated by parts [44], which leads to
∫

G

((µrµ0)−1∇× E)(∇× v)dx−
∫

∂G

(µrµ0)−1((∇× E)× n)vds

+
∫

G

if(σs1Gs
+ σa1Ga

)Evdx−
∫

G

f2ε0(εs
r1Gs

+ εa
rs1Ga

)Evdx = −
∫

G

ifJvdx.

For the boundary integral, it can easily be seen that
∫

∂G

(µrµ0)−1((∇× E)× n)vds =
∫

∂G

(µrµ0)−1(∇× E)(n× v)ds,

which is equal to zero ifn× v = 0. Therefore, we obtain the weak formulation
∫

G

((µrµ0)−1∇× E)(∇× v)dx +
∫

G

if(σs1Gs + σa1Ga)Evdx

−
∫

G

f2ε0(εs
r1Gs + εa

r1Ga)Evdx = −
∫

G

ifJvdx,

(10)

for all v ∈ H0
curl(G).

The system is discretized by replacing the domainG by a finite-dimensional closed subspace, in our case a finite
element gridGh with 18755 degrees of freedom (dof). Forw, v ∈ H0

curl(Gh), 1in and1out the indicator function for
the input and output region, respectively, andl = a, s, we define

Aµ0 =
∫

Gh

(µ−1
0 ∇× w)(∇× v)dx,

Al
ε0

=
∫

Gh

ε01Gl
wvdx,

Al =
∫

Gh

1Gl
wvdx,

B = −
∫

Gh

if1invdx,

C =
∫

Gh

1outvdx.

Hence, the affine discretized form of (10) is

µrAµ0e(p)− f2(εs
rA

s
ε0

+ εa
rAa

ε0
)e(p) + if(σsAs + σaAa)e(p) = Bu,

y(p) = Ce(p),
(11)
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where the second equation describes the output behavior of the system,y(p) is the one-dimensional output voltage,u
the input current of1 Ampère in our example, ande(p) the discretized electrical field, living onGh. Furthermore, the
matricesAa

ε0
, As

ε0
, Aa, andAs have nonzero entries only on the corresponding subdomain. We consider a working

frequency off = 0.6× 109. All system evaluations are computed with the direct MATLABR© solverbackslashbased
on the sparse direct solver UMFPACK [45].

We want to approximate the mean and the standard deviation of the solutione(p) ∈ H0
curl(Gh) and the output

y(p) of (11) componentwise via

E(e(p)) ≈
n∑

i=1

e(ξξξi)wi, std(e(p)) ≈
√√√√

n∑

i=1

|e(ξξξi)|2wi − |E(e(p))|2,

E(y(p)) ≈
n∑

i=1

y(ξξξi)wi, std(y(p)) ≈
√√√√

n∑

i=1

|y(ξξξi)|2wi − |E(y(p))|2,

using stochastic collocation with sample points{ξξξi}n
i=1 obtained by Stroud or HGK sparse grids with the correspond-

ing weightswi. For reasons of simplification, we omit thep dependence ofeandy in the following.
For the approximations computed via MC, i. e.EMC(e), stdMC(e), EMC(y), andstdMC(y), we compare the

following errors for different choices of collocation points

errrel
E(e) :=

∣∣∣∣
E(e(x))− EMC(e(x))

EMC(e(x))

∣∣∣∣ ,

errrel
std(e) :=

∣∣∣∣
std(e(x))− stdMC(e(x))

stdMC(e(x))

∣∣∣∣ ,

errrel
E(y) :=

∣∣∣∣
E(y)− EMC(y)

EMC(y)

∣∣∣∣ ,

errrel
std(y) :=

∣∣∣∣
std(y)− stdMC(y)

stdMC(y)

∣∣∣∣ .

Because the electric field is determined on the whole domain, we need to evaluate it in every dof of the FEM grid and
compute the relative error locally. This is expressed by writinge(x).

The MC simulation for the reference solution is implemented in MATLAB and operates on one million sample
points. The variance of the MC with respect to the number of MC sample points is shown in Fig. 3. It can be seen that
the variance for the electric fielde is much higher than for the outputy, but both are converging.

The collocation is also implemented in MATLAB. The HGK sparse grids are computed by means of the MATLAB
library SGMGA [46]. Table 2 shows the relative errors for mean and standard deviation ofeandy.

HGK 0 is not able to approximate the reference solution for the standard deviations since the single grid point is
the mean vector of the parameters and hence the standard deviation is zero. On the other hand, we observe that HGK
1 is already sufficient for this example as there is no considerable improvement when we use HGK2. Note that HGK
2 consists of81 grid points. Stroud and HGK1 are comparable concerning complexity and accuracy.

For the POD, we need snapshots of the parameters that are then used to compute snapshots of the electrical field.
We have several possibilities for the choice of snapshots. One could use either the Stroud or the HGK sparse grid
sample points for the computation of the snapshots of the electrical field. Both choices do not yield useful ROMs.

In our example, we use three snapshots for every single parameterpj , namelyµµµj − 3σσσj , µµµj , andµµµj + 3σσσj . This
choice is motivated by the fact that99% of all realizations of aN (µ, σ)-distributed random variable lie in the interval
[µ − 3σ, µ + 3σ]. That means we reach nearly all possible outcomes and cut the less important tails. Each of the35

parameter snapshots yields a snapshot of the electrical field. Thesee-snapshots are stored in the snapshot matrixY ,
see Section 4 of which we compute the singular values via the MATLAB functionsvd

[U,D, V ] = svd(Y, 0).
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FIG. 3: Monte Carlo convergence.

TABLE 2: Relative errors for the coplanar waveguide

Method ‖errrel
E(e)‖2 ‖errrel

E(e)‖∞ ‖errrel
std(e)‖2 ‖errrel

std(e)‖∞ errrel
E(y) errrel

std(y)

Stroud 1.13× 10−3 6.69× 10−5 7.12× 10−2 1.06× 10−3 8.76× 10−6 4.03× 10−4

HGK 0 6.43× 10−3 7.43× 10−4 — — 4.58× 10−5 —

HGK 1 1.13× 10−3 6.69× 10−5 7.64× 10−2 1.11× 10−3 8.76× 10−6 4.51× 10−4

HGK 2 1.13× 10−3 6.69× 10−5 7.55× 10−2 1.10× 10−3 8.76× 10−6 4.52× 10−4

MC (POD10) 8.79× 10−8 7.35× 10−8 1.83× 10−7 3.04× 10−8 6.96× 10−12 4.10× 10−11

Stroud (POD10) 1.13× 10−3 6.69× 10−5 7.12× 10−2 1.06× 10−3 8.76× 10−6 4.03× 10−4

HGK 0 (POD10) 6.43× 10−3 7.43× 10−4 — — 4.58× 10−5 —

HGK 1 (POD10) 1.13× 10−3 6.69× 10−5 7.64× 10−2 1.11× 10−3 8.76× 10−6 4.51× 10−4

HGK 2 (POD10) 1.13× 10−3 6.69× 10−5 7.55× 10−2 1.10× 10−3 8.76× 10−6 4.52× 10−4

As in our casem1 = m2, we can only use the truncated version ofU , Ured ∈ R`×m1 , for the computation of the
reduced matrices and vectors and ignoreV . This leads to

Ared
j = UT

redAjUred, for all system matricesAj ∈ Rm1×m1 in (11),

Bred
j = UT

redBj , for all system vectorsBj ∈ Rm1×1 in (11).

As all the system matrices are parameter independent in our example, we can use the resulting reduced matrices
and vectors for all needed system evaluations. The computed electrical fieldered is of reduced dimension, too. It is
then prolongated on the full-dimensional grid via

e = Uredered.

The achieved singular value decay is shown in Fig. 4. We use a POD basis of rank` = 10 (see the horizontal line in
Fig. 4), since the ratio ofσ1 andσ10 is already of order1012. Therefore, the reduced model has dimension10. The
computation of the reduced model took∼4 min. Considering as deterministic model the system evaluated at the mean
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FIG. 4: Singular value decay for POD with35 snapshots.

of the parameters with solutionefull shown in Fig. 5 andyfull, we can compute the relative errors for the reduced
deterministic model with solutionePOD andyPOD

‖errrel
e ‖2 :=

∥∥∥∥
efull(x)− ePOD(x)

efull(x)

∥∥∥∥
2

= 9.88× 10−8,

‖errrel
e ‖∞ :=

∥∥∥∥
efull(x)− ePOD(x)

efull(x)

∥∥∥∥
∞

= 7.36× 10−8,

errrel
y :=

∣∣∣∣
yfull − yPOD

yfull

∣∣∣∣ = 8.22× 10−12.

The deterministic errors are small, which explains that the results for the MC simulation of the reduced model (see
Table 2) are even better than the collocation results for the full model. Besides that, the collocation for the reduced
model is as good as the collocation for the full model.

The computation time needed for the system evaluations on an IntelR©Core2 Duo CPU3GHz with 4GB RAM
available is shown in Table 3. These times confirm that the combination of Stroud or sparse grid-based collocation
and MOR is a good time-saving alternative for higher dimensional problems. The fact that the errors for the outputy
are smaller than the ones for the electrical fielde for all methods, can be explained by looking at Fig. 6, which shows

FIG. 5: Absolute value ofefull, the solution of the system for the mean of the parameters, plotted in logarithmic
scale, shown on the full and on the left half of the domain.
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TABLE 3: Computation time in days:hours:minutes:seconds

Model\ Method Stroud (n = 10) HGK 0 (n = 1) HGK 1 (n = 11) HGK 2 (n = 81) MC (n = 106)

FOM (18755 dofs) 00 : 00 : 00 : 13 00 : 00 : 00 : 05 00 : 00 : 00 : 14 00 : 00 : 01 : 15 10 : 06 : 58 : 34
ROM (10 dofs) 00 : 00 : 00 : 04 00 : 00 : 00 : 03 00 : 00 : 00 : 04 00 : 00 : 00 : 04 00 : 00 : 07 : 44

FIG. 6: errrel
E(e) for Stroud, plotted in logarithmic scale.

the relative error for the mean of the electric fielde computed via Stroud-based collocation on the whole domainGh

and on the left half of the domain. There it can be seen that the error is small in the region around the discrete port,
which is relevant for the computation of the outputy. For comparison, we plottederrrel

E(e) for MC of the reduced model
in Fig. 7. The regions where a visible error occurs are smaller. Both Figs. 6 and 7 have a logarithmic scale, and the
legends range from the minimum to the maximum of the relative error.

6. CONCLUDING REMARKS

In this paper, we described several techniques for UQ of the time-harmonic Maxwell’s equations. We showed that
stochastic collocation is well suited for the variational analysis of a coplanar waveguide if the collocation points are
chosen carefully. Stroud points as well as HGK sparse grid points lead to an efficient computation of the statistical
quantities. We compared the results to a very accurate but computationally very costly MC simulation.

On the other hand, we reduced the computation time of the MC simulation by replacing the FOM in the repetitive
runs of the deterministic solver by a ROM. This was motivated by the observation that ROMs computed by POD ap-
proximate the FOM very well for time-harmonic Maxwell’s equations with uncertain parameters with small standard
deviations. We achieved a high accuracy for ROMs of very small order. Therefore, the combination of MC and MOR
turned out to be a good alternative to stochastic collocation based on the FOM.

We also replaced the FOM by a ROM in the stochastic collocation method. This approach does not gain that much
from MOR since POD requires more evaluations of the FOM than the collocation itself. This would be different for

FIG. 7: errrel
E(e) for MC of the reduced model, plotted in logarithmic scale.
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systems with a higher number of parameters and, thus, a much larger number of collocation points. The application
of collocation combined with MOR to examples with many parameters and more degrees of freedom is future work.
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