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Zusammenfassung

Diese Doktorarbeit untersucht die Struktur von Phasen kondensierter Materie mit
nichtchiraler topologischer Ordnung. Es wird gezeigt, dass bekannte Fixpunkt-
Modelle solcher Phasen dieselbe Universalitätsklasse beschreiben. Neue Modelle
werden aus Quantengruppen konstruiert, um die Klasse derjenigen Fixpunkte zu
erweitern, deren Quasiteilchen-Anregungen eine vollständige lokale Klassifikation
erlauben. Zugleich wird eine nicht-Abelsche, elektrisch-magnetische Dualität in
diesen nichtchiralen topologischen Phasen entdeckt. Außerdem stellt diese Dok-
torarbeit neue, effiziente Beschreibungen für Quantenzustände mit nichtchiraler
topologischer Ordnung vor. Dazu werden Fixpunkt-Wellenfunktionen direkt aus der
algebraischen Beschreibung dieser Phasen mit Hilfe eines neuartigen graphischen
Kalküls entwickelt.
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Abstract

This thesis studies the structure of condensed matter phases with nonchiral topo-
logical order. It is shown that previously known fixed point models of such phases
describe the same underlying universality class. New models are constructed from
quantum groups in order to extend the class of those fixed points amenable to a
complete local classification of their quasiparticle excitations. At the same time a
non-Abelian electric-magnetic duality among these nonchiral topological phases is
discovered. Furthermore, this thesis devises novel efficient descriptions of many-
body quantum states with nonchiral topological order. In particular, fixed point
wavefunctions are developed directly from the algebraic treatment of these phases
by employing a novel diagrammatic calculus.
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without Guifré inviting me to Brisbane and Matthias inviting me to Singapore and
Zurich. In addition I would like to thank other people whom I collaborated with:
Philippe Corboz, Liang Kong, Juan Mart́ın Mombelli, Robert N. C. Pfeifer
and Matthias Troyer, for their insights contributed to our joint projects.

Furthermore, it has been a great pleasure to take part in numerous conferences
and workshops and especially to exchange ideas and learn about new topics during
personal visits. I would therefore like to thank (in chronological order): Gavin
K. Brennen, for inspiring discussions and his generous hospitality while I stayed
in Sydney. The Max-Planck-Institute for Complex Systems, for financial support
during the conference on “Topological Order: from Quantum Hall Systems to
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Chapter 1

Introduction

1.1 Topological order

In condensed matter physics a phase of matter commonly refers to a class of materials
(or Hamiltonians) which exhibit the same macroscopic properties although their
microscopic details of interactions, constituents etc. may well differ. For a long
time physical phases have been classified very successfully by Landau’s paradigm
of local symmetry breaking. It states that all Hamiltonians belonging to the same
phase obey a certain symmetry and transitions between different phases entail
a change of this symmetry pattern. Moreover these symmetries can be detected
locally. A quantum magnet (whose interactions obey rotation symmetry) constitutes
the classical example of this paradigm: while in the unordered phase the (local)
magnetization vanishes, in the ordered phase it aquires a non-zero value along
a particular spatial direction, thus changing the pattern of symmetry. However,
during the last decades it turned out that physical phases of matter cannot always
be explained by this local symmetry breaking theory. Instead, some phases which do
not break any local symmetry may exhibit topological order [76]. Here the effective
quantum field theory describing the material’s long-range properties is a topological
quantum field theory (TQFT) [80].

One of the most characteristic properties of a physical phase is the kind of
emerging particles it supports. In conventional, local symmetry breaking phases
only bosonic or fermionic quasiparticle excitations are known to occur. As is well
known their statistics is derived from the one-dimensional representations of the
symmetric group through either symmetrizing or antisymmetrizing the wavefunction
in first quantization. However, in two space dimensions a surprising alternative
becomes thinkable: interpreting particle exchange as an actual physical operation one
discovers that the wordlines describing the particles’ trajectories form intertwined
tangles in spacetime. This is because the wordline of a particle poses an obstruction
to the worldline of a second particle winding around the first one—in two dimensions
the wordlines can never be unwound continuously to yield a pair of parallel strands
in spacetime. Naturally, particle exchange in two space dimensions should then be
described by the braid group (which extends the symmetric group) and particles
themselves would be characterized by its representations. Taking this approach
seriously one will arrive at rather unconventional particles with fractional spin called
anyons [77, 78].

It would be tempting to regard this phenomenon as a mere mathematical curiosity,
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Chapter 1 Introduction

however, it is far from that. In fact, it was the discovery of the fractional quantum
Hall effect [69, 46] which sparked the exploration of physical phases beyond local
symmetry breaking. Nowadays many more examples of topologically ordered phases
are known and have been studied intensely, such as chiral p-wave superconductors [64,
33], an exactly solvable model on the honeycomb lattice [38], an extended Hubbard
model [27] as well as certain quantum magnets [81], just to name a few.

Besides its obvious importance for condensed matter physics topological order
also has a profound impact on quantum information. It turned out that certain
topological phases of matter would be capable of supporting universal quantum
computation by creating, braiding and annihilating their anyonic quasiparticle
excitations [39, 24, 25]. In particular, this idea relies on so called non-Abelian anyons
whose statistics are given by higher dimensional representations of the braid group.
The great advantage of this approach to quantum computation lies in the fact
that only non-local properties of the system are used for information processing
and hence resilience to local noise and other local imperfections would be built
intrinsically into the hardware. Besides processing quantum information its storage
also appears to benefit tremendously from cross-fertilization with vital concepts
found in topological order. For example, one hopes that a self-correcting quantum
memory can be built from the intuition that in a topologically ordered system with
a degenerate ground state subspace quantum information would be protected from
all local error operators whose support is not on the order of the system size. While
it is unclear whether the shortcomings of existing models at finite temperature [15,
59, 32, 37] can be resolved satisfactorily these models remain appealing as quantum
error correcting codes. Among the most relevant examples one finds the toric
code and quantum double models based on finite groups [39], surface codes [9, 26],
colour codes [6] or the string-net models [48]. For example, Mochon proved that a
quantum double model based on the smallest non-Abelian group S3 is universal for
quantum computation provided that certain “magic” states can be prepared [54].

The bridges between topological order, condensed matter and quantum infor-
mation have turned out so fruitful that often it is not clear which discipline has
seen the greatest impact from these ideas. For example, Kitaev’s quantum double
models were conceived as a stage for fault-tolerant quantum computation but borrow
heavily from gauge theory concepts and are most relevant in condensed matter as
universality classes of nonchiral topological phases. String-net models were originally
invented for the purpose of describing fixed points of topological phases, too, but
are now applied even to quantum error correction [44], for example.

The classification of topological phases of matter would not be possible without
substantial use of methods and tools from mathematics. Just as the paradigm of
local symmetry breaking relies on (ordinary) group theory in order to describe a
conventional system’s symmetries topologically ordered materials rely on quantum
groups and category theory in order to describe their emergent non-local properties.
From this perspective one might even say that understanding topological order boils
down to the question of how to obtain non-trivial representations of the braid group
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1.1 Topological order

from the microscopic dynamics of a physical system. Of course, the devil lies in
the detail of implementing the mathematically possible within the tight constraints
nature imposes.

Perhaps the clearest meeting point of mathematics and physics in the study of
topological order is the collection of fixed points of topological phases. Here the
universal properties of a physical phase are clearly visible because the short-range
details of the interactions found in a material have already been integrated out and
correlation lengths can be neglected. However, in general there is no straightforward,
canonical procedure to obtain a renormalization group flow that would yield the
fixed point of a topological phase. Still there are fixed point examples of nonchiral
topological phases such as the quantum double [39] and the string-net models [48].
Unfortunately a full classification of topological phases is unavailable today, even
for these nonchiral topological phases, i.e. phases invariant under parity and time
reversal. This thesis contributes to filling parts of this knowledge gap by studying the
previously known fixed point models of nonchiral topological phases and explaining
how they merely provide different perspectives onto the same underlying universality
class. In addition we construct new models based on quantum groups in order to
extend the class of such fixed points amenable to a complete local classification of
their quasiparticle excitations.

Unravelling the structure of topological order and physical materials in general
ultimately also requires deep knowledge about the quantum states of a many-body
system, typically ground, thermal and low-lying excited states. In recent years it has
become increasingly evident that the traditional ways of describing such quantum
states in Hilbert space may not be the most adequate formulation. This is because
only a small corner of Hilbert space is actually physically accessible to a system
with less than exponential resources [63]. Results like area laws [19] bear witness to
this fact.

In order to describe the physically relevant quantum states efficiently a number
of ingeniously crafted trial wavefunctions have been developed which are capable
of reproducing the essential physics very accurately. Prominent examples include
the Laughlin wavefunction for the fractional quantum Hall effect at filling fac-
tor ν = 1/3 [46] or the BCS wavefunctions for various types of superconductors [5,
64]. Furthermore, in the context of real space renormalization several remarkably
successful tensor network approaches to wavefunctions emerged. Among them one
finds matrix product states (MPS) [21], projected entangled pair states (PEPS) [70,
71] or the multi-scale entanglement renormalization ansatz (MERA) [74, 73]. All
these wavefunctions share the property that the number of parameters involved
scales only polynomially with the number of particles constituting the system,
instead of exponentially for a generic wavefunction.

As far as topological order in spin systems is concerned, a number of efficient
representations of topologically ordered quantum states have been found, including
a PEPS wavefunction of the toric code [72], MERA wavefunctions of all quantum
double [1] and string-net models [45] and a double line tensor network of the toric
code and the semion model [29]. This thesis expands on this collection and devises
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Chapter 1 Introduction

new tensor network methods for describing efficiently those parts of Hilbert space
with nonchiral topological order. In particular, we develop fixed point wavefunctions
directly from the algebraic treatment of these phases in terms of quantum groups
and categories and introduce a novel diagrammatic calculus for this task.

Finally, it is well known that duality ranks among the deepest ideas in physics.
Dualities serve as powerful tools to gain understanding of mathematical and physical
theories, including quantum many-body systems and quantum field theories [65].
Frequently a duality relates strong and weak coupling regimes of a physical theory
and provides unique insights beyond the reach of perturbative methods. Many
physical instances of duality involve the exchange of electric and magnetic degrees
of freedom. Such a symmetry for the Maxwell equations in vacuo led Dirac to the
introduction of pointlike sources of magnetic field in order to extend this electric-
magnetic duality to matter, providing a unique argument for the quantisation of
electric charge [17]. Dirac’s insight has had a profound influence in quantum field
theory and beyond [68].

Instances of duality in topologically ordered systems are scarce in number unfor-
tunately. As already mentioned the quantum double models build on an analogy to
gauge theories with finite gauge groups [75, 79]. In the gauge context the topological
degrees of freedom are Wilson loops. Violations of gauge invariance and magnetic
fluxes are described analogously, hinting at electric-magnetic duality. In the toric
code, the simplest quantum double model based on the group Z2, and in all quantum
double models based on finite Abelian groups one finds the first instances of duality
in a topologically ordered system: a self-duality which exchanges direct and dual
lattice, in gauge theory language this is called an electric-magnetic duality. Its
importance has been stressed by Fendley [22]. In string-net models unpublished
work by Kitaev and Kong indicates that dualities, i.e. equivalences of unitary
modular tensor categories, can be identified with invertible domain walls and, fur-
thermore, excitations of string-net models can be described as superselection sectors
of certain local operator algebras [40]. However, the local structure and properties
of both these dualities and excitations are far from being understood. This thesis
helps to gain a better understanding of dualities in topological phases by extending
electric-magnetic duality to quantum double models based on non-Abelian groups
and certain quantum groups as well as to a large class of string-net models.

Since this thesis studies the structure of nonchiral topological phases we will
briefly review the known lattice models for their fixed points in the following.

1.2 Quantum double models from finite groups

The quantum double model presented in [39] is a quantum spin model defined on any
finite oriented graph Γ = (V,E, F ) with vertices V , edges E and faces F which can
be embedded in a two-dimensional surface. Throughout this thesis we will denote
the set of vertices surrounding a face p ∈ F by V (p), the set of all edges connected
to a vertex s ∈ V by E(s) and similarly E(p) will stand for the set of edges that
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1.2 Quantum double models from finite groups

form the boundary of the face p ∈ F . In order to construct the Hilbert space LΓ

of the quantum double model one assigns to each oriented edge the local Hilbert
space Le = CG whose canonical, orthonormal basis is BG(CG) = {|g〉 | g ∈ G}.
Reversing the orientation of an edge corresponds to the map |g〉 7→ |g−1〉. The
Hamiltonian is assembled from two sets of operators that act on vertices or faces
of Γ respectively. At each vertex s ∈ V one may orient the adjacent edges such that
they point inwards. Then the vertex operator A(s), which acts on E(s), is given by

A(s) g1

g2

...

gr

s :=
1

|G|
∑
g∈G

gg1

gg2

...

ggr

s

=
1

|G|
∑
g∈G

Lg+(g1)⊗ · · · ⊗ Lg+(gr) (1.1)

where Lg+ : CG → CG, |h〉 7→ |gh〉 denotes the left regular representation of G.
Hence the action of A(s) is a simultaneous left multiplication at each incident edge
averaged over the group G. In fact, it projects onto the trivial representation. Using
the orientation reversal isomorphism one may orient the edges around a face p ∈ F
in counterclockwise fashion. One then defines the face operator B(p) by its action
on basis states |g1, . . . , gr〉:

B(p) p

g1

g2

...

gr := δgr···g1,e p

g1

g2

...

gr . (1.2)

Again, this is a projector which projects onto configurations with a trivial product
of group elements around the face. Finally, the Hamiltonian reads:

H = −
∑
s∈V

A(s)−
∑
p∈F

B(p). (1.3)

This is a sum of mutually commuting projectors and therefore exactly solvable.
Note that from the gauge theory point of view edge degrees of freedom correspond

to parallel transport operators with values in the gauge group and vertex operators
project onto gauge invariant configurations. Face projectors minimise the Wilson
action in that they project onto configurations with trivial magnetic flux through
the face.

Since the Hamiltonian (1.3) is frustration-free its entire spectrum can be obtained
by solving it locally. This means that excitations of the D(CG)-model correspond
to local violations of vertex or face constraints and hence can be attributed a
quasiparticle character. Moreover, elementary quasiparticle excitations can be
conveniently classified algebraically. There are four classes of superselection sectors
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Chapter 1 Introduction

or so called topological charges: (a) the vacuum, i.e. the ground state subspace,
(b) magnetic excitations which violate a face constraint, (c) electric excitations
which violate a vertex constraint and (d) dyonic excitations which violate both a
vertex constraint and a face constraint at an adjacent face. Magnetic excitations are
classified by conjugacy classes C of the group G, electric excitations by irreducible
representations ρ of G and dyonic excitations by a conjugacy class C and an
irreducible representation ρC of the centralizer subgroup NC ⊂ G of an (arbitrary)
element g ∈ C.

Topological charge cannot only be attributed to vertices and faces but also to
regions by lumping together all quasiparticle excitations in its interior. The total
topological charge of a region can be measured from its boundary and even be
defined for any closed loop on the underlying surface of the model, not necessarily
the boundary of a region. For definiteness, projectors on the superselection sectors
can be constructed using Kitaev’s ribbon operators [39] which the vertex (1.1) and
face projectors (1.2) are just examples of.

The data (C, ρC) describing the quasiparticle excitations of the spin model happen
to coincide with the irreducible representations of a certain quasi-triangular Hopf
algebra, Drinfeld’s quantum double D(CG) [18] of the group algebra CG. In other
words, quasiparticles are classified by their response to the action of a symmetry
algebra, without doubt a very familiar and successful pattern in modern physics.
Since this Hopf algebra symmetry extends beyond group symmetry the quasiparticles
it entails turn out to be anyons, not merely bosons or fermions. Moreover, they
obey the statistics of non-Abelian anyons precisely if the group G is non-Abelian.

Most importantly, in the D(CG)-models these quasiparticle excitations carry an
internal space in addition to their topological charge (C, ρC). In the case of magnetic
excitations the internal space consists of the elements of the conjugacy class C.
For electric excitations the internal space equals the vector space the irreducible
representation ρe acts in. For dyonic excitations one encounters a combination of
both of the above. In sharp contrast to the categorical treatment of quasiparticles
in topologically ordered systems this allows one to peek inside the “black box” given
by the label (C, ρC). In fact, this lies at the heart of the various dualities we will
discover in Chapters 3 and 6.

1.3 String-net models

String-net models were introduced in [48] in order to encode the universal physical
properties of nonchiral (2 + 1)D topological phases of matter in quantum lattice
models with few-body interactions. The intuition behind their construction was
that they should correspond to fixed points of some (abstract) renormalization
procedure. Later this guiding principle was indeed confirmed using entanglement
renormalization techniques [45]. As a result of their fixed-point property the Hamil-
tonians of string-net models take a fairly simple, frustration-free structure and are
exactly solvable. In the following, we consider those models in [48] which exhibit a
well-defined continuum limit.

6



1.3 String-net models

The models are defined on a trivalent graph Γ, for simplicity we will assume
a honeycomb lattice in the following. Local degrees of freedom are associated
with oriented edges of Γ and elements of the computational basis are labelled
by i ∈ {1, 2, . . . , N}. These labels may be interpreted as particle species propagating
along the edges. For each label i there is a unique label i∗ denoting its antiparticle,
and reversing the orientation of an edge corresponds to the mapping i 7→ i∗. The
distinguished label 1 stands for the absence of any particle (vacuum) and one
has 1∗ := 1 by definition. Furthermore, the physical Hilbert space of a string-net
model is defined by a set of fusion rules δijk specifying allowed (δijk = 1) and
forbidden (δijk = 0) configurations of labels incident to a vertex. Given the set of
labels and their fusion rules, one can build a fusion category (see [38] and below
for a physical motivation) which includes recoupling relations encapsulated in the
quantum 6j-symbols F ijmkln and an assignment of quantum dimensions di to the
labels. The total quantum dimension is given by

D :=

√√√√ N∑
i=1

d2
i . (1.4)

Furthermore there is a natural correspondence between physical configurations
on Γ and configurations of string-nets in a continuum model defined on the so called
fat lattice. The latter is constructed from the physical lattice Γ by puncturing
the underlying surface at the center of each face. String-nets in this continuum
description consist of oriented strings carrying labels in the set {1, 2, . . . , N}, joined
at trivalent branch points in a way that respects the fusion rules δijk, and avoiding
the punctures. Fixed-point wavefunctions are constructed using local constraints [48]
in order to define equivalence classes of configurations in the fat lattice. These
constraints are crafted so as to enforce topological invariance of the wavefunction
(which will eventually be identified with a quantum state in the physical, discrete
lattice Γ) and are assembled from the objects di, F

ijm
kln introduced above. For

a quantum state |ψ〉 =
∑
X ψ(X) |X〉, where |X〉 is a basis configuration in the

discrete lattice Γ and ψ(X) its associated amplitude, they explicitly read:

ψ(
i

) = ψ
( i )

, (1.5)

ψ
(

i
)

= di ψ(. . . ) , (1.6)

ψ
(

i j

k

l

)
= δij ψ

(
i i

k

l

)
, (1.7)

ψ

( i

j k

lm
)

=
∑
n

F ijmkln ψ

( i

j k

l
n

)
. (1.8)

Intuitively, (1.5) ensures invariance under continuous deformations of strings,
(1.6) describes trading isolated loops for quantum dimensions, (1.7) imposes charge
conservation and finally (1.8) introduces a recoupling tensor F which generalizes
the 6j-symbols found e.g. in the theory of angular momentum.
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Chapter 1 Introduction

String-net configurations are defined to be equivalent if they can be transformed
into each other using the local relations. Equivalence classes are identified with
physical configurations. Note that the physical configuration itself can be regarded
as a particular string-net identical with the physical lattice. We will refer to this
particular string-net as the canonical representative of the equivalence class, and its
uniqueness is ensured by Mac Lane’s coherence theorem [49]. As a consequence of
this equivalence relation we may add or remove strings with the vacuum label 1 at
will in the fat lattice picture, thus changing both isolated loops and branch points.

The Hamiltonian on the physical lattice reads

H = −
∑
s∈V

A(s)−
∑
p∈F

B(p) , (1.9)

where the sums range over the vertices and faces of the lattice. Vertex terms are
projectors given by

A(s)

i

jk

:= δijk

i

jk

(1.10)

enforcing the fusion rules while face projectors represent the kinetic part of the
Hamiltonian and are defined by

B(p) =

N∑
α=1

dα
D2

Bα(p) , (1.11)

where Bα(p) acts on the edges of the enlarged face p, i.e. on E(p) and the remaining
edges connected to the vertices V (p). Its precise definition is given in [48], as well
as the following simple graphical interpretation on the fat lattice:

Bα(p) p ip

jp

kp

:= p ip

jp

kp

α (1.12)

Reducing this expression in the fat lattice to its canonical representative in the
physical lattice one finds that Bα(p) indeed acts on the entire enlarged face p. This
action is nontrivial on the edges E(p) and diagonal on the remaining outer edges.

From a more abstract perspective string-net models can be viewed as a procedure
to construct a complete anyon model, including braiding, from a unitary fusion

8



1.3 String-net models

category C the defining data of which we sketched above, i.e. fusion rules δijk,

quantum dimensions di, and quantum 6j-symbols F ijmkln .
First of all, a fusion category is physically relevant since it encodes the essential

properties of (topological) charge measurements, namely how to deduce the total
charge of many particles given the individual charges of each particle. These
charges are nothing but the particle labels introduced above which correspond to
the (equivalence classes of) simple objects Ĉ in the fusion category C. In a fusion
process

a× b =
∑
c∈Ĉ

N c
ab c (1.13)

it may happen that there are several (in fact N c
ab ∈ N) inequivalent ways of

combining two given charges to a particular total charge1. In string-net models
one usually restricts to multiplicity-free fusion and identifies δabc = N c∗

ab ∈ {0, 1}
although a slight generalization of the models would allow to incorporate general
fusion multiplicities N c

ab [48]. The antiparticle mapping a 7→ a∗ mentioned earlier
corresponds to a notion of duality in C which encodes the physical circumstances
under which one should measure the neutral total charge 1. Furthermore, the
quantum 6j-symbols F abecdf encode the physical assumption that measuring the
total charge of three (or more) particles should not depend on which particles
are measured first and for this reason are also called an associativity constraint.
Finally, the quantum dimension da is an asymptotic statement about the number
of inequivalent ways many particles of identical charge a can fuse to neutral total
charge. Due to its asymptotic nature it is quite possible that a quantum dimension
is non-integer and even irrational as is the case in the Fibonacci fusion category, for
example.

As much as a fusion category abstracts physical charge measurement it is deficient
in describing the statistics of the particles. In particular, what is lacking is a notion
of braiding, i.e. exchanging particle positions while keeping track of (the topological
details) of the wordline trajectories involved. The string-net construction can be
seen as a method of adding precisely this missing notion of braiding by “doubling”
the initial fusion category in a certain sense in order to obtain a new category. This
resulting category is then a unitary modular tensor category [38] which is capable
of describing the true quasiparticle excitations of the string-net model.

In [48] these quasiparticle excitations are introduced via closed string operators
and analyzed by considering expectation values of virtual processes starting and
ending in the vacuum sector, i.e. the subspace of ground states. However, so far
there exists no satisfactory classification of actual quasiparticle excitations which
would have to appear at the end of open string operators. This is in part because
the quantum 6j-symbols have no definite meaning for “fusion” processes which
contradict the fusion rules of C. In this situation one commonly sets the quantum
6j-symbols to zero with the result that string-net configurations violating a vertex
constraint automatically violate the constraints of all adjacent faces. If there were

1This should be familiar from Clebsch-Gordan decompositions in group theory, e.g. from the
tensor product of two octet representations of SU(3).
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Chapter 1 Introduction

a consistent way of adding an internal structure to the “black box” labels of the
fusion category one would gain a complete understanding of the entire excitation
spectrum of string-net models. This will become most relevant in Chapters 3 and 6.

1.4 Reading guide

We begin our study of nonchiral topological phases in Chapter 2 by constructing
ground state wavefunctions for all string-net models as local tensor networks which
are built directly from the algebraic data defining the string-net models. In Chapter 3
we provide a unification of spin models describing the fixed points of nonchiral
topological phases: we identify quantum double models based on finite groups with
a subclass of string-net models via a completion of the local Hilbert spaces of the
latter. In Chapter 4 we extend the quantum double models based on finite groups
to generalized ones based on finite-dimensional Hopf C∗-algebras. In particular, we
study how the Drinfeld quantum double of a Hopf algebra can be represented on a
lattice. In Chapter 5 we develop a diagrammatic calculus for a new class of tensor
network wavefunctions based on Hopf algebras. We then exploit this calculus to
introduce a hierarchy of quantum many-body states among which many examples of
topological order can be identified by construction and argue that the condensation
of topological charges is the mechanism underlying this hierarchy. In Chapter 6 we
uncover electric-magnetic duality for quantum double models based on non-Abelian
groups (and beyond) and show that its natural stage is the generalized models based
on Hopf algebras from Chapter 4. Furthermore we interpret these as extended
string-net models certain projections of which recover the original string-net models.
A net of dualities among fixed points of nonchiral topological phases emerges.

10



Chapter 2

Tensor network states for string-net

models

In this chapter we provide a simple expression for the ground states of arbitrary
string-net models in the form of local tensor networks. These tensor networks
encode the data of the fusion category underlying a string-net model and thus
represent all doubled topological phases of matter in the infrared limit according
to [48]. Furthermore, our construction highlights the importance of the fat lattice
equivalence between lattice and continuum descriptions of string-net models.

This construction expresses the ground state of an arbitrary string-net model
as a tensor network built from F -symbols. The starting point is the form of the
Hamiltonian H = −∑i Pi where the Pi are commuting projectors, which leads to
the realisation of the ground level as the +1 eigenspace1 of the product

∏
i Pi. The

tensor network follows in a remarkably straightforward way. Its form is reminiscent
of a classical statistical mechanical partition function with local (albeit possibly
complex) weights, which is why we call it a Boltzmann weight tensor network2.
The needed ingredients are the data of the underlying fusion category as explained
in [48], i. e. the fusion rules and associated F -tensors. The construction is most
appropriately understood from the fat lattice perspective.

Our Boltzmann weight tensor network differs from the MERA representation
which is also based on F -symbols [45] in that it is much simpler than the latter—e. g.
it is a two-dimensional network, while the MERA spans three dimensions. On the
other hand, although conceived independently, for the toric code and semion models
our construction coincides with the double line tensor network of [29], where the
authors also hint at an unpublished result for generic string-net models.

2.1 Ground states from the fat lattice

In order to construct an explicit graphical expression for a ground state of a string-
net model we start with the state |1 . . . 1〉 on the physical lattice where all edges
carry the vacuum label 1. Note that this can be represented by a completely empty
fat lattice. Obviously, this state is an eigenstate of all the A(s) operators with

1Contrary to some treatments of stabilizer Hamiltonians note that in our case the other eigenvalue
of each Pi is 0 rather than −1.

2For an early account of the link between partition functions and stabilizer Hamiltonians the
reader is referred to [56, 57].
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Chapter 2 Tensor network states for string-net models

pαp

Figure 2.1: Initial fat lattice. An isolated loop at face p carries a label αp and all edges
of the physical lattice are labelled by the vacuum 1 (grey). The corresponding quantum
state is denoted by |{αp}〉.

eigenvalue +1. Since the Hamiltonian is frustration-free we end up in the ground
level by applying the projection

∏
pB(p). Thus, up to an overall factor, this ground

state on the physical lattice is represented by the following string-net state on the
fat lattice:

|ψ〉 =

N∑
αp=1

(∏
p

dαp

)
|{αp}〉 (2.1)

where |{αp}〉 denotes the string-net configuration shown in Figure 2.1.
From now on we will use the local relations (1.5), (1.6), (1.7) and (1.8) of the

string-net model in order to reduce (2.1) to its canonical representative, which can
be directly translated into a configuration on the physical lattice. Here we only
present the intermediate results of this reduction process, for details see Appendix A.

After applying three rounds of recouplings involving F -symbols (F -moves) to the
strings on the fat lattice one has:

|ψ〉 =

N∑
αp=1

(∏
p

dαp

) N∑
ip,jp,kp=1

( ∏
(p,q)∈E1

F
α∗pαp1

α∗qαqip

)( ∏
(p,q)∈E2

F
α∗pαp1

α∗qαqjp

)

×
( ∏

(p,q)∈E3

F
α∗pαp1

α∗qαqkp

)
|{αp, ip, jp, kp}〉 , (2.2)

where |{αp, ip, jp, kp}〉 denotes the state of the fat lattice as shown in Figure 2.2.

Note that we have decomposed the edge set of the dual lattice Γ∗ as E(Γ∗) =
⋃3
i=1Ei

where E1 denotes the set of horizontal edges, E2 one set of parallel diagonal edges,
and E3 the other one according to Figure 2.3.
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2.1 Ground states from the fat lattice

p
αp

ip

jp

kp

Figure 2.2: Intermediate fat lattice. This fat lattice configuration carries both the final
physical labels ip, jp and kp as well as three different labels αp at each vertex loop. The
corresponding quantum state is denoted by |{αp, ip, jp, kp}〉.

p q

rs

ip

jp

kp

Figure 2.3: Honeycomb lattice Γ and its dual Γ∗. Horizontal edges (solid grey) of Γ∗

belong to E1, diagonal edges (dotted grey) to E2 and the remaining diagonal edges (dashed
grey) to E3. The directed edges of Γ are labelled by uniquely associating them to a face.
Circled vertices of Γ belong to the even sublattice Γ◦, filled ones to the odd sublattice Γ•.

13



Chapter 2 Tensor network states for string-net models

p ip

jp

kp

Figure 2.4: Physical lattice. The corresponding quantum state is given by |{ip, jp, kp}〉.

Using the normalization

F ii
∗1

j∗jk = F ijkj∗i∗1 =

√
dk
didj

δijk (2.3)

this expression can be simplified in the case of an infinite or periodic lattice to yield:

|ψ〉 =
∑

{αp,ip,jp,kp}?

(∏
p

√
dipdjpdkp
d2
αp

)
|{αp, ip, jp, kp}〉 . (2.4)

Note that we have omitted the δ-symbols and rather restricted the sum to configu-
rations {αp, ip, jp, kp}? that respect the branching rules of the particular string-net
model.

For a full reduction to the physical lattice we eventually need to remove the loops
at the vertices. This can be done by applying two F -moves at each vertex:

|{αp, ip, jp, kp}〉 =

(∏
p

d2
αp√
dipdkp

) ∏
s∈V (Γ◦)

f◦(s)
∏

t∈V (Γ•)

f•(t) |{ip, jp, kp}〉 , (2.5)

where |{ip, jp, kp}〉 denotes a basis state of the physical lattice as shown in Figure 2.4
and Γ◦ (Γ•) denotes the even (odd) sublattice of Γ respectively. Furthermore one
has:

f◦(s) = F
α∗pjpαq
kqαrip

, (2.6)

f•(t) = F
α∗sisαp
j∗rαrks

(2.7)

where the faces {p, q, r} of Γ surround an even vertex s and {p, r, s} an odd vertex t
as indicated in Figure 2.3.
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2.2 Tensor network representations

At this point the ground state of the string-net model can be written in terms of
the physical lattice only:

|ψ〉 =

N∑
αp,ip,jp,kp=1

(∏
p

√
djp

) ∏
s∈V (Γ◦)

f◦(s)
∏

t∈V (Γ•)

f•(t) |{ip, jp, kp}〉 . (2.8)

Note that because of the normalization (2.3) of the F -symbols the branching rules
at each vertex are automatically satisfied and we no longer need to restrict the sum.
This allows one to isolate the wavefunction amplitude:

ψ({ip, jp, kp}) =

(∏
p

√
djp

) N∑
αp=1

∏
s∈V (Γ◦)

f◦(s)
∏

t∈V (Γ•)

f•(t) . (2.9)

It is this very expression that we are now going to write in a graphical fashion as a
contracted tensor network.

2.2 Tensor network representations

In order to write the wavefunction amplitude of the string-net model ground state
given by (2.9) in a graphical fashion it is instructive to proceed locally. Let us
therefore consider an arbitrary face a of Γ together with its next neighbours b, . . . , g.
Obviously, the sum over αa can now be carried out immediately and we obtain the
following local expression:

ψ({ip, jp, kp}) ∼
√
djadjd

N∑
αa=1

F
α∗ajaαg
kgαbia

F
α∗djdαa
kaαcid

F
α∗ejeαf
kfαaie

× Fα
∗
aiaαb

j∗cαcka
F
α∗eieαa
j∗dαdke

F
α∗f ifαg
j∗aαakf

. (2.10)

Now define a vertex tensor for the even and odd sublattices of Γ respectively by

i

jk

µ ν̃

ν

λ̃λ

µ̃
:= T

[ijk]

µµ̃νν̃λλ̃
:= Fµ

∗iν
j∗λk δµµ̃ δνν̃ δλλ̃ , (2.11)

i

j k

µν̃

ν

λ̃ λ

µ̃
:= T̃

[ijk]

µµ̃νν̃λλ̃
:=
√
dj F

ν∗jλ
kµi δµµ̃ δνν̃ δλλ̃ (2.12)

and contract them according to the tensor network given in Figure 2.5. If we cut
out a single face of this network it can easily be verified that it exactly reproduces
the local form of our wavefunction amplitude (2.10), up to the factor

√
dje (which

can be absorbed once the summation is extended to the adjacent faces).
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Chapter 2 Tensor network states for string-net models

p

Figure 2.5: Tensor network describing the ground state of an arbitrary string-net model.
Only virtual indices (black) are summed over while physical indices (red) are left uncon-
tracted. As indicated these physical indices are associated with the edges of the honeycomb
lattice and are shared between the adjacent vertex tensors.

Thus we have obtained a simple graphical notation that describes the ground state
of an arbitrary string-net model and involves local terms only. In fact, following
the arguments of [48], our graphical calculus encompasses the ground states of all
“doubled” topological phases in the infrared limit.

Of course, we may also pull out the indices from the vertex tensors and collect
physical indices denoting particle and antiparticle into a single physical index at
the edge. This can be done by defining the tensors

i

j

k

µ ν

µ̃ ν̃

:= A
[i]
jkµµ̃νν̃ := δijδjkδµµ̃δνν̃ (2.13)

as well as the triangular ones

Bαβγµµ̃νν̃λλ̃ := T
[αβγ]

µµ̃νν̃λλ̃
, (2.14)

B̃αβγµµ̃νν̃λλ̃ := T̃
[αβγ]

µµ̃νν̃λλ̃
(2.15)

and contracting them according to Figure 2.6. Note that the vertex tensors T (T̃ )
and B (B̃) only differ in how their indices are regarded: what used to be a physical
index of T (T̃ ) has been changed into a virtual one of B (B̃).
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2.3 Discussion

p

Figure 2.6: Alternative tensor network for ground states of arbitrary string-net models.
Again all virtual indices (black) are contracted. Physical indices are now represented by
their own edge tensors (red) while the vertex tensors (black) merely serve as a “metric”
for the contraction.

2.3 Discussion

In conclusion, in this chapter we have derived a remarkably simple tensor network
representation for Levin and Wen’s string-net ground states. This construction
follows directly from the characterisation of these states as simultaneous +1 eigen-
states of the projectors in the Hamiltonian. It also heavily relies on the notion
of the fat lattice. Understanding string-net models in terms of the mapping from
the fat lattice to the physical lattice thus leads to insight and useful results. The
tensor network is built from the fusion rules and F -tensors of the fusion category
underlying the string-net model.

Note that from our Boltzmann weight tensor network one can trivially build a
PEPS representation. In the case of quantum double models which can be explicitly
written as string-net models (see Chapters 3 and 6) dramatic simplifications to this
PEPS representation are possible due to their representation-theoretical properties
(see Chapter 5). Also, for a general string-net model excited states may be expressed
by absorbing their corresponding open string operators into a ground state tensor
network representation. By the same token tensor network representations for other
degenerate ground states on topologically nontrivial surfaces can be derived since
in the fat lattice picture these correspond to an almost empty lattice with a single
(nontrivial) string wrapping around a fundamental loop of the surface.
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Chapter 3

Quantum double string-net duality

It is desirable to understand the relations among quantum double and string-net
models which both describe fixed points of nonchiral topological phases of matter.
As argued in [48] 2D string-net models are conceived to encompass all topological
phases of this type, and it is implied that the discrete gauge theory phases described
by quantum double models should be contained in the class of string-net models. In
this chapter we prove that quantum double models indeed coincide with a subclass
of string-net models. The essential step of our argument is a completion of the local
Hilbert spaces in the string-net models considered. In more abstract terms, this is
an example of Morita equivalence1 (the origin of this concept can be found in [53];
see for instance [2]), whereby the local degrees of freedom in the lattice may be
seen as objects in a category, and the physical excitations, equivalent in both cases,
correspond to a representation category.

3.1 Revisiting string-net models

Let us first set

{
i j m
k l n

}
:= F ijmkln (3.1)

for the sake of notational clarity.

The explicit action of the BSN
c (p) operators is spelled out in [48]. Without loss of

generality we can restrict to an extended face in the honeycomb lattice and obtain

1We are indebted to Zhenghan Wang for pointing this out.
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Chapter 3 Quantum double string-net duality

the following net result for (1.11):

BSN(p)

a1

a2

a3

a4

a5

a6

b1

b2
b3

b4

b5
b6

p

=
∑
c∈Ĉ

dc
D2

∑
cn∈Ĉ

(
6∏

n=1

{
bn c∗n cn−1

c an−1 a∗n

}) c1

c2

c3

c4

c5

c6

b1

b2
b3

b4

b5
b6

p . (3.2)

As can be seen the action of BSN(p) is nontrivial only on the (inner) edges E(p) of
the face p, however, it still depends on the outer edges where it acts diagonally. All
in all, BSN(p) constitutes a twelve-body operator.

All face and vertex constraints can be seen to commute with each other. This
allows for a quite explicit treatment of the models. Levin and Wen studied the
properties of physical excitations (which constitute a complete anyon model, or a
unitary braided tensor category in the language of [38]) by looking at loop operators
commuting with the Hamiltonian. However, there is no general representation-
theoretic classification of excitations as that for quantum double models.

Note in addition that the definition of the face projectors in (3.2) uses F -symbols,
and in principle these are defined only for processes with legal vertices, i.e. satisfying
the fusion rules. As in [48] one may set them to zero whenever one of the involved
vertices is illegal, however, this looks artificial. In Section 3.3 we will see how the
definition of BSN(p) for legal vertices agrees with and is naturally generalised by
that of the quantum double models for the subclass of string-net models in the
range of our mapping.

3.2 Fourier basis and “physical” subspace

Consider the D(CG)-model defined on a planar graph Γ, and perform a basis change
at each oriented edge to the Fourier basis BF (CG) = {|bµ,ij〉} defined by

|bµ,ij〉 :=

√
dµ
|G|

∑
g∈G

Dµ
ij(g) |g〉 , (3.3)
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3.2 Fourier basis and “physical” subspace

where µ ∈ Ĝ is an irreducible representation of G and Dµ is an arbitrary, but
fixed matrix realisation of that representation µ with dimension dµ. Standard
representation-theoretical orthogonality relations imply that BF (CG) is an or-
thonormal basis.

The inverse change of basis is given by

|g〉 =
∑
µ∈Ĝ

√
dµ
|G|

dµ∑
i,j=1

Dµ
ij(g) |bµ,ij〉 , (3.4)

and the isomorphism corresponding to edge reversal reads

|bµ,ij〉 7→ |bµ∗,ji〉 . (3.5)

The change to the Fourier basis BF (CG) can be interpreted loosely as splitting
the local degrees of freedom into three subspaces, one labelled by the irreducible
representations of G and the other two labelled by matrix elements of these rep-
resentations. (This is not a rigorous interpretation because the dimensions of the
latter subspaces depend on the irreducible representation. The rigorous statement
is the Peter-Weyl theorem.)

We now argue that the matrix indices are naturally associated with the beginning
and end of an oriented edge as in

i
µ

j := |bµ,ij〉 , (3.6)

and that the effect of vertex projectors in the Hamiltonian (1.3) is to determine the
contraction of these indices at each vertex. Thus the degrees of freedom remaining
after imposing vertex projectors are just the irreducible representations of G, for
which the model can be interpreted as a string-net model. More precisely, this
will turn out to be the string-net model based on the fusion category Rep(G) (the
category of representations of the group G) with fusion rules determined from
Clebsch-Gordan decomposition of tensor products of irreducible representations.

Indeed, using the inverse change of basis (3.4) it is easy to check that

AQD(s)
µ1

i1

j1

µ2

i2
j2

µ3
i3

j3
=

dµn∑
mn=1

(Wµ1µ2µ3

1 )m1m2m3,j1j2j3
µ1

i1

m1

µ2

i2
m2

µ3
i3

m3
(3.7)

which we wrote for a trivalent vertex s without loss of generality. Here

(Wµ1µ2µ3

1 )i1i2i3,j1j2j3 :=
1

|G|
∑
g∈G

Dµ1

i1j1
(g)Dµ2

i2j2
(g)Dµ3

i3j3
(g) (3.8)

is the matrix element of the projector Wµ1µ2µ3

1 onto the trivial isotypic subspace
of µ1 ⊗ µ2 ⊗ µ3. It is clear that this generalizes in the obvious way to Wµ1...µr

1 for
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Chapter 3 Quantum double string-net duality

vertices of arbitary degree r as does the action (3.7) of AQD(s). Thus the effect of
the vertex projector AQD(s) is to project out vertex configurations in which the
irreducible representations µn in the tensor product µ1⊗· · ·⊗µr are not coupled to
yield the trivial representation. This corresponds to the fusion rules in the string-net
model to be identified below.

Moreover, since Wµ1µ2µ3

1 is a projector it can be split into a direct sum of
orthogonal rank-one projectors. If the group G is multiplicity-free this decomposition
simply reads

(Wµ1µ2µ3

1 )i1i2i3,j1j2j3 =

[
µ1 µ2 µ3

i1 i2 i3

] [
µ1 µ2 µ3

j1 j2 j3

]
(3.9)

where [
µ ν λ
i j k

]
(3.10)

is the 3j-symbol of G. More generally, if G is not multiplicity-free or one considers
tensor products µ1 ⊗ · · · ⊗ µr with r > 3 there may be several inequivalent ways of
fusing µ1 × · · · × µr → 1. This can be accounted for by introducing another index
for the fusion multiplicity N1

µ1...µr
:= trWµ1...µr

1 at each vertex.

Altogether we have shown that the action of AQD(s) fixes how the indices jn
of a vertex configuration |{bµn,injn}〉 are contracted. Remember that we have
defined this action assuming that all edges incident to the vertex s point towards s.
Therefore, these indices correspond naturally to the ends of the oriented edges.

Now consider the action of the entire set of vertex projectors on the lattice. Then
all matrix indices are contracted according to the annihilation channels of the
incoming representations. Hence, if we consider the “physical” Hilbert space to be
the surviving subspace after application of all AQD(s), the only degrees of freedom
left are precisely the irreducible representations of G living on oriented edges, with
the constraint that representations incident on a given vertex can fuse to the vacuum.

More precisely, we refer to the system in which just irrep labels are associated with
oriented edges, obeying fusion rules, as the string-net lattice (with corresponding
“physical” Hilbert space LSN

Γ ) and we identify a configuration |{µn}〉SN there with

the simultaneous +1 eigenvectors |{µn}〉QD ∈ L
QD
Γ of all vertex operators AQD(s) of

the quantum double model. We obtain these eigenvectors by inductively contracting
the matrix indices associated with the vertices like so

|{µn, in}〉QD :=
s

µ1

i1

µ2

i2
µ3

i3

:=

dµn∑
jn=1

[
µ1 µ2 µ3

j1 j2 j3

]
µ1

i1

j1

µ2

i2
j2

µ3
i3

j3
(3.11)

and define the state |{µn}〉QD as the result of this induction process which eliminates

all matrix indices in eventually. Then the map LSN
Γ ↪→ LQD

Γ given by

|{µn}〉SN 7→ |{µn}〉QD (3.12)
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3.3 Face projectors and identification

is the desired embedding of the “physical” Hilbert space of the string-net model
into the Hilbert space of the quantum double model.

For example, for a honeycomb lattice with the following oriented edges en around
even and odd vertices

s

e1(s)

e2(s)e3(s)

t

e1(t)

e2(t) e3(t)

(3.13)

one has explicitly

|{µn}〉QD =

dµn∑
in,jn=1

∏
s∈V (Γ◦)

[
µ1(s) µ∗2(s) µ∗3(s)

j1(s) i2(s) i3(s)

]

×
∏

t∈V (Γ•)

[
µ∗1(t) µ2(t) µ3(t)

i1(t) j2(t) j3(t)

]⊗
n∈E
|bµn,injn〉 . (3.14)

3.3 Face projectors and identification

In order to compute the action of the face projectors BQD(p) in the Fourier ba-
sis BF (CG) note that

δg,e =
∑
ρ∈Ĝ

dρ
|G| χρ(g) , (3.15)

with χρ = trDρ the character of the irreducible representation ρ and e ∈ G the
identity element. Then we can write the face projector of the quantum double
model as

BQD(p) =
∑
ρ∈Ĝ

dρ
|G| B

QD
ρ (p) , (3.16)
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Chapter 3 Quantum double string-net duality

where we defined the operator BQD
ρ (p) as

BQD
ρ (p)

i1
µ1

j1
i2

µ2

j2

...

...

...
ir

µr
jr

p

:=
∑
νn

dνn∑
kn,ln=1

∑
mn

r∏
n=1

√
dµndνn (W

µnν
∗
nρ

1 )inknmn,jnlnmn+1

k1
ν1

l1
k2

ν2

l2

...

...

...
kr

νr
lr

p ,

(3.17)

or equivalently in terms of its matrix elements:

〈{bνn,knln}|BQD
ρ (p)|{bµn,injn}〉 =

dρ∑
mn=1

r∏
n=1

√
dµndνn (W

µnν
∗
nρ

1 )inknmn,jnlnmn+1
.

(3.18)
In both cases the index n is understood to be cyclic.

We assert that this is the correct action of face projectors in the associated string-net
model, i.e. the string-net model based on the fusion category Rep(G). Remember
from [48] and Section 3.1 that this action is best understood in the fat lattice picture,
namely via the loop insertion operators BSN

a (p):

BSN(p) =
∑
a∈Ĉ

da
D2

BSN
a (p) =

∑
ρ∈Ĝ

dρ
|G| B

SN
ρ (p) . (3.19)

Here we have identified the label set Ĉ of the fusion category C the string-net model
is based on with the set Ĝ of irreducible representations of G, the quantum dimen-
sion da of label a with the (ordinary) dimension dρ of the irreducible representation ρ
of G and finally the total quantum dimension as

D2 =
∑
a∈Ĉ

d2
a =

∑
ρ∈Ĝ

d2
ρ = |G| . (3.20)

As mentioned in Section 3.1 the operator BSN
ρ (p) is equivalent to creating a loop

of label ρ around the puncture of face p in the fat lattice and then absorbing it into
the physical lattice by means of F -moves. Now in the case of group representations
F -symbols are just 6j-symbols2 which can be written entirely in terms of 3j-symbols
via the projectors Wµ1µ2µ3

1 from (3.8). This is explained in Appendix B.

2This is also true for more general algebraic objects with a reasonable representation theory, such
as Hopf C∗-algebras (and beyond).
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3.3 Face projectors and identification

In order to identify the quantum double with a string-net model we restrict to a
trivalent graph, without loss of generality to a honeycomb lattice. We need to show
that the action of the BQD

ρ (p) operators on the reduced QD states |{µn}〉QD is the

same as the action of BSN
ρ (p) on states |{µn}〉SN in the SN lattice. To this end we

consider a hexagonal face together with its outer edges and associate with it the
following state

|{µn}, {αn}〉SN :=

µ1

µ2

µ3

µ4

µ5

µ6

α1

α2
α3

α4

α5
α6

p . (3.21)

By (3.2) the action of the loop insertion operator of the string-net model based on
the fusion category Rep(G) is

〈{νn}, {αn}|BSN
ρ (p)|{µn}, {αn}〉SN

=

6∏
n=1

{
αn ν∗n νn−1

ρ µn−1 µ∗n

}

=

dρ∑
mn=1

dµn∑
in,jn=1

dνn∑
kn,ln=1

dαn∑
an=1

6∏
n=1

√
dµndνn

[
αn ν∗n νn−1

an kn ln−1

]

×
[
ρ µn−1 ν∗n−1

mn jn−1 ln−1

] [
µn−1 αn µ∗n
jn−1 an in

] [
ν∗n ρ µn
kn mn in

]
(3.22)

where (B.8) has been used to express F -symbols in terms of 3j-symbols.

Extending (3.11) we define states in the quantum double model by

|{µn}, {αn, in}〉QD :=

µ1

µ2

µ3

µ4

µ5

µ6

α1

α2
α3

α4

α5
α6

i1

i2i3

i4

i5 i6

p (3.23)
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Chapter 3 Quantum double string-net duality

for the same extended face. The local Hilbert spaces are full group algebras CG
labelled by irrep and matrix indices, but the latter are contracted with the 3j-
symbols. The action of the quantum double model face operator on these states
is

〈{νn}, {αn, bn}|BQD
ρ (p)|{µn}, {αn, bn}〉QD

=

dµn∑
in,jn=1

dνn∑
kn,ln=1

dαn∑
an,ãn=1

6∏
n=1

[
ν∗n νn−1 αn
kn ln−1 ãn

] [
µ∗n µn−1 αn
in jn−1 an

]

×〈{bνn,kn,ln}, {bαn,bn,ãn}|BQD
ρ (p)|{bµn,in,jn}, {bαn,bn,an}〉

=

dµn∑
in,jn=1

dνn∑
kn,ln=1

dαn∑
an,ãn=1

6∏
n=1

[
ν∗n νn−1 αn
kn ln−1 ãn

] [
µ∗n µn−1 αn
in jn−1 an

]

×〈{bνn,kn,ln}|BQD
ρ (p)|{bµn,in,jn}〉 〈{bαn,bn,ãn}|{bαn,bn,an}〉

=

dρ∑
mn=1

dµn∑
in,jn=1

dνn∑
kn,ln=1

dαn∑
an=1

6∏
n=1

√
dµndνn

[
ν∗n νn−1 αn
kn ln−1 an

] [
µ∗n µn−1 αn
in jn−1 an

]

×(W
µnν

∗
nρ

1 )inknmn,jnlnmn+1
(3.24)

since BQD
ρ (p) only acts on the (inner) edges of the face p according to (3.18).

Noting that the above expression is in fact independent of the matrix indices bn
and comparing with (3.22) we conclude that

〈{νn}, {αn}|BQD
ρ (p)|{µn}, {αn}〉QD = 〈{νn}, {αn}|BSN

ρ (p)|{µn}, {αn}〉SN . (3.25)

Let us comment on the structure of this mapping. The SN definition of face operators
relies on F -symbols, whose extension to configurations violating vertex conditions is
somewhat arbitrary. Enlarging the local Hilbert spaces LSN

e = {|µ〉 | µ ∈ Ĝ} of the
string-net model by means of additional matrix degrees of freedom and thus moving
over to the Hilbert spaces LQD

e = CG of the quantum double model, we are able to
express both face and vertex operators in a way that recovers the SN definition for
the reduced states in the “physical” subspace LSN

Γ ⊂ LQD
Γ , but carries over to the

entire Hilbert space LQD
Γ of the quantum double model. In more concrete terms,

we can write

BSN(p) ∼ BQD(p)⊗
( ⊗
s∈V (p)

AQD(s)

)
, (3.26)

in the sense that BSN(p) needs the vertices surrounding the face to fulfil the fusion
rules, i.e. needs the state of the extended face to lie in the “physical” subspace LSN

Γ .
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3.4 Discussion

In this subspace its action can be identified with that of BQD(p). Incidentally, this
accounts for the fact that the face operators of the string-net model are 12-local
while the face operators of the quantum double model are 6-local.

String-net models obtained from quantum double models by the Fourier mapping
can be defined naturally on general planar graphs, and not only on trivalent graphs
like a generic SN model. The reason is that the vertex projectors have a natural
interpretation in group representation theory, which generalises to n-valent vertices:
a vertex configuration is allowed if the tensor product of the incident irreducible
representations contains the trivial representation.

Moreover, group theory also provides us with a natural splitting of the F -symbols
according to (B.8), implying that face projectors act effectively only on the (inner)
edges of the faces, since the parts associated with the outer edges have the form of
vertex projectors and act trivially on states in the “physical” subspace LSN

Γ .
More generally, we have an identification of the superselection sectors as irreducible

representations of (in this case) the quasi-triangular Hopf algebra D(CG). Note
that the matrix degrees of freedom i and j which must be added to the string-net
lattice to fill the local Hilbert spaces with basis {|bµ,ij〉} of the quantum double
model allow us to keep track of the internal degrees of freedom within the different
irreps of D(CG) (e.g. the group element labels for the conjugacy classes defining the
magnetic fluxes, the different vectors for the irreps of the group in electric charges).

From a more abstract point of view both quantum double and their corresponding
string-net models can be seen as a procedure to obtain an anyon model, that of
the physical excitations, which is a unitary braided tensor category (UMTC). This
has as simple objects the superselection sectors, i.e. the quasiparticle excitations
classified by irreducible representations of D(CG). This UMTC is both obtained
via the QD route, i.e. starting with a basis labelled by group elements (objects of
a category G), and via the SN route, i.e. starting with a basis labelled by irreps
(objects of the category Rep(G) of representations of G). These categories are
equivalent in the sense that they contain the same quasiparticle excitations.

3.4 Discussion

We have shown explicitly how to identify Kitaev’s quantum double models [39]
with a subclass of the string-net models of Levin and Wen [48]. The general
construction for string-net models can be further simplified in this case due to the
interpretation of the fusion rules in terms of group theory.

As a result the subclass of string-net models corresponding to quantum double
models can be extended naturally to arbitrary planar lattices. Their excitations
can be given a representation-theoretic interpretation at the price of introducing
auxiliary degrees of freedom necessary to keep track of the internal spaces of the
different representations. And the appealing symmetry of electric and magnetic
excitations is recovered, in that face projectors can be given a natural definition that
does not depend on the completion of F -symbols outside the space of recouplings
with legal vertices. This provides a local characterisation of excitations which we
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Chapter 3 Quantum double string-net duality

find satisfactory. Not least this restored symmetry hints at a rigorous notion of
electric-magnetic duality to be discussed in Chapter 6.

Interestingly, from the point of view of category theory the construction can be
seen as an instance of Morita equivalence, which stresses the practical importance
of these models as laboratories to provide simple examples of abstract mathematical
notions which, in spite of their importance, are only in their way to become everyday
tools of theoretical physicists.

Let us stress the significance of this construction. On the one hand, it is a
nontrivial mapping relating the physics of two different classes of topological models.
We have tried to emphasise the interplay of physical degrees of freedom which
is needed to show this relationship, and how the smaller local Hilbert space for
the string-net lattice can be naturally enlarged to the local Hilbert space of the
corresponding quantum double model. On the other hand, it allows for a clearer
picture of the anyons appearing as physical excitations of the particular class of
string-net models obtained from our mapping, and this picture can be extended to
more general string-net models (see Chapter 6).
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Chapter 4

Quantum double models from Hopf

algebras

In this chapter we aim at extending Kitaev’s quantum double models [39] from the
case of the group algebra of a finite group G to a finite-dimensional Hopf algebra
with certain properties, as anticipated by Kitaev in [39]. This sheds more light on
the Hopf algebra point of view Kitaev outlined originally, in particular, it clarifies
how the structure maps of the Hopf algebra enter in the definition of the model and
how the quantum double of the Hopf algebra arises in the description of the model’s
excitations. It turns out that an involutory Hopf algebra (i.e. a Hopf algebra whose
antipode map squares to the identity) with an additional ∗-algebra structure is
sufficient in order to define the generalized quantum double model properly. As we
will show both requirements are satisfied if one chooses a finite-dimensional Hopf
C∗-algebra (also known as a finite-dimensional Kac algebra). In order to illustrate
the construction of our generalized model we give an example of a finite-dimensional
Hopf C∗-algebra which is nontrivial in the sense that it is neither a group algebra
nor the dual of a group algebra. This extends well-known instances of the family
like the toric code for G = Z2 or the model based on G = S3 which is universal for
topological quantum computation [54].

In Section 4.1 we will provide a guide to the language of Hopf algebras, introducing
the necessary notation needed in order to extend the quantum double models based
on finite groups to Hopf algebras. In Section 4.2 we then generalize Kitaev’s quan-
tum double construction from group algebras to Hopf algebras, thereby introducing
the physical model which stands in the centre of this work.

4.1 The language of Hopf algebras

4.1.1 Hopf algebras

If one sets out to find an algebraic structure for symmetries of linear spaces with
tensor product structure, such as encountered in many-body quantum physics, one
is naturally led to the concept of a Hopf algebra. This is because the axioms of a
Hopf algebra directly allow for duals and tensor products of representations. As
general reference for this section we recommend [36].

First and foremost a Hopf algebra H is a vector space (over some field k which
we will take to be C) equipped with some additional structure. On the one hand
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Chapter 4 Quantum double models from Hopf algebras

there is an associative multiplication µ of vectors which is linear in each argument,
hence one may define it as the linear map µ : H ⊗H → H with

µ(x⊗ y) = xy (4.1)

such that
(xy)z = x(yz). (4.2)

This multiplication is accompanied by a unit η which can be defined as the linear
injection of scalars into H, hence η : k → H where

η(λ) = λ1H . (4.3)

The element 1H ∈ H is a left and right unit for the multiplication µ. At this stage
H has the structure of an algebra. The multiplication encodes the composition of
symmetry transformations in a representation space.

On the other hand there is a dual notion to multiplication. This dual linear map
is the comultiplication ∆: H → H ⊗H and is usually written in Sweedler notation1

as
∆(x) =

∑
(x)

x′ ⊗ x′′ =
∑
(x)

x(1) ⊗ x(2). (4.4)

This serves as a shorthand for sums of the form
∑
i x

(1)
i ⊗ x

(2)
i . It is required to be

coassociative:
(∆⊗ id) ◦∆ = (id⊗∆) ◦∆. (4.5)

Elements which satisfy ∆(x) = x ⊗ x are called grouplike and collected in the
set G(H). This comultiplication has a companion called the counit ε : H → k which
is required to satisfy the axiom:∑

(x)

ε(x′)x′′ =
∑
(x)

x′ε(x′′) = x. (4.6)

In other words, it neutralizes the comultiplication. With this structure alone, the
vector space H is called a coalgebra. The comultiplication encodes how symmetry
transformations act on tensor products of representation spaces. The counit provides
the appropriate notion of a trivial representation, or invariance under symmetry
transformations.

If both the algebra and coalgebra structure are compatible then H is called a
bialgebra. The compatibility axioms read:

∆(xy) = ∆(x) ∆(y), (4.7)

∆(1H) = 1H ⊗ 1H , (4.8)

ε(xy) = ε(x) ε(y), (4.9)

ε(1H) = 1k. (4.10)

1If there are more than three tensor factors in iterated coproducts such as ∆(3)(x) =
∑

(x) x
(1) ⊗

x(2) ⊗ x(3) ⊗ x(4) we will consistently use superscripts instead of primes.
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Finally, if there is a linear map S : H → H satisfying the axiom∑
(x)

x′S(x′′) = ε(x) 1H =
∑
(x)

S(x′)x′′ (4.11)

then H = (H;µ, η; ∆, ε;S) is called a Hopf algebra. The map S is called the
antipode and has the following properties:

S(xy) = S(y)S(x), (4.12)

S(1H) = 1H , (4.13)∑
(S(x))

S(x)′ ⊗ S(x)′′ =
∑
(x)

S(x′′)⊗ S(x′), (4.14)

ε
(
S(x)

)
= ε(x). (4.15)

In any finite-dimensional Hopf algebra the order of the antipode S is finite [66],
hence S is an invertible map. We will always make this assumption in the sequel.
The antipode is used to define dual (or conjugate) representations.

We may also define opposite multiplication µop and comultiplication ∆cop by

µop(x⊗ y) = yx, (4.16)

∆cop(x) =
∑
(x)

x′′ ⊗ x′ (4.17)

relative to the multiplication (4.1) and comultiplication (4.4). Then the sets

Z(H) = {x ∈ H | ∀y ∈ H : µop(x⊗ y) = µ(x⊗ y)} (4.18)

Cocom(H) = {x ∈ H | ∆cop(x) = ∆(x)} (4.19)

are called the centre of H and the cocommutative elements of H respectively.
If Z(H) = H then H is a commutative Hopf algebra, in the case Cocom(H) =
H it is a cocommutative Hopf algebra. Furthermore it turns out that Hop =
(H;µop, η; ∆, ε;S−1) is again a Hopf algebra, called the opposite Hopf algebra of H.

One can now show that for a given Hopf algebra H = (H;µ, η; ∆, ε;S) with
underlying vector space H the dual vector space H∗ has again the structure of a
Hopf algebra. More precisely,

H∗ = (H∗; ∆T , εT ;µT , ηT ;ST ) (4.20)

with the structure maps2 as indicated is called the dual Hopf algebra of H. By the
same token, the opposite Hopf algebra Hop has the natural dual

X = (Hop)∗ =
(
H∗; ∆T , εT ; (µop)T , ηT ; (S−1)T

)
. (4.21)

2For a linear map f : U → V the transpose map fT : V ∗ → U∗ is defined as usual by 〈fT (α), x〉 :=
〈α, f(x)〉 for all α ∈ V ∗ and x ∈ U .
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Finally, there is the notion of a (two-sided) integral Λ in a Hopf algebra H. Such
an element is defined via

xΛ = Λx = ε(x)Λ (4.22)

for all x ∈ H. In view of the role of the counit as a trivial representation, integrals are
thus invariant elements under multiplication. The dual definition of an integral Γ ∈
H∗ can be phrased as ∑

(x)

x′Γ(x′′) =
∑
(x)

Γ(x′)x′′ = Γ(x) 1H (4.23)

for all x ∈ H. This turns out to be equivalent to (4.22) once applied to H∗.
Particularly important is the notion of a Haar integral. This is the normalized

version of an integral which is guaranteed to exist uniquely for finite-dimensional
Hopf C∗-algebras. Those are the Hopf algebras we will be occupied with mostly in
the discussion of the physical model. We will supply a precise definition of Haar
integrals in Section 4.2.2.

4.1.2 Quantum doubles as bicrossed products

In a general Hopf algebra H nothing can be said about how ∆ and ∆cop are related
to each other. In other words, H can be non-cocommutative in the most unpleasant
way. Therefore we seek Hopf algebras which are almost cocommutative3 in a
certain sense: they are equipped with a so-called quasitriangular structure which
controls the extent to which the comultiplication fails to be cocommutative. In [18]
Drinfeld gave his celebrated quantum double construction which produces such a
quasitriangular Hopf algebra from a given Hopf algebra.

At the heart of his construction lies the idea of a bicrossed product. For example,
in the case of the semidirect product of two groups one has an action of one group
on the other and this action is used to define the multiplication in the product
group. Similarly, one may define a bicrossed product of groups where there is an
additional backaction of the second group on the first one. It is this concept that
can be generalized to Hopf algebras and will yield the quantum double.

So given a Hopf algebra H with invertible antipode S (in particular, any finite-
dimensional Hopf algebra) one can construct a new Hopf algebra D(H) = X ./ H,
the quantum double of H, as the bicrossed product of X = (Hop)∗ and H. This
means that as a vector space D(H) simply equals H∗ ⊗H. In order to define its
multiplication we need an action of H on X and another one vice versa. This
bicrossed structure is given by the actions

B : H ×X → X, aB f =
∑
(a)

f
(
S−1(a′′) ?a′

)
, (4.24)

C : H ×X → H, aC f =
∑
(a)

f
(
S−1(a′′′) a′

)
a′′, (4.25)

3In physical applications this is related to the exchange statistics of particles in two dimensions.
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where the question mark denotes the argument of the function aB f , i.e. in this
particular instance

(aB f)(x) =
∑
(a)

f
(
S−1(a′′)xa′

)
(4.26)

holds for any x ∈ H. We will use this notation frequently later on.
One can then show that

(f ⊗ a)(g ⊗ b) =
∑
(a)

f g
(
S−1(a′′′) ?a′)⊗ a′′b, (4.27)

together with the canonical comultiplication on the tensor product of Hopf algebras,
defines a valid Hopf algebra structure on the vector space D(H). Since both the
embeddings iX : X → D(H), f 7→ f ⊗ 1H and iH : H → D(H), a 7→ 1X ⊗ a are
algebra morphisms this multiplication formula is actually already determined by
the so-called straightening formula4

af := (1X ⊗ a)(f ⊗ 1H) =
∑
(a)

f
(
S−1(a′′′) ?a′

)
a′′. (4.28)

It should be noted that both underlying actions (4.24) and (4.25) are derived
from the (left) adjoint representation which for a, x ∈ H is defined by

ad(a)(x) =
∑
(a)

a′xS(a′′). (4.29)

4.1.3 Hopf ∗-algebras

If k = C then a Hopf algebra H may sometimes be equipped with a so-called
∗-structure that will become most important for physical applications. Namely, it
will allow us to define Hilbert spaces and unitarity. For a general reference on Hopf
∗-algebras see [42].

Firstly, a conjugate-linear map ∗ : H → H which satisfies

(x∗)∗ = x (4.30)

(xy)∗ = y∗x∗ (4.31)

is called an involution and turns H into a ∗-algebra. It follows naturally that

1∗H = 1H . (4.32)

If an involution ∗ is compatible with comultiplication

∆(x∗) = ∆(x)∗ (4.33)

4This should be contrasted with the canonical (uncrossed) multiplication in the Hopf algebraX⊗H.
In this case we simply have af = fa for any f ∈ X and a ∈ H since multiplication is defined
componentwise.
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then H is called a ∗-coalgebra. Here the involution of H⊗H is defined by (x⊗y)∗ =
x∗ ⊗ y∗. In a ∗-coalgebra one always has

ε(x∗) = ε(x) (4.34)

where the bar denotes complex conjugation.
A bialgebra H with an involution for which it is both a ∗-algebra and a ∗-coalgebra

is called a ∗-bialgebra.
Interestingly, if a Hopf algebra H also has the structure of a ∗-bialgebra then the

interplay between antipode and involution is already determined:

S
(
S(x∗)∗

)
= x. (4.35)

Consequently, H is called a Hopf ∗-algebra. Note that its antipode is always
invertible (even if H is not finite-dimensional).

Finally, one can show that the dual of a Hopf ∗-algebra H is again a Hopf ∗-algebra
with the involution given by

f∗(x) = f
(
S(x)∗

)
. (4.36)

4.2 Constructing quantum double models from
Hopf algebras

The goal of this section is to construct a two-dimensional quantum spin model whose
microscopic degrees of freedom are given by a finite-dimensional Hopf algebraH, such
that its emerging degrees of freedom are characterized by the quantum double D(H).
This illuminates Kitaev’s insight in [39]. The model obtained in this fashion
dynamically implements the quantum double construction. This means that its
Hilbert space aquires additional structure, namely that the graph underlying the
spin model can be interpreted as a D(H)-module, or representation of D(H). State
vectors describing (elementary) quasiparticle excitations above the ground state
then live in the irreducible representations of D(H) the Hilbert space decomposes
into. In fact, for every irreducible representation of the quantum double there will
be a corresponding type of quasiparticle excitation. These quasiparticle excitations
can then naturally be braided via the quasitriangular structure of D(H) and, in
general, exhibit exchange statistics beyond bosons or fermions. In order to render
their topological nature manifest we would also like these quasiparticle excitations
to be agnostic to the details of the microscopic background. In particular, they
should only feel the topological properties of the underlying surface rather than
the precise shape of the embedded graph. In other words, the quantum spin model
we construct should be insensitive to the particular discretization chosen. It goes
without saying that any discretization will typically have a fine granularity in order
to make the condensed matter character of the model evident.

Since there is a natural action of the quantum double D(H) on the Hopf algebra H
itself one can nevertheless regard a minimal graph consisting of precisely one edge as
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La
+

La
−

T f
− T f

+

Figure 4.1: A graph edge representing the Hopf algebra H via the H-module struc-
tures L±. At the same time it represents the Hopf algebra X = (Hop)∗ via the X-module
structures T±. These are related to each other by means of the antipode in (4.42) and (4.43).

a representation of D(H) by identifying the edge with H. However, it is clear that
this system cannot contain all irreducible representations of the quantum double.
While this restriction can already be overcome by considering two graph edges
associated with H ⊗H one still needs to go to a macroscopic regime from either
of these small graphs. It is precisely the process of spatially extending the action
of D(H) from one edge to many edges which will eventually yield the Hamiltonian
and thus define the quantum double model completely.

In the following we will first construct a representation of D(H) from a minimal
graph with just one edge, then from a small graph with two edges. Next we will
endow any larger graph obtained from a surface cellulation with a local D(H)-module
structure. Finally we will introduce the Hilbert space for our generalized quantum
double model and assemble the Hamiltonian from particular operators in the local
representations of D(H).

4.2.1 Graph representations of quantum doubles

Given a finite-dimensional Hopf algebra H and an oriented graph Γ = (V,E, F ) we
define our representation vector space as LΓ =

⊗
e∈E H. Our goal is to find local

operators Aa and Bf acting on LΓ which represent both parts H and X = (Hop)∗ of
the quantum double D(H) separately via the embeddings iX and iH . Additionally
we want these two operators to commute in such a way that they implement the
straightening formula (4.28) of D(H), hence:

AaBf =
∑
(a)

Bf(S−1(a′′′)?a′)Aa′′ . (4.37)

Put differently, we require the operators Aa and Bf to establish the bicrossed
multiplication of the quantum double by interacting nontrivially on the intersection
of their supports. Loosely speaking, this amounts to assembling the adjoint repre-
sentation from smaller building blocks. We will spend the rest of this subsection
with obtaining these operators Aa and Bf on graphs of increasing size.

Before we actually turn to representations of the quantum double D(H) we can
interpret any graph edge e and its associated vector space Le = H as a representation
of either the Hopf algebra H itself or its dual X = (Hop)∗ in several useful ways.
In the spirit of [39] we define the following module structures on H for all a, x ∈ H
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s p x

Figure 4.2: The minimal graph Γ1 which carries the Schrödinger representation of D(H)
on the associated vector space LΓ1 = H.

and f ∈ X:

La+(x) := ax, (4.38)

La−(x) := xS(a), (4.39)

T f+(x) :=
∑
(x)

〈f, x′′〉x′, (4.40)

T f−(x) :=
∑
(x)

〈f, S−1(x′)〉x′′. (4.41)

More precisely, the operators L± define actions of H on itself while T± define
actions of X on H. Furthermore these actions are intimately related: one may start
with the left multiplication L+ and then canonically derive all other actions. As a
consequence one has for example

La− = S ◦ La+ ◦ S−1, (4.42)

T f− = S ◦ T f+ ◦ S−1. (4.43)

This means that if one fixes an arbitrary pattern of edge orientations one may relate
any other pattern to the original one using these relations. Unfortunately this does
not treat all possible orientations on equal footing. We will resolve this issue in
Section 4.2.2. Also note that

[La+, L
b
−] = 0, (4.44)

[T f+, T
g
−] = 0 (4.45)

for arbitrary a, b ∈ H and f, g ∈ X.

Now we focus on representations of D(H). As we hinted at in Section 4.1.2 the
quantum double construction is a clever variation on the adjoint representation.
Interestingly, one can turn the adjoint representation into the operator Aa “as is”
and obtain a representation of D(H) on a minimal graph Γ1 with just one edge as
seen in Figure 4.2. In the mathematical literature this is known as the Schrödinger
representation and translates into our picture as follows.
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s

p
x1x2

Figure 4.3: The graph Γ2 associated with LΓ2 = H ⊗ H. It affords a D(H)-module
structure at the site (s, p) via the operators Aa(s, p) and Bf (s, p).

Lemma 1. The operators

Aa := ad(a) (4.46)

Bf := T f− (4.47)

form a representation of D(H) on LΓ1
= H.

Proof. We just need to show that Aa and Bf obey the straightening formula (4.37).
Indeed, consider∑

(a)

Bf(S−1(a′′′)?a′)Aa′′(x)

=
∑
(a)

Bf(S−1(a(4))?a(1))

(
a(2)xS(a(3))

)
=
∑
(a)

∑
(a(2)xS(a(3)))

〈
f, S−1(a(4))S−1

[(
a(2)xS(a(3))

)′]
a(1)

〉 (
a(2)xS(a(3))

)′′
=
∑
(a)

∑
(a(2))

∑
(S(a(3)))

∑
(x)

〈
f, S−1

(
(a(2))′x′ S(a(3))′a(4)

)
a(1)

〉
(a(2))′′x′′S(a(3))′′

=
∑
(a)

∑
(S(a(4)))

∑
(x)

〈
f, S−1

(
a(2)x′S(a(4))′a(5)

)
a(1)

〉
a(3)x′′S(a(4))′′

=
∑
(a)

∑
(x)

〈
f, S−1

(
a(2)x′ S(a(5)) a(6)

)
a(1)

〉
a(3)x′′S(a(4))

=
∑
(a)

∑
(x)

〈f, S−1(x′)S−1(a(2)) a(1)〉 a(3)x′′S(a(4))

= AaBf (x).

Note that in the third line we used (4.7) as well as (4.12). In the fourth line we
used coassociativity and in the fifth line we used (4.14). In the final two lines we
used (4.11).

We continue with the graph Γ2 shown in Figure 4.3 and its associated vector
space LΓ2

= H ⊗H and attribute operators Aa and Bf to its sites (s, p). Follow-
ing [39], a site is defined as a pair consisting of a vertex s and one of its adjacent
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faces p. For the particular site (s, p) shown in Figure 4.3 we define the operators in
terms of the above actions:

Aa(s, p) :=
∑
(a)

La
′

+ ⊗ La
′′

− , (4.48)

Bf (s, p) :=
∑
(f)

T f
′

− ⊗ T f
′′

− . (4.49)

It is worth emphasizing that this definition only holds for the edge orientation
chosen in the figure. However, using the conventions set forth by Figure 4.1 we
can extend this definition to arbitrarily oriented edges. Also note an important
detail: our seemingly similar notation refers to two rather different comultiplications,
namely, the one in H and the other one in X.

We are now prepared to analyze the commutation properties of these operators
which we take both at the same site (s, p) for the moment. It is clear that the support
of both operators coincides on this small graph, hence we can study the interaction
of Aa and Bf without any additional complications. The following lemma shows
that indeed the two operators define a representation of D(H) on H ⊗H.

Lemma 2. For the operators Aa(s, p) and Bf (s, p) the straightening formula (4.37)
holds.

Proof. The statement is proven by evaluating both sides of the straightening formula
on arbitrary elements x1, x2 ∈ H. To this end consider first:

AaBf (x1 ⊗ x2) = Aa
∑
(f)

T f
′

− (x1)⊗ T f
′′

− (x2)

= Aa
∑
(xi)

∑
(f)

〈f ′, S−1(x′1)〉〈f ′′, S−1(x′2)〉x′′1 ⊗ x′′2

=
∑
(xi)

〈∑
(f)

f ′ ⊗ f ′′, S−1(x′1)⊗ S−1(x′2)
〉∑

(a)

La
′

+ (x′′1)⊗ La′′− (x′′2)

=
∑

(a)(xi)

〈f, S−1(x′2)S−1(x′1)〉 a′x′′1 ⊗ x′′2 S(a′′)

=
∑

(a)(xi)

〈f, S−1(x′1x
′
2)〉 a′x′′1 ⊗ x′′2 S(a′′).

Note that in the third line we have used the opposite multiplication µop which is
the appropriate dual to swap the comultiplication∑

(f)

f ′ ⊗ f ′′ = (µop)T (f)

in X from f onto its argument in H.
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In a second step compare this with:

∑
(a)

Bf(S−1(a′′′)?a′)Aa′′(x1 ⊗ x2) =
∑
(a)

Bf(S−1(a(4))?a(1))

(
a(2)x1 ⊗ x2 S(a(3))

)
=
∑
(a)

Bf̃
(
a(2)x1 ⊗ x2 S(a(3))

)

where we used the temporary abbreviation f̃ = f
(
S−1(a(4)) ?a(1)

)
. Now we have

for the right-hand side

∑
(a)(f̃)

T f̃
′

− (a(2)x1)⊗ T f̃
′′

−
(
x2 S(a(3))

)
=
∑

(a)(f̃)

∑
(a(2)x1)

〈
f̃ ′, S−1

(
(a(2)x1)′

)〉
(a(2)x1)′′ ⊗

∑
(x2S(a(3)))

〈
f̃ ′′, S−1

[(
x2 S(a(3))

)′]〉 (
x2 S(a(3))

)′′
=
∑
(a)

∑
(a(2)x1)

∑
(x2S(a(3)))

〈
f̃ , S−1

[(
x2 S(a(3))

)′]
S−1

(
(a(2)x1)′

)〉
(a(2)x1)′′ ⊗

(
x2 S(a(3))

)′′
=
∑
(a)

∑
(a(2)x1)

∑
(x2S(a(3)))

〈
f̃ , S−1

[
(a(2)x1)′

(
x2 S(a(3))

)′]〉
(a(2)x1)′′ ⊗

(
x2 S(a(3))

)′′
and upon restoring f this becomes

∑
(a)

∑
(a(2)x1)

∑
(x2S(a(3)))

〈
f, S−1(a(4))S−1

[
(a(2)x1)′

(
x2 S(a(3))

)′]
a(1)

〉
(a(2)x1)′′ ⊗

(
x2 S(a(3))

)′′
=
∑
(a)

∑
(a(2)x1)

∑
(x2S(a(3)))

〈
f, S−1

[
(a(2)x1)′

(
x2 S(a(3))

)′
a(4)

]
a(1)

〉
(a(2)x1)′′ ⊗

(
x2 S(a(3))

)′′
=
∑

(a)(xi)

∑
(a(2))

∑
(S(a(3)))

〈
f, S−1

(
(a(2))′x′1x

′
2 S(a(3))′a(4)

)
a(1)

〉
(a(2))′′x′′1 ⊗ x′′2 S(a(3))′′

=
∑

(a)(xi)

∑
(S(a(4)))

〈
f, S−1

(
a(2)x′1x

′
2 S(a(4))′a(5)

)
a(1)

〉
a(3)x′′1 ⊗ x′′2 S(a(4))′′

=
∑

(a)(xi)

∑
(a(4))

〈
f, S−1

[
a(2)x′1x

′
2 S
(
(a(4))′′

)
a(5)

]
a(1)

〉
a(3)x′′1 ⊗ x′′2 S

(
(a(4))′

)
=
∑

(a)(xi)

f
[
S−1

(
a(2)x′1x

′
2 S(a(5)) a(6)

)
a(1)

]
a(3)x′′1 ⊗ x′′2 S(a(4))

=
∑

(a)(xi)

f
[
S−1

(
a(2)x′1x

′
2 ε(a

(5))
)
a(1)

]
a(3)x′′1 ⊗ x′′2 S(a(4))

=
∑

(a)(xi)

f
(
S−1(x′1x

′
2)S−1(a(2)) a(1)

)
a(3)x′′1 ⊗ x′′2 S(a(4))
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=
∑

(a)(xi)

f
(
S−1(x′1x

′
2) ε(a′)

)
a′′x′′1 ⊗ x′′2 S(a′′′)

=
∑

(a)(xi)

〈f, S−1(x′1x
′
2)〉 a′x′′1 ⊗ x′′2 S(a′′).

Note that in the third line we have employed the fact that ∆ is an algebra morphism.
Since the above is true for all x1, x2 ∈ H we have just proven the claim.

In order to obtain local D(H)-representations at the sites of arbitrary graphs we
need to extend the above actions of Aa and Bf to larger vertices and faces. It will
inevitably happen that the two operators Aa and Bf act on different sets of edges
which do not fully coincide. We need to ensure that a) both operators continue
to represent their respective parts H and X individually and b) the commutation
relation arising from common edges still implements the bicrossed structure of the
quantum double D(H).

The extension can be done as follows for general vertices s and faces p.

Definition 1. Let (s, p) be a site of the graph Γ, a ∈ H and f ∈ X. Then we
define vertex and face operators via

Aa(s, p) x1

x2

...

xr

p

s
:=
∑
(a)

La
(1)

+ (x1)⊗ · · · ⊗ La(r)+ (xr)

=
∑
(a)

a(1)x1

a(2)x2

...

a(r)xr

p

s
, (4.50)

Bf (s, p)

x1

x2

...

xr

s

p

:=
∑
(f)

T f
(r)

− (x1)⊗ · · · ⊗ T f
(1)

− (xr)

=
∑
(xi)

f
(
S−1(x′r · · ·x′1)

)
x′′

1

x′′
2

...

x′′
r

s

p

. (4.51)

Note that for Aa(s, p) the vertex s denotes the centre of the loop on the dual graph
and p denotes the starting point within the loop for comultiplication. Analogously,
for Bf (s, p) the starting point of the loop around the face p is marked by s. For
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x1

x2

x3

x4

x5

x6

s

p

Figure 4.4: Graph used in the proof of Theorem 1. The commutation relation and
hence the structure of D(H) is determined on the intersection of the supports of Aa(s, p)
and Bf (s, p).

different edge orientations the actions L+ and T− in (4.50) and (4.51) may need to
be replaced per edge by L− and T+ according to Figure 4.1.

The idea behind this is: first one fixes the action of a ∈ H such that the coproduct
of a is applied to the edges of the vertex s in counterclockwise order. This is indicated
by the arrow winding around s. When defining the action of f ∈ X on a face it
then appears at first there might be two choices for the orientation of the coproduct
of f . It turns out that only one of them, namely distributing the coproduct of f in
clockwise orientation on the graph, will yield a meaningful theory. The orientation
of the coproduct is again indicated by the arrow winding around p.

At this point the reader may wonder why one does not take the function f directly
from H∗ (the dual of H without flipped comultiplication) and the following more
symmetric definition of the action (4.51):

B̃f (s, p)

x1

x2

...

xr

s

p

:=
∑
(f)

T f
(1)

− (x1)⊗ · · · ⊗ T f
(r)

− (xr)

=
∑
(xi)

f
(
S−1(x′r · · ·x′1)

)
x′′

1

x′′
2

...

x′′
r

s

p

. (4.52)

Note that here the arrow winds around p in counterclockwise orientation since f ∈
H∗ has a different coproduct now as compared to (4.51). Clearly, both (4.51)
and (4.52) define the same (algebra) action on the boundary edges of the face.
However, as cumbersome as taking f ∈ X in the definition of Bf (s, p) may seem
it will make the next task tremendously easier: making contact with the Drinfeld
double D(H) = X ./ H which these operators Aa and Bf represent.

Theorem 1. Let H a finite-dimensional Hopf algebra. Then each site (s, p) of
the graph Γ supports a D(H)-module structure given by the operators Aa(s, p)
and Bf (s, p) from Definition 1.

Proof. In order to keep the notation simple we only consider sites such as the one
depicted in Figure 4.4. The generality of the argument will not be affected.
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In order to prove the D(H)-module structure at site (s, p) it is again enough
to show that the straightening formula (4.37) holds. Let a ∈ H, f ∈ X and
evaluate AaBf on arbitrary edges xi ∈ H:

AaBf (x1 ⊗ · · · ⊗ x6)

= Aa
∑
(xi)

f
(
S−1(x′1x

′
6x
′
5x
′
4)
)
x′′1 ⊗ x2 ⊗ x3 ⊗ x′′4 ⊗ x′′5 ⊗ x′′6

=
∑
(xi)

f
(
S−1(x′1x

′
6x
′
5x
′
4)
)∑

(a)

a(1)x′′1 ⊗ x2 S(a(2))⊗ a(3)x3 ⊗ x′′4 S(a(4))⊗ x′′5 ⊗ x′′6

=
∑

(a)(xi)

〈f, S−1(x′1x
′
6x
′
5x
′
4)〉 a(1)x′′1 ⊗ x2 S(a(2))⊗ a(3)x3 ⊗ x′′4 S(a(4))⊗ x′′5 ⊗ x′′6 .

Compare this with the case:∑
(a)

Bf(S−1(a′′′)?a′)Aa′′(x1 ⊗ · · · ⊗ x6)

=
∑
(a)

Bf(S−1(a(6))?a(1)) a
(2)x1 ⊗ x2 S(a(3))⊗ a(4)x3 ⊗ x4 S(a(5))⊗ x5 ⊗ x6.

Again, abbreviating f̃ = f
(
S−1(a(6)) ?a(1)

)
we obtain for the right-hand side∑

(a)

∑
(x4S(a(5)))

∑
(x5)(x6)

∑
(a(2)x1)

〈
f̃ , S−1

[
(a(2)x1)′x′6x

′
5

(
x4 S(a(5))

)′]〉
(a(2)x1)′′ ⊗ x2 S(a(3))⊗ a(4)x3 ⊗

(
x4 S(a(5))

)′′ ⊗ x′′5 ⊗ x′′6
=
∑
(a)

∑
(xi)

∑
(a(2))

∑
(a(5))

〈
f̃ , S−1

[
(a(2))′x′1x

′
6x
′
5x
′
4 S
(
(a(5))′′

)]〉
(a(2))′′x′′1 ⊗ x2 S(a(3))⊗ a(4)x3 ⊗ x′′4 S

(
(a(5))′

)
⊗ x′′5 ⊗ x′′6

=
∑

(a)(xi)

∑
(a(2))

∑
(a(5))

〈
f̃ , S−1

[
(a(2))′x′1x

′
6x
′
5x
′
4 S
(
(a(5))′′

)]〉
(a(2))′′x′′1 ⊗ x2 S(a(3))⊗ a(4)x3 ⊗ x′′4 S

(
(a(5))′

)
⊗ x′′5 ⊗ x′′6

and now restoring f this becomes∑
(a)(xi)

〈
f
(
S−1(a(8)) ?a(1)

)
, S−1

(
a(2)x′1x

′
6x
′
5x
′
4 S(a(7))

)〉
a(3)x′′1 ⊗ x2 S(a(4))⊗ a(5)x3 ⊗ x′′4 S(a(6))⊗ x′′5 ⊗ x′′6

=
∑

(a)(xi)

〈f, S−1(a(8)) a(7)S−1(x′1x
′
6x
′
5x
′
4)S−1(a(2)) a(1)〉 a(3)x′′1 ⊗ x2 S(a(4))⊗ a(5)x3 ⊗ x′′4 S(a(6))⊗ x′′5 ⊗ x′′6

=
∑

(a)(xi)

〈f, S−1(x′1x
′
6x
′
5x
′
4)S−1(a(2)) a(1)〉 a(3)x′′1 ⊗ x2 S(a(4))⊗ a(5)x3 ⊗ x′′4 S(a(6))⊗ x′′5 ⊗ x′′6

=
∑

(a)(xi)

〈f, S−1(x′1x
′
6x
′
5x
′
4)〉 a(1)x′′1 ⊗ x2 S(a(2))⊗ a(3)x3 ⊗ x′′4 S(a(4))⊗ x′′5 ⊗ x′′6 .

This proves the statement.

Remark 1. For certain choices of a ∈ H and f ∈ X the full specification of a
site (s, p) becomes redundant for the operators Aa and Bf . More specifically,
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suppose that 〈fg, a〉 for any f, g ∈ X and f(xy) = f(yx) for any x, y ∈ H or,
equivalently, that a ∈ Cocom(H) and f ∈ Cocom(X)5. Since coproducts can now
be permuted cyclically, the starting point p of the dual loop used to define the
vertex operator Aa(s, p) loses any significance. All that matters for the action is
the vertex s itself. In order to reflect this fact we set for all a ∈ Cocom(H):

Aa(s) := Aa(s, p). (4.53)

By the same token a face operator Bf (s, p) only cares about the face p once we
choose f ∈ Cocom(X):

Bf (p) := Bf (s, p). (4.54)

It remains to study the action of the quantum double D(H) on the graph in the
presence of degenerate vertices and faces. More specifically, we are interested in
graphs with spikes (edges connected to a vertex of degree 1) and/or loops. In
such cases it may happen that a site (s, p) is not well defined, rather there are two
inequivalent ways (s, p)+ and (s, p)− to pair up a vertex s with a neighbouring
face p. In light of the preceding remark this distinction only matters if the action
of a vertex or face operator depends on the full site (and not merely on the vertex
or face alone). Hence assume a 6∈ Cocom(H) and f 6∈ Cocom(X) for the following
discussion.

Indeed, for b ∈ H arbitrary the operators

Aa(s, p)+

x1

...

xr

b
s

p =
∑
(a)

La
(1)

+ (x1)⊗ · · · ⊗ La(r)+ (xr)⊗ La
(r+1)

+ (b)

(4.55)

and

Aa(s, p)−

x1

...

xr

b
s

p =
∑
(a)

La
(2)

+ (x1)⊗ · · · ⊗ La(r+1)

+ (xr)⊗ La
(1)

+ (b)

(4.56)

act differently.

5Clearly, Cocom(H) and Cocom(X) are defined relative to the respective coproducts in H and X,
which are fundamentally different.
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However, if b is an integral we have

Aa(s, p)+

x1

...

xr

b
s

p = Aa(s, p)−

x1

...

xr

b
s

p

=
∑
(a)

La
(1)

+ (x1)⊗ · · · ⊗ La(r)+ (xr)⊗ b, (4.57)

thus the spike b decouples from the H-part of the D(H)-action.

Similarly, the actions of the operators

Aa(s, p)+

x1

...

xr

b
s

p

=
∑
(a)

La
(1)

+ (x1)⊗ · · · ⊗ La(r)+ (xr)⊗ La
(r+2)

−
(
La

(r+1)

+ (b)
)

(4.58)

=
∑
(a)

La
(1)

+ (x1)⊗ · · · ⊗ La(r)+ (xr)⊗ ad(a(r+1))(b) (4.59)

and

Aa(s, p)−

x1

...

xr

b
s

p =
∑
(a)

La
(2)

+ (x1)⊗ · · · ⊗ La(r+1)

+ (xr)⊗ ad(a(1))(b)

(4.60)
do not coincide for arbitrary b ∈ H.

However, for any b ∈ H invariant under the adjoint H-action (4.29), i.e.

ad(a) b = ε(a) b, (4.61)
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we have the equality

Aa(s, p)+

x1

...

xr

b
s

p = Aa(s, p)−

x1

...

xr

b
s

p

=
∑
(a)

La
(1)

+ (x1)⊗ · · · ⊗ La(r)+ (xr)⊗ b, (4.62)

thus the loop b decouples from the H-part of the D(H)-action, too.

Now also consider the operator actions

Bf (s, p)+

x1

...

xr

s
b

p

=
∑
(f)

T f
(r+2)

+

(
T f

(r+1)

− (b)
)
⊗ T f

(r)

− (x1)⊗ · · · ⊗ T f
(1)

− (xr) (4.63)

=
∑

(b)(xi)

f
(
b′′′S−1(b′)S−1(x′r · · ·x′1)

)
b′′ ⊗ x′′1 ⊗ · · · ⊗ x′′r (4.64)

and

Bf (s, p)−

x1

...

xr

s
b

p

=
∑
(f)

T f
(2)

+

(
T f

(1)

− (b)
)
⊗ T f

(r+2)

− (x1)⊗ · · · ⊗ T f
(3)

− (xr) (4.65)

=
∑

(b)(xi)

f
(
S−1(x′r · · ·x′1) b′′′S−1(b′)

)
b′′ ⊗ x′′1 ⊗ · · · ⊗ x′′r (4.66)

which are not equivalent for arbitrary b ∈ H.

However, if b is invariant under the X-action∑
(b)

f
(
b′′′S−1(b′)

)
b′′ = f(1H) b (4.67)
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for any f ∈ X then we have the equality

Bf (s, p)+

x1

...

xr

s
b

p = Bf (s, p)−

x1

...

xr

s
b

p

=
∑
(xi)

f
(
S−1(x′r · · ·x′1)

)
b⊗ x′′1 ⊗ · · · ⊗ x′′r , (4.68)

thus the spike b decouples from the X-part of the D(H)-action.
Furthermore, the actions of the operators

Bf (s, p)+

x1

...

xr

s b p =
∑

(b)(xi)

f
(
S−1(x′r · · ·x′1b′)

)
b′′ ⊗ x′′1 ⊗ · · · ⊗ x′′r (4.69)

and

Bf (s, p)−

x1

...

xr

s b p =
∑

(b)(xi)

f
(
S−1(b′x′r · · ·x′1)

)
b′′ ⊗ x′′1 ⊗ · · · ⊗ x′′r (4.70)

do not coincide either for arbitrary b ∈ H.
Yet, if b is invariant under the X-action (4.41), i.e.

T f−(b) = f(1H) b (4.71)

for any f ∈ X, then we have

Bf (s, p)+

x1

...

xr

s b p = Bf (s, p)−

x1

...

xr

s b p

=
∑
(xi)

f
(
S−1(x′r · · ·x′1)

)
b⊗ x′′1 ⊗ · · · ⊗ x′′r , (4.72)

thus the loop b decouples from the X-part of the D(H)-action, too.
In summary we state the following

Proposition 1 (Vertex sector). Let a ∈ H, b1 ∈ H an integral and b2 ∈ H invariant
under the adjoint H-action (4.29).

Then any spike b1 and any loop b2 attached at vertex s decouple from all vertex
operators Aa(s, p).
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Proposition 2 (Face sector). Let f ∈ X, b3 ∈ H invariant under the X-action (4.41)
and b4 ∈ H invariant under the X-action (4.67).

Then any loop b3 and any spike b4 attached at vertex s decouple from all face
operators Bf (s, p).

Remark 2. If there were a process that inserted spikes and loops as in Proposition 1
into the graph Γ then at most the action of face operators could be modified.
Conversely, any process introducing spikes and loops as in Proposition 2 can at
most modify the action of vertex operators. We will again turn to spikes and loops
in Section 5.2.1 where we properly define these insertion processes as isometric
maps.

Remark 3. Since the subspace of integrals of a Hopf algebra is one-dimensional
(and similarly for the elements invariant under the action (4.41) of the dual) only
the elements b2 and b4 invariant under their respective actions from the preceding
Propositions will turn out nontrivial.

Example 1. Let H = CG. Since any group algebra is cocommutative vertex
operators Aa(s, p) = Aa(s) only depend on vertices rather than full sites. This has
been noted in [39].

As far as decoupling from the vertex operators is concerned we have

b1 ∝ h, (4.73)

b2 =
∑
g∈G

λ(g) g (4.74)

with λ : G→ C a class function. This reflects the fact that purely magnetic charges
are classified by conjugacy classes of the group G [39].

Loops and spikes decouple from the face operators if

b3 ∝ e, (4.75)

b4 ∈ CG. (4.76)

This reflects the fact that purely electric charges are classified by irreducible rep-
resentations of the group G [39] which are realized as subspaces of the group
algebra.

4.2.2 Hilbert space

In order to obtain a physical system from the above discussion we need to define
both a Hilbert space and a Hamiltonian for our topological lattice model. In
particular, we need to find Hopf ∗-algebras H that allow for an inner product and
∗-representations. This means that adjoint operators (which as usual are defined
relative to the inner product) in a representation of H are compatible with the
∗-structure of H itself. It turns out we can reach both goals by requiring H to be
a finite-dimensional Hopf C∗-algebra. Such a Hopf algebra comes endowed with a
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Chapter 4 Quantum double models from Hopf algebras

unique element called the Haar integral which will naturally define both the inner
product and the Hamiltonian.

In order to define the Hilbert space we begin with the following proposition which
is obtained from [58, 43].

Proposition 3. Let H be a finite-dimensional Hopf C∗-algebra. Then S2 = id and
there exists a unique two-sided integral h ∈ H with the following properties:

1. h2 = h,

2. h∗ = h,

3. S(h) = h,

4. h ∈ Cocom(H).

Furthermore, H∗ is a Hopf C∗-algebra again and its unique integral φ ∈ H∗ satisfying
1–4 is a faithful positive functional, or trace, on H.

As a first consequence we can easily resolve the issue of edge orientation: since
the antipode is now involutive we define the reversal of an edge e simply by

xe 7→ S(xe). (4.77)

This is obviously compatible with the actions (4.38), (4.39), (4.40) and (4.41). At
the same time we no longer need to pick a distinguished pattern of edge orientations,
rather all patterns are equivalent.

Although the preceding proposition tells us that φ is a positive trace on H, we
need to know its precise relationship with the usual trace trH(a) = tr(La+) found in
the literature on Hopf algebras. Setting |H| := dimH we have

Lemma 3. Let H a finite-dimensional Hopf C∗-algebra. Then

trH = |H| · φ (4.78)

holds where φ ∈ H∗ is the Haar functional on H.

Proof. By the above Proposition we know that S2 = id. In this case we have

trH = ε(Λ)φ (4.79)

for the integral Λ ∈ H which is normalized such that φ(Λ) = 1 [66]. Since φ(h) =

|H|−1
for the Haar integral h ∈ H [43] we actually have that Λ = |H|h. Finally,

ε(h) = 1 concludes the proof.

Since φ is a faithful positive trace on H we can derive a Hermitian inner product
on H from it by setting

(a, b)H = φ(a∗b). (4.80)

48



4.2 Constructing quantum double models from Hopf algebras

This inner product now turns both the module structures L± and T± on H
into ∗-representations. Indeed, relative to (4.80) the adjoint map of La± is given

by (La±)† = La
∗

± because of(
x, La+(y)

)
= φ(x∗ay) = 〈φ, (a∗x)∗b〉 =

(
La
∗

+ (x), y
)
. (4.81)

An easy but tedious calculation shows that (T f±)† = T f
∗

± holds, too. Remember that
f∗ is given by (4.36).

This means that for the operators Aa and Bf which represent the Drinfeld
double D(H) the adjoint operators are given by:

A†a(s, p) = Aa∗(s, p), (4.82)

B†f (s, p) = Bf∗(s, p). (4.83)

4.2.3 Hamiltonian

It remains to specify a Hamiltonian for the model. In analogy to [39] we would like
to get a frustration-free Hamiltonian, i.e. a sum of commuting terms, and we would
like to derive it from the local operators Aa and Bf defined previously. Hence we
need to identify a subset of these operators such that they mutually commute with
each other.

Before anything else it is natural to analyze the commutation relation between Aa
and Bf at the same site (s, p) of the graph Γ. Suppose in the following that a ∈
Cocom(H) and f ∈ Cocom(X). Then at the level of D(H) we have

af =
∑
(a)

f
(
S−1(a′′′) ?a′

)
a′′

=
∑
(a)

f
(
a′ S−1(a′′′) ?

)
a′′

=
∑
(a)

f
(
a′′′S−1(a′′) ?

)
a′

=
∑
(a)

f
(
ε(a′′) ?

)
a′

= fa,

where we used the cocommutativity of f (or a respectively) in the second (third)
line and the skew-antipode S−1 in the fourth one. In other words, the straightening
formula (4.28) becomes trivial for such elements. Since for a fixed site (s, p) the
operators Aa(s, p) and Bf (s, p) form a representation of D(H) this commutation
relation immediately carries over to

Aa(s, p)Bf (s, p) = Bf (s, p)Aa(s, p) (4.84)

which in fact reduces to

Aa(s)Bf (p) = Bf (p)Aa(s). (4.85)
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Having restricted the possible candidates for the terms in the Hamiltonian by
exploiting the D(H)-module structure at a single fixed site we need to ensure
subsequently that all vertex operators Aa(s) commute among themselves, too.
Observe first that

[Aa(s), Ab(t)] = 0 (4.86)

for any a, b ∈ H whenever two vertices s and t do not coincide. Indeed, if Aa(s) acts
on a common edge via L+ then Ab(t) acts on the same edge via L− and vice versa,
hence both operators commute by (4.44). If there are no common edges then there
is nothing to show. On the other hand if s = t then the edge set E(s) has an
H-module structure (inherited from the D(H)-module structure at any site that
contains s) which implies

[Aa(s), Ab(s)] = A[a,b](s). (4.87)

This suggests to further narrow down our set of candidate vertex operators Aa(s)
by additionally requiring a ∈ Z(H). By analogy, we are naturally led to assume
f ∈ Z(X) ∩ Cocom(X) in the following if we want all face operators Bf (p) to
commute.

Finally we would like to remark that Aa(s) and Bf (p) trivially commute if the
pair (s, p) is not a site. In fact, the sets of edges they act on are even disjoint in
this case.

Recalling the properties of the Haar integral from Proposition 3 we now state the
main result of this section.

Theorem 2 (Generalized quantum double model). Let H a finite-dimensional
Hopf C∗-algebra with Haar integral h and Haar functional φ and let Γ a graph.
Furthermore for each s ∈ V and p ∈ F define the projectors

A(s) := Ah(s, p), (4.88)

B(p) := Bφ(s, p). (4.89)

Then
H = −

∑
s∈V

A(s)−
∑
p∈F

B(p) (4.90)

is a local, frustration-free Hamiltonian defining the D(H)-model.

Proof. First observe that

A(s)2 = Ah2(s, p) = A(s) (4.91)

by Proposition 3. The same argument shows that B(p) is a projector, too.
By the preceding discussion and Proposition 3 it is clear that all local terms A(s)

and B(p) commute with each other. Furthermore, (4.82) and (4.83) imply that they
are Hermitian.
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4.3 Discussion

For the reader’s convenience we give a short summary of how these operators act
on the graph:

A(s) x1

x2

...

xr

s
=
∑
(h)

h(1)x1

h(2)x2

...

h(r)xr

s
, (4.92)

B(p)

x1

x2

...

xr p =
∑
(xi)

φ(x′r · · ·x′1)

x′′
1

x′′
2

...

x′′
r p . (4.93)

Alternatively, for a different orientation of the graph edges the face operator acts as
follows:

B(p)

x1

x2

...

xr p =
∑
(xi)

φ(x′′1 · · ·x′′r )

x′
1

x′
2

...

x′
r p . (4.94)

It is no coincidence that already at this stage do the Haar integrals of H and H∗

reveal themselves as the crucial ingredients for the generalized quantum double
models. Since we set out to construct a quantum spin model whose (elementary)
quasiparticle excitations are characterized by irreducible representations of D(H) the
ground state sector with no quasiparticles present necessarily has the structure of a
trivial representation of D(H) locally. Precisely this is what the element φ⊗h ∈ D(H)
embodies. As the Hamiltonian intrinsically encodes information about the ground
state sector it should not surprise the reader that the Haar integrals h and φ play
such a prominent role.

4.3 Discussion

We would now like to briefly comment on the relation between our generalized
quantum double models and Kitaev’s original construction in [39].

First note that in the case H = CG the terms given by (4.92) and (4.93) in
the above Hamiltonian reduce to the operators of (1.1) and (1.2) which are the
ones Kitaev employed for his quantum double models based on a group G. This
becomes clear from Section C.1 where the relevant expressions for h and φ are listed.

Secondly, the entire theory of ribbon operators readily carries over from [39]
to our generalized quantum double models. This is because ribbon operators are
constructed from certain elementary operators associated with two types of triangles
any given ribbon path decomposes into. These operators are nothing but the L±
and T± that implement the H- and X-module structures. Furthermore patching
together a ribbon operator from those elementary pieces only involves the structure
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maps of the Hopf algebra H itself. Actually, we even used ribbon paths in order
to define the local D(H)-module structures (and hence the Hamiltonian) without
saying so.

Finally, our generalized quantum double models inherit all the beautiful topological
properties of the original since these follow exclusively from the algebraic structure
of ribbon operators. In particular, these features include the degeneracy of the
ground state sector as well as the exotic statistics of the quasiparticle excitations
whose anyonic nature is revealed via braiding and fusion operations.

These generalized quantum double models are physically relevant for at least two
reasons. First, they give a broader perspective on the algebraic structures used to
construct the original quantum double models based on groups and thus emphasize
the role of Hopf symmetry which is so vital to topologically ordered phases in two
dimensions. In doing so they pave the way for the novel class of Hopf tensor network
states to be introduced in Chapter 5. Second, the generalized quantum double
models based on Hopf algebras comprise the smallest class of models admitting a
non-Abelian electric-magnetic duality in topological phases. This will be discussed
in detail in Chapter 6.
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Chapter 5

Hierarchy of Hopf tensor network states

In this chapter we present a hierarchy of quantum many-body states among which
many examples of topological order can be identified by construction. We define
these states in terms of a general, basis-independent framework of tensor networks
based on finite-dimensional Hopf C∗-algebras. At the top of the hierarchy we
identify ground states of the generalized quantum double models we introduced in
Chapter 4. For these states we exhibit the mechanism responsible for their non-zero
topological entanglement entropy by constructing a renormalization group flow.
Furthermore it is shown that those states of the hierarchy associated with Kitaev’s
original quantum double models are related to each other by the condensation
of topological charges. We conjecture that charge condensation is the physical
mechanism underlying the hierarchy in general.

As efficient representations of ground states serve as a valuable tool in mapping
out phase diagrams of physical models and determining phase transitions between
topologically and conventionally ordered phases in particular it is crucial to first
understand the properties of tensor networks describing states of the model deep
within the different phases. In order to derive such tensor network representations for
quantum double model ground states we introduce a novel diagrammatic technique.
It turns out that the tensor networks can be formulated basis-independently and
that furthermore a single distinguished element of the Hopf C∗-algebra, namely its
unique Haar integral, plays the key role in the construction. Other than that only
the structure maps of the Hopf C∗-algebra are employed in the definition of the
tensor network states.

Additionally we are able to extend these ground states to a hierarchy of tensor
network states for each finite-dimensional Hopf C∗-algebra. This hierarchy of states
is characterized by different values of the topological entanglement entropy γ as
defined in [41, 47], and hence these states represent different instances of topological
order, in other words different unitary modular tensor categories (UMTCs). The
way this hierarchy depends on the Hopf subalgebras of the original Hopf C∗-algebra
points towards condensation of topological charges [3, 4]. Furthermore we show
how different isomorphism classes of finite-dimensional Hopf C∗-algebras exhibit
different mechanisms for the non-zero γ. In particular, we explain how the boundary
configurations of a region differ between models based on a group algebra, the dual
of a group algebra and non-trivial finite-dimensional Hopf C∗-algebras.

Let us begin by briefly reviewing how tensor network representations for particular
states occurring in the quantum double models based on finite groups can be
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obtained. It is instructive to start from their inherent (group) symmetries. We can
assign a representation ρp of G to each face p ∈ F and associate the tensor

δγ

β α

g

ρp

ρq

= A(ρp, ρq)
g
αβγδ := ρp(g)αβ ρq(g

−1)γδ (5.1)

with each oriented edge. Here ρp(g)αβ denotes a matrix element of the representa-
tion ρp and the red dot represents the physical index g with its orientation inherited
from the underlying graph edge. The Greek letters attached to black arrows are
called virtual indices. The tensor for a reversed graph edge naturally reads

δγ

β α

g

ρp

ρq

:=

δγ

β α

g−1

ρp

ρq

. (5.2)

Reversing virtual arrows is defined by

δγ

β α

g

ρp

ρq

:=

δγ

β α

g

ρ∗
p

ρ∗
q

. (5.3)

where the dual representation ρ∗ of a representation ρ is given by the matrix
equation ρ∗(g) := ρT (g−1). Note that this is equivalent to a reflection of the tensor
about its vertical axis:

δγ

β α

g

ρp

ρq

=
γδ

α β

g

ρp

ρq

. (5.4)

The tensor network obtained by contracting all virtual indices around each face
represents what we will call a group tensor network state in the following.

For example, on a square lattice the tensor representing a vertex with a particular
edge orientation is given by

α1

β1

α2β2

α3

β3

α4 β4

g1

g2

g3

g4

ρ1ρ2

ρ3 ρ4

=

4∏
j=1

ρj(g
−1
j gj+1)βjαj+1

(5.5)

where the index j labelling graph edges is assumed to be cyclic. Quite similarly, the
tensor corresponding to a particular face reads

α2

β2

α3β3

α4

β4

α1 β1

g2

g3

g4

g1

ρ5 ρ2

ρ3

ρ4

ρ1

= χρ5(g4 · · · g1)

4∏
j=1

ρj(g
−1
j )αjβj (5.6)
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where χρ is the character of the representation ρ.
In fact, both this vertex and face tensor are partially contracted tensor networks

and represent linear maps from the uncontracted virtual indices to the physical
ones. So a piece of a tensor network with open indices can be regarded as a PEPS
projection map [70, 55]. If Vp is the vector space associated with the representation ρp
then this linear map P : Vp ⊗ Vp ⊗ Vq ⊗ Vq → CG is given by

P =
∑

g,α,...,δ∈G
A(ρp, ρq)

g
αβγδ|g〉〈α, β, γ, δ| (5.7)

for a single edge tensor A(ρp, ρq).
On the contrary, a fully contracted tensor network is a complex number which

equals the inner product between a particular basis state and the group tensor
network state. If viewed as a linear map from basis configurations to amplitudes we
will call it a tensor trace.

Clearly, a group tensor network state only depends on the isomorphism class of
the representations ρp assigned to the faces. In general, there is vastly more gauge
freedom for a tensor network to represent the same physical state, however, this
does not necessarily respect the G-action.

If we choose all representations ρp to coincide with the left regular one the resulting
group tensor network state will be a ground state of the D(CG)-model. Since its
Hamiltonian is frustration free (i.e. a sum of mutually commuting terms) this can
easily be shown by considering independently the action of A(s) and B(p) on the
partially contracted tensor networks in (5.5) and (5.6).

As an example, a ground state of the toric code is given by the group tensor
network for the group Z2 = {e, a} with all faces carrying the regular representation.
In that case the PEPS projection map reads P = |e〉〈φ+|〈φ+|+ |a〉〈ψ+|〈ψ+| with
the Bell states

|φ+〉 =
∑

α,β∈Z2

L(e)αβ |α, β〉 = |e, e〉+ |a, a〉, (5.8)

|ψ+〉 =
∑

α,β∈Z2

L(a)αβ |α, β〉 = |e, a〉+ |a, e〉. (5.9)

We would like to remark that this projection map coincides (up to a trivial isomor-
phism) with the one given in [72].

Later in this chapter we will turn to the physical significance of group tensor
network states arising from representations of G other than the regular one.

In order to build some more intuition we briefly review the structure of a local tensor
in a group tensor network state. It is easily seen that the tensor in (5.1) factorizes
with respect to partitioning the virtual indices into the sets {α, β} and {γ, δ}. This
implies that the PEPS projection map (5.7) can be rewritten as:

P =
∑
g∈G
|g〉〈φp(g)|〈φq(g−1)| (5.10)
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where a state associated to the virtual indices in face p is given by:

|φp(g)〉 =
∑
α,β∈G

ρp(g)αβ |α, β〉. (5.11)

This means that one can carry out the contraction of the tensor network in two
steps. First one contracts each virtual loop separately and then one needs to glue
these pieces together. In a group tensor network this glueing process is simply given
by

|g〉 ⊗ |g−1〉 7→ |g〉. (5.12)

It turns out that this step becomes rather nontrivial once we generalize the quantum
double model to finite-dimensional Hopf C∗-algebras. In fact, we anticipate that
this glueing step is one of the crucial ingredients for deriving the hierarchy of tensor
network states in this chapter.

In Section 5.1, we will solve this model by providing a tensor network representation
of its ground state. This representation only involves the canonical structures
associated to the underlying Hopf algebra and leads us to propose a novel hierarchy
of tensor network states based on Hopf subalgebras. In Section 5.2 we calculate both
the entanglement entropy and the topological entanglement entropy for distinguished
states in the hierarchy. In Section 5.3 we provide concluding remarks and an outlook
on future work.

5.1 Diagrammatic calculus

In this section we develop a general diagrammatic language for tensor network
states built from finite-dimensional Hopf C∗-algebras. Underlying surfaces both
with and without boundaries are considered and we show how to naturally describe
subsystems. Using this framework we solve the generalized quantum double model
introduced in the preceding section by providing a tensor network representation for
one of its ground states. Any other energy eigenstate can be obtained from there by
an appropriate ribbon operator. The tensor network representation for that ground
state only involves the canonical structures of the underlying Hopf C∗-algebra H
and its dual: multiplication, comultiplication, antipode and Haar integral. This
insight leads us to propose a novel hierarchy of tensor network states based on Hopf
subalgebras. For H = CG and H = CG we are able to completely classify this
hierarchy of states in terms of charge condensation. Finally we describe the relation
between our Hopf tensor network language and the usual formulation of PEPS.

Unless otherwise noted, from now on H will be a finite-dimensional Hopf C∗-
algebra with Haar integral h ∈ H and Haar functional φ ∈ H∗.

5.1.1 Tensor traces

As we discussed in the introduction, the fully contracted tensor network (which is a
complex number) for a certain ground state of the D(CG)-model on the oriented
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5.1 Diagrammatic calculus

graph Γ can be interpreted as a collection of virtual loops in the faces of Γ that are
suitably glued together to form the physical degrees of freedom.

We can extend this idea to the case of any finite-dimensional Hopf C∗-algebra H
now. In each face p ∈ F place a virtual loop and associate a function fp ∈ X to this
loop. For the moment we may restrict to virtual loops oriented in counterclockwise
direction as well as to fp ∈ Cocom(X). With each oriented edge e ∈ E we associate
an algebra element xe ∈ H which splits into two parts as follows:(

(S ⊗ id) ◦∆
)
(xe) =

∑
(xe)

S(x′e)⊗ x′′e . (5.13)

Subsequently, we attribute x′′e to the left adjacent face of e and S(x′e) to the right
one. A virtual loop in face p is then evaluated by taking the clockwise product of
all elements thus associated with the loop from the surrounding edges E(p). The
result is then fed to the function fp.

In order to simplify arguments we introduce a diagrammatic notation which
encodes calculations with these tensor networks. In diagrammatic language the
evaluation rule just described reads

xe

fq

fp

:=
∑
(xe)

fp
(
S(x′e) . . .

)
fq(x

′′
e . . . ). (5.14)

Here the red dot indicates the orientation of the underlying graph edge. Since
fp is assumed cocommutative its argument can be permuted cyclically and we may
start both virtual loops around p and q at the edge e without loss of generality.
The clockwise order of the product remains important though. Both the dashed
lines and the ellipses denote the remaining degrees of freedom of the faces p and q
respectively. Note that the glueing procedure generalizing (5.12) is implemented by
the coproduct. We will introduce a full description of this later in (5.24) and (5.26).
Finally, a reversed edge is resolved via

xe

fq

fp

:= S(xe)

fq

fp

. (5.15)

In summary we have the following

Definition 2 (Hopf tensor trace without boundary). Let Γ = (V,E, F ) an oriented
graph embedded in a surface M without boundary.

Then the Hopf tensor trace associated with Γ is the linear function ttrΓ : H⊗|E|⊗
Cocom(X)⊗|F | → C, ⊗

e∈E
xe
⊗
p∈F

fp 7→ ttrΓ({xe}; {fp}) (5.16)
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e1

e2

...

er

s

p

Figure 5.1: Decorated face.

which is defined via diagrams and the evaluation rules (5.14) and (5.15).

If we want to allow for arbitrary orientation of the virtual loops and relax the
condition fp ∈ Cocom(X) then we need to generalize the notion of an oriented
graph slightly. Namely, we need faces to be oriented and their boundary edges to be
ordered. This means that each face p has either clock- or anticlockwise orientation
and a distinguished site (s, p) with s ∈ V (p). This site together with the orientation
of the face induces an ordering of E(p) (see Figure 5.1). We will call such a face
decorated subsequently.

We can again associate a Hopf tensor network to an oriented graph with decorated
faces. In diagrammatic language this means

fp

x1 x2

...xr

f1

f2

...

fr :=
∑
(xi)

fp
(
x′′r · · ·x′′1

) r∏
i=1

fi
(
. . . S(x′i)

)
(5.17)

where the orientation of the virtual loop reflects the orientation of the underlying
graph face. The black dot indicates the origin of the virtual loop such that it visits
the surrounding edges of the face p in the order given by the ordering of E(p).
This order is reversed for the product of all elements associated with that loop. A
reversed edge is resolved as before via (5.15) and a reversed face via

fp

x1 x2

...xr

f1

f2

...

fr := f̃p

x1 x2

...xr

f1

f2

...

fr , f̃p = ST (fp) (5.18)

Note that in contrast to edge and face reversal the virtual loop origin cannot be
moved in general.

In summary we have the following
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5.1 Diagrammatic calculus

7→

Figure 5.2: Proper faces F = FM◦ (white) vs. boundary “faces” F∂M (light red). Upon
continuous deformation of those pieces of the boundary ∂M which do not coincide with
graph edges (dashed grey) the vertices marked in grey on the left and on the right are
identified with each other respectively. The boundary faces F∂M are precisely those which
are completed to proper faces by this process. Furthermore, both the boundary edges E∂M
(red) and interior edges EM◦ (black) are shown.

Definition 3 (General Hopf tensor trace without boundary). Let Γ = (V,E, F ) an
oriented graph with decorated faces F embedded in a surface M without boundary.

Then the (general) Hopf tensor trace associated with Γ is the linear func-
tion ttrΓ : H⊗|E| ⊗X⊗|F | → C,⊗

e∈E
xe
⊗
p∈F

fp 7→ ttrΓ({xe}; {fp}) (5.19)

which is defined via diagrams and the evaluation rules (5.17), (5.15) and (5.18).

Note that this definition reduces to Definition 2 if all fp ∈ Cocom(X) and all
faces are oriented counterclockwise.

It remains to generalize Definition 2 in another direction, namely to general Hopf
tensor networks on graphs with boundaries. These arise either from (external)
boundaries of the surface M itself which the graph Γ = (V,E, F ) is embedded in or
from (internal) boundaries of certain regions R ⊂M .

It is clear that the surface boundary ∂M induces a notion of boundary for
the graph Γ by decomposing its edge set EM := E into the disjoint union of
interior edges EM◦ and boundary edges E∂M (see Figure 5.2). At the same time
∂M introduces the concept of boundary “faces” F∂M which themselves do not
belong to the proper faces F of the graph but could be completed to proper ones by
continuously deforming M and identifying two vertices on the external boundary ∂M
in the process (see Figure 5.2). Together with the (proper) interior faces FM◦ := F
they form the set of generalized faces F ′ := FM◦ ∪ F∂M . Naturally we can then
regard ∂Γ := E∂M ∪F∂M as the boundary of the graph with an orientation inherited
from the orientation of ∂M .
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Chapter 5 Hierarchy of Hopf tensor network states

Figure 5.3: A region R whose boundary ∂R never crosses any interior edges EM◦ cleanly
partitions the edges into the set ER (black, red) which belongs to R and the rest (grey).
The internal boundary (∂R)◦ consists of those pieces which do not coincide with the
boundary of the ambient surface M and gives rise to the internal boundary faces F(∂R)◦

(light red, middle).

Similarly, it is clear that a region R with the internal boundary (∂R)◦ := ∂R \
(∂R ∩ ∂M) in M induces a notion of internal boundary for the graph Γ provided
that (∂R)◦ does not cross any edges of Γ except at vertices1 (see Figure 5.3). We
will only consider regions that meet this requirement in the following. Indeed, a
partition of M into such a region R and its complement R̄ naturally divides the
set of edges EM into the disjoint sets ER and ER̄. At the same time it divides the
set of proper faces F into the disjoint sets of proper faces FR and FR̄ as well as
new internal boundary faces F(∂R)◦ and F(∂R̄)◦ . The original boundary faces F∂M
are attributed to either the region or its complement in the obvious way. Hence
given a generalized graph Γ = (V,E, F ′) embedded in M a region R induces a
subgraph ΓR = (VR, ER, F

′
R) whose oriented boundary ∂ΓR we define analogously

to the above case of external boundaries. In particular, its internal boundary reads
(∂ΓR)◦ = F(∂R)◦ . It is not difficult to incorporate the notion of decorated faces into
both cases.

On the other hand, these (sub)graphs define the boundaries of surfaces (regions)
up to continuous deformations. In the first case this means that connected segments
of the surface boundary ∂M are classified into smooth or rough boundaries depending
on whether they correspond to the boundary type E∂M or F∂M in the boundary ∂Γ
of the graph. In the second case a subgraph ΓR defines the region R itself. Not
surprisingly, the internal boundary (∂R)◦ of the region will always be of the rough
type. Furthermore we can measure the length of any boundary ∂M or ∂R simply by
counting the elements in the respective graph boundaries ∂Γ or ∂ΓR. In particular,
we define |(∂R)◦| := |F(∂R)◦ |.

In order to take these boundaries into account we need to refine our diagrammatic
notation for tensor networks. Pick an arbitrary edge e ∈ E. Since it belongs
to the boundary of at least one face p in either FM◦ or F∂M (i.e. p is either an
interior or a boundary face) we may define the following elementary diagram for

1The remaining boundary ∂R \ (∂R)◦ may contain boundary edges E∂M , of course.
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any elements fp ∈ X and xe ∈ H simply as their canonical pairing:

xe

fp

:= fp(xe). (5.20)

Different orientations of graph edges and virtual loops are resolved via

xe

fp

:=
S(xe)

fp

(5.21)

xe

fp

:=
xe

ST (fp)
(5.22)

where all these elementary diagrams are assumed to be invariant under arbitrary
rotations, for instance:

xe

fp

=
xe

fp

(5.23)

Note also that ST = (S−1)T is the correct antipode of X = (Hop)∗. As a conse-
quence, any of the above elementary diagrams has the same value as its mirror
image under reflection about a vertical axis. In fact, (5.21) and (5.22) are mirror
images of each other in that sense. Furthermore for some fp (such as the dual Haar
integral φ) it may happen that ST (fp) = fp and the loop orientation may become
unimportant.

If the face p has edges other than e in its boundary we may extend the above
diagrams as follows. Pick another edge e′ ∈ E(p) which shares a common vertex
with e. Then for any xe′ ∈ H we define a “virtual” glueing operation by

xe

xe′
fp

:=
∑
(fp)

xe

xe′
f ′

p

f ′′
p

= fp(xe′xe) (5.24)

where the arrows indicate the order in which the coproduct of fp ∈ X is applied to
the elementary diagrams. The black dot denotes the origin for this comultiplication.
Both this origin and the order of comultiplication are determined from the decoration
of the face p as implied in Definition 3. Here we uncover the connection between
the face decoration and Hopf algebra structures. For example, for the decorated
face in Figure 5.1 we have

x1

x2

...

xr fp =
∑
(fp) f(1)

p

f(2)
p

...

f(r)
p

x1

x2

...

xr = fp(xr · · ·x1). (5.25)
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While the origin of the virtual loop is very important in general it can be neglected
if fp is cocommutative, for instance. In such a case we will simply omit the
corresponding dot from the diagram as we did in Definition 2. In any case one needs
to pay attention to the correct comultiplication in X which causes the product
around the edges of p to be taken in clockwise order.

Finally for any interior edge e ∈ EM◦ with adjacent interior or boundary
faces p, q ∈ F ′ we pick xe ∈ H and fp, fq ∈ X arbitrarily and define a “physi-
cal” glueing operation by

xe

fp

fq

:=
∑
(xe)

x′
e

x′′
e

fp

fq

(5.26)

where the order of comultiplication is determined by the orientation of the underlying
graph edge. Consequently one has for instance

xe

fp

fq

=
∑
(xe)

x′′
e

x′
e

fp

fq

=
∑
(xe)

S(x′′
e )

S(x′
e)

fp

fq

=
∑

(S(xe))

S(xe)′

S(xe)′′

fp

fq

= S(xe)

fp

fq

(5.27)

which is perfectly compatible with (4.77) as expected. Note that in general a
simultaneous reversal of both virtual loops is not given by reflecting a composite
diagram about its vertical axis:

xe

fp

fq

=
∑
(xe)

x′
e

x′′
e

fp

fq

6=
∑
(xe)

x′′
e

x′
e

fp

fq

= xe

fp

fq

. (5.28)

Rather, equality holds if xe ∈ Cocom(H), for instance. This should be compared
with (5.4).

Thus by starting from the elementary diagram (5.20) we have reexpressed the
evaluation rule (5.14) for an interior edge entirely in terms of “virtual” (5.24) and
“physical” (5.26) glueing operations. These are given by comultiplication in X
and H respectively. This means that an interior edge is formed by appropriately
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y1 y2 y3 y4 y5

y9y10y11y12y13

xe

g6

g7

g8g14

g15

g16

fp

Figure 5.4: Diagram encoding the tensor trace ttrΓ({xe}; {fp}; {ye}; {gq}). While the
interior degrees of freedom {xe} ⊂ H and {fp} ⊂ X are only shown partially the boundary
degrees of freedom {ye} ⊂ H and {gq} ⊂ X are labelled in such a way that the ordering
of the boundary is evident.

glueing two boundary edges together via comultiplication. Alternatively, one may
regard this as glueing together two virtual interior loops. Virtual loops themselves
are assembled via glueing together smaller loop pieces.

In summary we have the following general

Definition 4 (Hopf tensor trace). Let Γ = (V,E, F ′) an oriented graph with
decorated generalized faces F ′ embedded in a surface M with boundary.

The Hopf tensor trace associated with Γ is the linear function ttrΓ : H⊗|EM◦ | ⊗
X⊗|FM◦ | ⊗H⊗|E∂M | ⊗X⊗|F∂M | → C,⊗

e∈EM◦
xe

⊗
p∈FM◦

fp
⊗

e∈E∂M
ye

⊗
q∈F∂M

gq 7→ ttrΓ({xe}; {fp}; {ye}; {gq}) (5.29)

which is defined via diagrams and the evaluation rules (5.20), (5.21), (5.22), (5.24)
and (5.26).

Note that this generalized Hopf tensor trace reduces to the Hopf tensor trace for
a surface without boundary (as in Definition 3) in the natural way:

ttrΓ({xe}; {fp}) := ttrΓ({xe}; {fp}; ∅; ∅). (5.30)

5.1.2 Quantum states

So far we have merely defined a particular, fully contracted tensor network (which
is a complex number) with no reference to a quantum many-body state whatsoever.
We now take the next step and use the tensor trace above to generate actual
quantum states in a remarkably straightforward fashion:

Definition 5 (Hopf tensor network state). Let xe, ye ∈ H and fp, gq ∈ X as in
Definition 4. Let Γ the graph embedded in the surface M .

63



Chapter 5 Hierarchy of Hopf tensor network states

1. If ∂M 6= ∅ then

|ψΓ({xe}; {fp}; {ye}; {gq})〉
:=
∑
(xe)

∑
(ye)

ttrΓ({x′′e}; {fp}; {y′′e }; {gq})
⊗

e∈EM◦
|x′e〉

⊗
e∈E∂M

|y′e〉. (5.31)

2. If ∂M = ∅ then

|ψΓ({xe}; {fp})〉 :=
∑
(xe)

ttrΓ({x′′e}; {fp})
⊗
e∈EM
|x′e〉. (5.32)

In both cases we call the resulting state a Hopf tensor network state on the graph Γ.

Given a region R ⊂M meeting our previous requirements it is straightforward
to partition such a quantum state into subsystems corresponding to R and its
complement R̄. In the language of Hopf tensor network states this simply amounts
to cutting virtual loops by comultiplication.

We will get particularly nice partitions if the internal boundary (∂R)◦ is compatible
with the decoration of the faces it cuts, i.e. after suitable deformation (∂R)◦

intersects each virtual loop at its origin (and one other point). Not surprisingly,
only the internal boundary (∂R)◦ will matter for the decomposition into subsystems
hence without loss of generality we state the following

Proposition 4 (Partitions). Let Γ = (V,E, F ) an oriented graph with decorated
faces F embedded in a surface M without boundary. Let the subgraph ΓR =
(VR, ER, FR) ⊂ Γ define a simply connected region R ⊂M whose boundary ∂R is
compatible with the decoration of F . Let

|ψΓ({xe}; {fp})〉 =
∑
(xe) fq1

fq2fp

x′′
e

⊗
e∈EM
|x′e〉 (5.33)

a Hopf tensor network state on this graph. Let gq ∈ X and define

|ψR({gq})〉 := |ψΓR({xe}R; {fp}R; ∅; {gq})〉 (5.34)

where {xe}R = {xe | e ∈ ER} and {fp}R = {fp | p ∈ FR} are the natural restrictions
to ΓR.

Then

|ψΓ({xe}; {fp})〉 =
∑
(fq)
q∈F∂R

|ψR(. . . , f ′′q1 , f
′
q2 , . . . )〉 ⊗ |ψR̄(. . . , f ′q1 , f

′′
q2 , . . . )〉. (5.35)
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Proof. Obvious from the complete diagrams and evaluation rule (5.24) which needs
to be applied backwards. Indeed, we have

ttrΓ({xe}; {fp}) =

fq1

fq2fp

xe

=
∑
(fq)
q∈F∂R

f ′
q2

f ′′
q1

fp

xe

⊗
f ′

q1

f ′′
q2

where the left part corresponds to the region R and the right part to its comple-
ment R̄.

Remark 4. It is not difficult to see that a Hopf tensor network state can be partitioned
in this fashion in the most general situation: this includes surfaces with external
boundaries and arbitrary regions which are neither simply connected nor compatible
with the decorated faces they cut. One simply decomposes the diagram defining the
Hopf tensor trace all the way to its atomic pieces (5.20) and then regroups them
into diagrams corresponding to R and R̄ respectively. Since the partition never cuts
any edges the Hilbert space vectors associated to them can be mated uniquely with
these regrouped diagrams, yielding two quantum states glued together along the
internal boundary via comultiplication.

If the origin of the cut virtual loops can be neglected we get

Corollary 1 (Standard partitions). Let Γ = (V,E, F ) an oriented graph embedded
in a surface M without boundary. Let the subgraph ΓR = (VR, ER, FR) ⊂ Γ define
a simply connected region R ⊂M and assume fp ∈ Cocom(X).

Then

|ψΓ({xe}; {fp})〉 =
∑
(fq)
q∈F∂R

|ψR({f ′q})〉 ⊗ |ψR̄({f ′′q })〉. (5.36)

Building on this general framework of Hopf tensor network states we can solve the
generalized quantum double model now. Namely, we identify a particular Hopf
tensor network state as a ground state of the model. As such this state is directly
seen to be topologically ordered. Note that we will only make use of the structure
maps of H as well as the Haar integral and its dual to describe the state. Again we
assume a surface without boundaries.
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Theorem 3 (Ground state of the generalized quantum double model). Let h ∈ H
and φ ∈ X the respective Haar integrals. The state

|ψΓ〉 := |ψΓ(h, . . . , h;φ, . . . , φ)〉 (5.37)

is a ground state of the D(H)-model.

Proof. Since the Hamiltonian of the D(H)-model is a sum of local, commuting
terms by Theorem 2 it is enough to show that each operator A(s) and B(p) leaves
the state |ψΓ〉 invariant individually. In order to do so we may partition |ψΓ〉 into
an interior part corresponding to the support of such an operator and an exterior
part. Both parts are glued via comultiplication in X. It will then suffice to prove
that this interior part remains unchanged by either A(s) or B(p) respectively.

Hence consider a face p ∈ F with a boundary consisting of r edges. According
to (5.34) the interior part of |ψΓ〉 is given by

|ψp(f1, . . . , fr)〉 =
∑
(hi)

φ

f1

f2

...

fr

h′′
1

h′′
2

...

h′′
r h′

1

h′
2

...

h′
r (5.38)

=
∑
(hi)

φ(h′′′r · · ·h′′′1 )

r∏
j=1

fj
(
S(h′′j )

)
|h′1〉 ⊗ · · · ⊗ |h′r〉. (5.39)

with the Haar integrals hi = h ∈ H and arbitrary fi ∈ X. It is invariant under the
action of B(p) as can be seen from

B(p)|ψp(f1, . . . , fr)〉

=
∑
(hi)

φ(h(4)
r · · ·h(4)

1 )φ(h(1)
r · · ·h(1)

1 )

r∏
j=1

fj
(
S(h

(3)
j )
)
|h(2)

1 〉 ⊗ · · · ⊗ |h(2)
r 〉

=
∑
(hi)

φ(h(3)
r · · ·h(3)

1 )φ(h(4)
r · · ·h(4)

1 )

r∏
j=1

fj
(
S(h

(2)
j )
)
|h(1)

1 〉 ⊗ · · · ⊗ |h(1)
r 〉

=
∑
(hi)

φ2(h′′′r · · ·h′′′1 )

r∏
j=1

fj
(
S(h′′j )

)
|h′1〉 ⊗ · · · ⊗ |h′r〉

= |ψp(f1, . . . , fr)〉.

Next consider a vertex s ∈ V with r attached edges. In this case the interior part
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of |ψΓ〉 reads

|ψs(f1, . . . , fr)〉 =
∑
(hi)

h′′
1

h′′
2

...

h′′
r

f1f2

... fr

h′
1

h′
2

...

h′
r

(5.40)

=
∑
(hi)

r∏
j=1

fj
(
S(h′′j )h′′′j+1

)
|h′1〉 ⊗ · · · ⊗ |h′r〉. (5.41)

Note that the orientation of the graph edges can always be reduced to the above
setting using (4.77) for kets and (5.21) for diagrams. Now we obtain

A(s)|ψs(f1, . . . , fr)〉

=
∑
(hi)

r−1∏
j=2

fj
(
S(h′′j )h′′′j+1

)∑
(h)

f1

(
S(h′′1)h′′′2

)
fr
(
S(h′′r )h′′′1

)
|h(1)h′1〉 ⊗ · · · ⊗ |h(r)h′r〉

=
∑
(hi)

r−1∏
j=3

fj
(
S(h′′j )h′′′j+1

)∑
(h)

f1

(
S(h′′1)h(2)h′′′2

)
f2

(
S(h′′2)h′′′3

)
fr
(
S(h(1)h′′r )h′′′1

)
|h′1〉 ⊗ |h(3)h′2〉 ⊗ · · · ⊗ |h(r+1)h′r〉

=
∑
(hi)

f1

(
S(h′′1)h′′′2

) r−1∏
j=3

fj
(
S(h′′j )h′′′j+1

)∑
(h)

f2

(
S(h′′2)h(2)h′′′3

)
fr
(
S(h(1)h′′r )h′′′1

)
|h′1〉 ⊗ |h′2〉 ⊗ |h(3)h′3〉 ⊗ · · · ⊗ |h(r)h′r〉

=
∑
(hi)

r−2∏
j=1

fj
(
S(h′′j )h′′′j+1

)∑
(h)

fr−1

(
S(h′′r−1)h(2)h′′′r

)
fr
(
S(h

(1)
1 h′′r )h′′′1

)
|h′1〉 ⊗ · · · ⊗ |h′r−1〉 ⊗ |h(3)h′r〉

= |ψs(f1, . . . , fr)〉

where we repeatedly used Lemma 6. This concludes the proof.

In fact, the proof of Theorem 3 implies that |ψΓ〉 is also invariant under each
local action of D(H) at any site (s, p), not just under the operators constituting the
Hamiltonian. More precisely, one has

Bf (s, p)Aa(s, p)|ψΓ〉 = ε(a) f(1H)|ψΓ〉 (5.42)

for any f⊗a ∈ D(H). This can be easily seen from the local D(H)-module structure,
the fact that A(s) = Ah(s, p) and B(p) = Bφ(s, p) leave |ψΓ〉 strictly invariant and
the properties of the Haar integrals. In other words, the quantum state |ψΓ〉 is
nothing but a trivial representation of the quantum double D(H). Comparing with
the comment after Theorem 2 one realizes that |ψΓ〉 should be viewed as a spatially
distributed version of the integral φ⊗h ∈ D(H). For these reasons one may call |ψΓ〉
the vacuum of the model and as such it has trivial topological charge everywhere.
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Let us emphasize again that one really needs just a single datum, i.e. the finite-
dimensional Hopf C∗-algebra H, to produce this topological ground state since the
Haar integral h (and the Haar functional φ) is uniquely defined. In particular, the
construction is fully basis-independent.

Furthermore the construction is symmetric2 in the algebras H and X with their
respective integrals h and φ, hence it has a natural dual notion. In fact, this
foreshadows electric-magnetic duality as shown in Chapter 6.

While we excluded surface boundaries explicitly for Theorem 3 the following
example shows what one can learn from the presence of boundaries imposed by the
underlying surface.

Example 2. Consider the graph Γ underlying the diagram shown in Figure 5.4
and let H = CZ2. Then the state

|ψ0〉 := |ψΓ({h}; {φ}; {h}; {φ})〉 (5.43)

is a codeword of the surface code defined in [9]. It encodes the logical state |+〉.
The other codeword |ψ1〉 can be obtained by acting on this Hopf tensor network
state with the appropriate string operator connecting the two rough boundaries.
This generalizes to any finite-dimensional Hopf C∗-algebra by using the appropriate
ribbon operators.

Remark 5. From the proof of Theorem 3 it is clear that any Hopf tensor network
state of the form

|ψΓ(h, . . . , h; f1, . . . , f|F |)〉 (5.44)

is invariant under all vertex operators A(s). From the perspective of lattice gauge
theory this means that deforming the ground state |ψΓ〉 of the D(H)-model by
changing the functions {φ} 7→ {fi} only will never break the gauge symmetry. These
deformations in the state might therefore well correspond to a local perturbation of
the Hamiltonian and thus preserve topological order provided the strength of the
perturbation is limited to a certain finite threshold [8, 7]. Some initial work towards
this direction has been conducted in [16] which is concerned with tensor network
deformations of the toric code.

5.1.3 Hierarchy

Apart from ground states of the D(H)-models the framework of Hopf tensor network
states based on an arbitrary Hopf C∗-algebra H comprises more intriguing examples
of quantum many-body states. These can be obtained from certain other choices of
elements in H and X which are motivated both by the algebraic structure itself as
well as by ideas of charge condensation [3, 4]:

2Strictly speaking, symmmetry holds up to a flip in the comultiplication, which is precisely the
difference between H∗ and X.
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5.1 Diagrammatic calculus

Definition 6 (Hierarchy). Let A ⊂ H and B ⊂ X Hopf subalgebras with Haar
integrals hA ∈ A and φB ∈ B respectively. Set

|ψA,BΓ 〉 := |ψΓ(hA, . . . , hA;φB , . . . , φB)〉. (5.45)

Obviously, with the choice A = H and B = X we recover the state |ψΓ〉 which
is topologically ordered as a ground state of the D(H)-model. On the other hand,
if B = {1X} is the trivial Hopf subalgebra of X then the resulting Hopf tensor
network state is a product state for any Hopf subalgebra A ⊂ H. This can be seen
from (4.8). Indeed, suppose a face p has r edges in its boundary and fp = 1X . Then
iterating (4.8) yields ∑

(fp)

f (1)
p ⊗ · · · ⊗ f (r)

p = 1X ⊗ · · · ⊗ 1X (5.46)

and consequently one has

ttrΓ({xe}; 1X , . . . , 1X) =
∏
e∈EM

xe

1X

1X

(5.47)

up to a possible application of the antipode S on each graph edge depending on its
orientation. Since 1X = εT (1C) is the analogue of (4.3) for the Hopf C∗-algebra X
we deduce

xe

1X

1X

=
∑
(xe)

〈εT (1C), S(x′e)〉 〈εT (1C), x′′e 〉 =
∑
(xe)

ε
(
S(x′e)

)
ε(x′′e ) = ε(xe) (5.48)

and therefore
ttrΓ({xe}; 1X , . . . , 1X) =

∏
e∈EM

ε(xe) (5.49)

which no longer depends on the orientation of Γ. Now by virtue of (5.32) the
quantum state

|ψΓ({xe}; 1X , . . . , 1X)〉 =
∑
(xe)

⊗
e∈EM

ε(x′′e )|x′e〉 =
⊗
e∈EM
|xe〉 (5.50)

is seen to factor into a simple product state.
In between these two extremes a hierarchy of quantum states unfolds which are

indexed by different choices of A and B. However, depending on the Hopf algebra H
in question the interior of this hierarchy may collapse partially. This means that
different pairs (A,B) of Hopf subalgebras may actually define identical quantum
states. Unfortunately we do not know how to characterize the surviving equivalence
classes of states in closed form without additional assumptions on H.
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Chapter 5 Hierarchy of Hopf tensor network states

However, if H = CG we have a clear picture of the above hierarchy. It turns out
that the classes of Hopf tensor network states emerging from the partial collapse
are isomorphic to ground states of certain quantum double models based on groups
smaller than G. Indeed, the relevant Hopf subalgebras in this case exactly read
A = CK and B = CG/N where K ⊂ G is a subgroup and N CG a normal subgroup
(see Section C.3). For simplicity we abbreviate such a pair of Hopf subalgebras
by (K,N). Then it is not difficult to see that both (K,N) and (K,K ∩N) yield
identical Hopf tensor network states. Furthermore, if |k1, . . . , k|E|〉 with ke ∈ K for
each edge e ∈ E is a basis state then one has

〈
k1, . . . , k|E|

∣∣ψK,K∩NΓ

〉
=
〈
k1l1, . . . , k|E|l|E|

∣∣ψK,K∩NΓ

〉
for arbitrary elements le ∈ K ∩ N , so all amplitudes are actually constant on
the cosets ke(K ∩ N). This means that one may apply the canonical projection
π : K → K/(K∩N) at each edge and regard φK∩N as the Haar integral of CK/(K∩N).
Hence the resulting state coincides with the ground state |ψΓ〉 of the quantum double
model based on the group algebra of the group K/(K ∩N) ' KN/N .

Also, for H = CG we can describe the hierarchy explicitly. Now the Hopf
subalgebras are precisely given by A = CG/N and B = CK where again K ⊂ G is a
subgroup, NCG a normal subgroup and we abbreviate this pair of Hopf subalgebras
by (N,K). Locally, the state |ψN,KΓ 〉 then looks like

∑
(hN )

h′′
N

fp

fq

|h′N 〉 =
∑

sN,tN∈G/N

δs−1tN

δt−1N

fp

fq

|δsN 〉 (5.51)

at an edge and for k ∈ K diagrams at a face evaluate as3

k

δs1N

δs2N

...

δsrN = 〈k, δs1N · · · δsrN 〉 =

r∏
i=2

δsi,s1
∑
n∈N

δs1(kn) (5.52)

and vanish unless s1 = · · · = sr ∈ KN . This implies that in (5.51) we can assume
s−1t ∈ KN , t−1 ∈ KN and therefore s ∈ KN , in other words, we can regard hN as
the Haar integral of CKN/N rather than of CG/N without changing the Hopf tensor
network state. Effectively, this corresponds to a projection CG/N → CKN/N at each

3Note that we implicitly identify A with the functions on G which are constant on cosets of N .
In particular we set δsN =

∑
n∈N δsn for {s} a transversal of the cosets.
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5.1 Diagrammatic calculus

|ψD(H)〉

0

γ

B ⊂ H∗

⊗ |+〉

A ⊂ H

Figure 5.5: Hierarchy of Hopf tensor network states |ψA,BΓ 〉 for H = CS3 before the
partial collapse. Subalgebras A = CK and B = CG/N are ordered by dimension, not
necessarily by inclusion. Surviving equivalenve classes of quantum states share the same
value of the topological entanglement entropy γ, see Section 5.2 for a detailed discussion.

edge. Also, the value of the diagram (5.52) is constant on cosets k(K ∩N) hence by

φK

δs1N

δs2N

...

δsrN =
1

|K|
∑
k∈K

k

δs1N

δs2N

...

δsrN

=
|K ∩N |
|K|

∑
k∈K/(K∩N)

k

δs1N

δs2N

...

δsrN (5.53)

and abuse of notation we may replace the Haar integral φK by φK/(K∩N). This shows
that the hierarchy state indexed by (N,K) coincides with the ground state |ψΓ〉
of the generalized quantum double model based on the algebra of functions on the
group K/(K ∩N) ' KN/N .

We conclude that the hierarchy of Hopf tensor network states arranges generalized
quantum double models based on (functions on) different groups in one coherent
picture (see Figure 5.5). These groups are precisely isomorphic to KN/N so the
equivalence classes of states in the hierarchy are the trivial representations of the
quantum doubles D

(
C(KN/N)

)
(or D(CKN/N ) respectively). These comprise all

possibilities for the residual symmetry algebra after the full D(CG)-symmetry has
been partially broken down to a smaller symmetry algebra [3, 4]. For that reason
the quantum states in our hierarchy realize the condensation of topological charges
within the same underlying Hilbert space.

5.1.4 PEPS

At this stage it is important to make contact with one of the usual formulations of
tensor network states. In the PEPS approach [71] a quantum state is represented
by choosing some fixed basis and encoding the wavefunction amplitude for each
basis element in a fully contracted tensor network. Contrastingly, our Hopf tensor
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Chapter 5 Hierarchy of Hopf tensor network states

φ

φ

h1h2

Figure 5.6: Hopf tensor network state |ψΓ〉 on a small graph Γ embedded in S2. The
outer circle is identified with the north pole of S2.

network states are defined without reference to any basis. It is rather the choice of
particular, often canonical, elements {xe} ⊂ H and {fp} ⊂ X which determines the
properties of the quantum state. If the need arises one can still obtain an explicit
wavefunction expansion in a straightforward manner. As the next example shows,
those distinguished elements naturally generate all relevant sums and amplitudes.

Example 3. Let H = CG. We would like to explicitly construct the Hopf tensor
network state |ψΓ〉 for the graph Γ shown in Figure 5.6 and obtain an expansion in
terms of the canonical basis {δg | g ∈ G} of CG. We assume the underlying surface
to be homeomorphic to S2 as indicated in Figure 5.6. Using the Haar integral
hi = δe of the dual group algebra CG and its corresponding Haar functional φ ∈ H
we get by Theorem 3

|ψΓ〉 =
∑
(hi)

φ(h′′′1 h
′′′
2 )φ

(
S(h′′1)S(h′′2)

)
|h′1〉 ⊗ |h′2〉

=
∑
(hi)

〈φ⊗ φ,∆(h′′1h
′′
2)〉|h′1〉 ⊗ |h′2〉

=
∑
(hi)

φ(h′′1h
′′
2)|h′1〉 ⊗ |h′2〉

=
∑
u,v∈G

φ(δu−1δv−1)|δu〉 ⊗ |δv〉

=
1

|G|
∑
g∈G
|δg〉 ⊗ |δg〉.

Interestingly, while the Haar integral δe merely represents a single element of the
basis, it is actually the act of comultiplication which produces the sum over the
entire basis from δe.

As outlined in the introduction PEPS are defined in terms of local tensors
with open virtual indices, for a particular example see (5.1). Contrastingly, our
diagrammatic notation as given by (5.24) uses the comultiplication of the Hopf
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5.2 Calculating the topological entanglement entropy

algebra to disconnect and separate local objects on the virtual level, hence it appears
there are no virtual indices at all in our formalism.

This is not entirely true. If the functions {fp} for evaluating virtual loops belong
to a particular class4, then indeed one may regard the evaluation of a virtual loop
as tracing over a product of certain matrices, once a particular basis of H has been
chosen. Consequently, each such matrix naturally constitutes part of a local tensor
with open virtual indices and evaluating the loop corresponds to a cyclic contraction
of those indices. Note that this applies to all Hopf tensor network states of our
hierarchy (but is not limited to these). For example, for the state |ψΓ〉 at the top of
the hierarchy one has the local projector

P = ‖h‖−1
∑
(h)

∑
α,β,γ,δ∈B

(
L
S(h′′)
+

)
αβ

(
Lh
′′′

+

)
γδ
|h′〉〈α, β, γ, δ| (5.54)

where (La+)αβ denotes a matrix element of the action (4.38) with respect to some
basis B.5 Note that in this setting the local matrices encode both information about
the spin state on the graph edge as well as about the function used to evaluate the
virtual loop.

Furthermore, if a Hopf tensor trace admits a representation in terms of local
tensors with open indices properties like injectivity may be studied. More precisely,
a PEPS is called injective [61] if there is a partition of the underlying graph in
disjoint regions Ri such that for every region Ri the linear map from open virtual
indices at the boundary to physical indices in the interior is injective. Whether or
not a particular tensor network representation of a quantum state is injective has
important consequences for e.g. the existence of a parent Hamiltonian that has the
given PEPS as its unique ground state [61]. One can show that all Hopf tensor

network states |ψA,BΓ 〉 in the hierarchy are not injective for any finite-dimensional
Hopf C∗-algebra H. However, (at least) the state |ψΓ〉 at the top of the hierarchy
obeys a relaxed version of injectivity which one may call H-injectivity. This is a
certain generalization of the G-injectivity condition defined in [67].

5.2 Calculating the topological entanglement
entropy

Topological order is commonly associated with non-local order parameters. It is
believed that among these resides the topological entanglement entropy γ [30, 41,
47] which is a universal additive correction to the area law for the entanglement
entropy of a bipartition of the system into a region R and its complement. Given a
ground state of a topologically ordered system, the entanglement entropy SR for a

4This is the so-called character ring RC(H) =
∑n
i=1 Cχi where the χi are the irreducible

characters of H.
5Furthermore one may express the (physical) ket in the same basis, too, and appreciate the

similarities and differences as compared to the trivial case (5.7).
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Chapter 5 Hierarchy of Hopf tensor network states

region R is argued to scale as

SR = α · |∂R| − γ (5.55)

in the limit of infinitely large regions. Here α is a parameter which encodes non-
universal behaviour on short length scales. In fact, the topological entanglement
entropy γ also contains partial information about the types of quasiparticle excita-
tions that may occur in the low-energy sector of the system.

For these reasons we would like to show in this section how the non-local order
parameter γ can be understood naturally in the context of Hopf tensor network
states. In particular, we are going to show that different classes of finite-dimensional
Hopf C∗-algebras yield fundamentally different mechanisms for the emergence of a
non-vanishing topological entanglement entropy.

To this end, we will exploit the generic decomposition of Hopf tensor network
states into interior and exterior parts as stated in Proposition 4. We will then
compute the block entropy directly from certain properties of the reduced density
operator. In order to render its simple structure evident we will make use of
isometries and completely clear out the interior of both the region R and its
complement R̄. Effectively, we concentrate all topological information contained
in the ground state into the (internal) boundaries of the system. Furthermore, the
distillation process will be crafted such that all intermediate quantum states can be
kept track of conveniently via Hopf tensor traces.

It should be noted that our scheme of applying isometries implements entanglement
renormalisation [74, 73] both for the D(H)-models as well as for states of the
hierarchy. In fact, it directly extends the work in [1] which is concerned with states
at the top of the hierarchy for H = CG. At the same time our scheme provides a
complementary view on entanglement renormalisation for string-net models [45],
namely from the perspective of a local symmetry algebra.

5.2.1 Isometries

We begin by developing the distillation process. For that we interpret the process
of inserting the spikes and loops of Section 4.2.1 into a given graph as “little”
isometries. Certain such isometries commute with the entire local D(H)-action
and thus leave all sectors of quasiparticle excitations invariant. Subsequently we
introduce general unitary maps which allow for reconnecting edges. Together with
the little isometries they give rise to isometries which split faces and vertices by
inserting edges appropriately. A particular subset of those forms a hierarchy of
isometries which is a perfect match for our hierarchy of Hopf tensor network states
as we will see in the next section.

As far as notation is concerned we will always denote the original graph by Γ1 and
the modified one by Γ2. Whenever it is appropriate to talk about actual quantum
double models, Hi will denote the Hamiltonian of the D(H)-model on the graph Γi.

Proposition 5. Let b ∈ H such that ‖b‖ = 1.
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5.2 Calculating the topological entanglement entropy

Then the maps iF,b and iV,b defined via

x1

xr

s p
iF,b−−→

x1

xr

s q b p (5.56)

and

x1

xr

s p
iV,b−−→

x1

xr

s b

t
p (5.57)

are isometries.

Proof. Immediate.

For the sake of completeness we also provide the adjoint maps which are given by

x1

xr

s q c p
i†F,b−−→ (b, c)

x1

xr

s p (5.58)

and

x1

xr

s c

t
p

i†V,b−−→ (b, c)

x1

xr

s p (5.59)

Proposition 6 (Little isometries). Let A ⊂ H and B ⊂ X Hopf subalgebras with
the respective Haar integrals hA ∈ A and φB ∈ B. Additionally, let

λA,B :=
∑
(hA)

φB(h′′A)h′A, (5.60)

1A,B :=
λA,B
‖λA,B‖

, (5.61)

ΛA :=
hA
‖hA‖

=
1√
φ(hA)

hA. (5.62)
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Then the linear maps

iA,BF := iF,1A,B , (5.63)

iAV := iV,ΛA (5.64)

are isometries.
Furthermore, the maps iF := iH,XF and iV := iHV satisfy

iFAa(s, p) = Aa(s, p) iF , (5.65)

iFBf (s, p) = Bf (s, p) iF , (5.66)

iVAa(s, p) = Aa(s, p) iV , (5.67)

iVBf (s, p) = Bf (s, p) iV (5.68)

for all a ∈ H, f ∈ X and sites (s, p) with s 6= t and p 6= q.

Proof. For the first claim, it is enough to show the invariance of the inner product
or equivalently that ‖1A,B‖ = ‖ΛA‖ = 1. Indeed, from

‖hA‖2 = (hA, hA) = φ(h∗AhA) = φ(h2
A) = φ(hA).

this is easily seen to be true.
As far as the second claim is concerned it is clear we only need to study sites

which contain the face p as indicated in (5.56) and (5.57). Since 1H,X = 1H is
invariant under the adjoint H-action (4.29) Proposition 1 implies (5.65). Since 1H
is also invariant under the X-action (4.41) the commutation relation (5.66) follows
directly from Proposition 2. Furthermore ΛH ∝ h is an integral hence (5.67) follows
from Proposition 1. Since ΛH is also invariant under the X-action (4.67) by∑

(h)

f
(
h′′′ S(h′)

)
h′′ =

∑
(h)

f
(
h′ S(h′′)

)
h′′′ =

∑
(h)

f
(
ε(h′) 1H

)
h′′ = f(1H)h

the commutation relation (5.68) follows from Proposition 2.

Corollary 2 (Isometric intertwiners). The isometries iF and iV satisfy

iFH1 = H2iF , (5.69)

iVH1 = H2iV . (5.70)

Next we define the unitary maps that allow for reconnecting edges of the underlying
graph.

Lemma 4 (Unitaries). The linear maps UF and UV defined via

x1

...

xk

s q b
p

t
UF−−→

∑
(xi)

x′′
1

...

x′′
k

s

q

c

p

t c = x′k · · ·x′1b (5.71)
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and

x1

...

xk

tb

p

q

s

UV−−→
∑
(b)

b(1)x1

...

b(k)xk

t

c

p

q

s c = b(k+1) (5.72)

are unitary. Their inverses read

x1

...

xk

s

q

b

p

t
U†F−−→

∑
(xi)

x′′
1

...

x′′
k

s q c
p

t c = S(x′k · · ·x′1) b (5.73)

and

x1

...

xk

t

b

p

q

s

U†V−−→
∑
(b)

S(b(k))x1

...

S(b(1))xk

tc

p

q

s
c = b(k+1) (5.74)

respectively.

Before we turn to the proof let us briefly describe the meaning of the above. By
reconnecting the loop edge the unitary UF trades the old site (s, p)+ for the new
one (t, q). Similarly, UV trades (s, p)− for (t, q). Interestingly, the reconnecting
patterns given by UF and UV are precisely dual to each other!

Proof. It is easy to check that U†F (U†V ) as defined above is both a left and a right
inverse of the map UF (UV ). Indeed:

U†FUF (x1 ⊗ · · · ⊗ xk ⊗ b) = U†F

(∑
(xi)

x′′1 ⊗ · · · ⊗ x′′k ⊗ x′k · · ·x′1b
)

=
∑
(xi)

x′′′1 ⊗ · · · ⊗ x′′′k ⊗ S(x′′k · · ·x′′1)x′k · · ·x′1b

=
∑
(xi)

x′′′1 ⊗ · · · ⊗ x′′′k ⊗ S(x′′1) · · ·S(x′′k)x′k · · ·x′1b
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=
∑
(xi)

x′′1 ⊗ · · · ⊗ x′′k ⊗ ε(x′1) · · · ε(x′k) b

= x1 ⊗ · · · ⊗ xk ⊗ b.

Similarly, one shows UFU
†
F = id. Now

U†V UV (x1 ⊗ · · · ⊗ xk ⊗ b)
= U†V

∑
(b)

b(1)x1 ⊗ · · · ⊗ b(k)xk ⊗ b(k+1)

=
∑
(b)

∑
(b(k+1))

S
(
(b(k+1))(k)

)
b(1)x1 ⊗ · · · ⊗ S

(
(b(k+1))(1)

)
b(k)xk ⊗ (b(k+1))(k+1)

=
∑
(b)

S(b(2k)) b(1)x1 ⊗ · · · ⊗ S(b(k+1)) b(k)xk ⊗ b(2k+1)

=
∑
(b)

S(b(2k−2)) b(1)x1 ⊗ · · · ⊗ S(b(k)) b(k−1)xk−1 ⊗ xk ⊗ b(2k−1)

=
∑
(b)

S(b′′) b′x1 ⊗ x2 ⊗ · · · ⊗ xk ⊗ b′′′

= x1 ⊗ · · · ⊗ xk ⊗ b.

and by the same token one proves UV U
†
V = id.

It remains to show that for all xi, yi, b, c ∈ H the inner product (4.80) is invariant
under UF (UV ):(

UF (x1 ⊗ · · · ⊗ xk ⊗ b), UF (y1 ⊗ · · · ⊗ yk ⊗ c)
)

=

(∑
(xi)

x′′1 ⊗ · · · ⊗ x′′k ⊗ x′k · · ·x′1b,
∑
(yi)

y′′1 ⊗ · · · ⊗ y′′k ⊗ y′k · · · y′1c
)

=
∑

(xi)(yi)

(x′k · · ·x′1b, y′k · · · y′1c)
k∏
j=1

(x′′j , y
′′
j )

=
∑

(xi)(yi)

φ
(
b∗(x∗1)′ · · · (x∗k)′y′k · · · y′1c

)
φ
(
(x∗k)′′y′′k

) k−1∏
j=1

φ
(
(x∗j )

′′y′′j
)

= (xk, yk)
∑

(xi)(yi)

φ
(
b∗(x∗1)′ · · · (x∗k−1)′y′k−1 · · · y′1c

) k−1∏
j=1

φ
(
(x∗j )

′′y′′j
)

= (b, c)

k∏
j=1

(xj , yj)

= (x1 ⊗ · · · ⊗ xk ⊗ b, y1 ⊗ · · · ⊗ yk ⊗ c).

Note that we used property (4.23) of the Haar integral φ in the fifth line. Furthermore
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we have(
UV (x1 ⊗ · · · ⊗ xk ⊗ b), UV (y1 ⊗ · · · ⊗ yk ⊗ c)

)
=

(∑
(b)

b(1)x1 ⊗ · · · ⊗ b(k)xk ⊗ b(k+1),
∑
(c)

c(1)y1 ⊗ · · · ⊗ c(k)yk ⊗ c(k+1)

)

=
∑

(b)(c)

(b(k+1), c(k+1))

k∏
j=1

(b(j)xj , c
(j)yj)

=
∑

(b)(c)

φ
(
(b(k+1))∗c(k+1)

) k∏
j=1

φ
(
x∗j (b

(j))∗c(j)yj
)

=
∑
(b∗c)

φ
(
(b∗c)(k+1)

) k∏
j=1

φ
(
x∗j (b

∗c)(j)yj
)

= (xk, yk)
∑
(b∗c)

φ
(
(b∗c)(k)

) k−1∏
j=1

φ
(
x∗j (b

∗c)(j)yj
)

= (b, c)

k∏
j=1

(xj , yj)

= (x1 ⊗ · · · ⊗ xk ⊗ b, y1 ⊗ · · · ⊗ yk ⊗ c).

This concludes the proof.

Proposition 7 (Unitary intertwiners). The unitaries UF and UV from Lemma 4
satisfy

UFH1 = H2UF , (5.75)

UVH1 = H2UV . (5.76)

Proof. We will only verify the claim for UF and leave the proof of the intertwining
property of UV to the reader. We need to show that UF commutes appropriately
with the terms A(s) and B(p) in the Hamiltonians Hi.

Starting with the face operators we see that this can be done directly for the
face q in (5.71):

UFB(q)(x1 ⊗ · · · ⊗ xk ⊗ b)

= UF

(
x1 ⊗ · · · ⊗ xk ⊗

∑
(b)

φ(b′) b′′
)

=
∑

(xi)(b)

x′′1 ⊗ · · · ⊗ x′′k ⊗ x′k · · ·x′1b′φ(b′′)

=
∑

(xi)(b)

φ
(
S(b′′)S(x

(2)
1 ) · · ·S(x

(2)
k )x

(3)
k · · ·x

(3)
1

)
x

(4)
1 ⊗ · · · ⊗ x

(4)
k ⊗ x

(1)
k · · ·x

(1)
1 b′
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=
∑

(xi)(b)

φ
(
S(x

(2)
k · · ·x

(2)
1 b′′)x(3)

k · · ·x
(3)
1

)
x

(4)
1 ⊗ · · · ⊗ x

(4)
k ⊗ x

(1)
k · · ·x

(1)
1 b′

= (id⊗ · · · ⊗ id⊗S)
∑

(xi)(b)

∑
(S(x′k···x′1b))

φ
(
S(x′k · · ·x′1b)′x′′k · · ·x′′1

)
x′′′1 ⊗ · · · ⊗ x′′′k ⊗ S(x′k · · ·x′1b)′′

= B(q)(x′′1 ⊗ · · · ⊗ x′′k ⊗ x′k · · ·x′1b)
= B(q)UF (x1 ⊗ · · · ⊗ xk ⊗ b).

Note that in the fourth line we repeatedly used the definition of the antipode. Since
B(q) projects b onto the value φ(b) 1H we may assume in the following that b is
replaced by 1H .

In order to verify the intertwining property for the face p it is then enough to
show

UF

x1

...

xk

s

1H

p
t

f

=
∑
(xi)

x′′
1

...

x′′
k

s
x′

k···x′
1

p

t
f

for any f ∈ X, that is,

UF

(∑
(f)

T f
(k+1)

− (x1)⊗ · · · ⊗ T f
(2)

− (xk)⊗ T f
(1)

− (1H)

)
= (id⊗ · · · ⊗ id⊗T f−)UF (x1 ⊗ · · · ⊗ xk ⊗ 1H).

This should be compared with (4.51). Indeed, we have:

UF

(∑
(f)

T f
(k+1)

− (x1)⊗ · · · ⊗ T f
(2)

− (xk)⊗ T f
(1)

− (1H)

)

= UF

(∑
(xi)

f
(
S(x′k · · ·x′1)

)
x′′1 ⊗ · · · ⊗ x′′k ⊗ 1H

)
=
∑
(xi)

f
(
S(x′k · · ·x′1)

)
x′′′1 ⊗ · · · ⊗ x′′′k ⊗ x′′k · · ·x′′1

=
∑
(xi)

x′′1 ⊗ · · · ⊗ x′′k ⊗ T f−(x′k · · ·x′1)

= (id⊗ · · · ⊗ id⊗T f−)UF (x1 ⊗ · · · ⊗ xk ⊗ 1H).

For all other faces having a boundary edge on which UF acts nontrivially one
can similarly show that the corresponding operator T f+ commutes with UF for any
f ∈ X.

Turning to the vertex operators we see that for the vertex s in (5.71) it suffices
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to show

UF

(∑
(a)

x1 ⊗ · · · ⊗ xk−1 ⊗ La
′′

+ (xk)⊗ ad(a′)(1H)

)

=

(∑
(a)

id⊗ · · · ⊗ id⊗La′′+ ⊗ La
′

+

)
UF (x1 ⊗ · · · ⊗ xk−1 ⊗ xk ⊗ 1H)

for any a ∈ H. This should be compared with (4.60). Indeed, we now have

UF

(∑
(a)

x1 ⊗ · · · ⊗ xk−1 ⊗ La
′′

+ (xk)⊗ ad(a′)(1H)

)
= UF (x1 ⊗ · · · ⊗ xk−1 ⊗ axk ⊗ 1H)

=
∑

(xi)(a)

x′′1 ⊗ · · · ⊗ x′′k−1 ⊗ a′′x′′k ⊗ a′x′k · · ·x′1

=

(∑
(a)

id⊗ · · · ⊗ id⊗La′′+ ⊗ La
′

+

)
UF (x1 ⊗ · · · ⊗ xk−1 ⊗ xk ⊗ 1H).

For the vertex t and any a ∈ H the following holds by a similar argument:

UF
(
La−(x1)⊗ x2 ⊗ · · · ⊗ xk ⊗ 1H

)
=

(∑
(a)

La
′

− ⊗ id⊗ · · · ⊗ id⊗La′′−
)
UF (x1 ⊗ x2 ⊗ · · · ⊗ xk ⊗ 1H).

Finally, for the remaining vertices in (5.71) whose edges are affected by UF one
can show that

∑
(a) L

a′

+ ⊗La
′′

− (which acts on xi⊗ xi+1 only) and UF commute.

Remark 6. The unitaries UF and UV do not commute with the full local D(H)-
action, only with the Hamiltonians. For example, the minimal face q does not
decouple from arbitrary Aa(s, p) operators in the sense of Proposition 1 for most
values b hence it will carry a nontrivial topological charge. Its electric component
will be associated with the vertex s the loop is attached to. By reconnecting the
loop edge the unitary UF then splits this electric component between the vertices s
and t so naturally Aa(s, p) cannot be unaffected.

Corollary 3 (Isometries). The linear maps IA,BF := UF ◦ iA,BF ,

x1

...

xk

xk+1

...

xr

s
p

t
IA,BF−−−→

∑
(xi)

x′′
1

...

x′′
k

xk+1

...

xr

s

q

c

p

t c = x′k · · ·x′11A,B (5.77)
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and IAV := UV ◦ iAV ,

x1

...

xk xk+1

...

xr
p

q

s

IAV−−→
∑
(ΛA)

Λ(1)
A

x1

...

Λ(k)
A

xk
xk+1

...

xr

t
c

p

q

s c = Λ
(k+1)
A (5.78)

are isometries. Furthermore, for IF := IH,H
∗

F and IV := IHV one has

IFH1 = H2IF , (5.79)

IVH1 = H2IV . (5.80)

Put differently, the collection of these maps allows to move between the D(H)-
models defined on two arbitrary graphs which are embedded in the same surface.
Furthermore, all maps are local, i.e. they cannot change nonlocal topological
quantum numbers.

5.2.2 Transforming hierarchy states

In the preceding section we have learned that the set {IF , IV } of isometries maps
the ground state subspaces of generalized quantum double models on related graphs
onto each other. We would like to prove that this not only holds for the entire
subspace but also for individual ground states. Namely, the isometries {IF , IV }
precisely identify the Hopf tensor network states |ψΓi〉 as given by Theorem 3 for
the different graphs Γi.

Keeping our focus on states we will furthermore show (for a special case) that

the hierarchy of isometries {IA,BF , IAV } has the very same effect on the hierarchy of

states |ψA,BΓi
〉 as given by Definition 6. In other words, identifying these states in

an isometric fashion is as simple as adding or removing edges from the underlying
graph and adjusting the tensor trace canonically.

Once we act with the isometries on our hierarchy of Hopf tensor network states it
will become clear that the quantum states defined in Section 5.1.2 are not properly
normalized relative to each other. We can establish correct relative normalization
by choosing integrals of unit norm instead of the Haar integrals hA and φB. In
other words, we need to include a factor of ‖hA‖−1

for each edge and a factor of

‖φB‖−1
for each (proper) face of a Hopf tensor network state. It is understood

that from now on all Hopf tensor network states will be normalized in this fashion
without change of notation unless otherwise stated.

Starting from (5.34) we now fix some notation so that we can easily refer to pieces
of Hopf tensor network states later on.
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5.2 Calculating the topological entanglement entropy

Definition 7. Let A ⊂ H, B ⊂ X Hopf subalgebras, hA ∈ A, φB ∈ B their
respective Haar integrals and let f1, . . . , fr ∈ B. Set

|ψA,Bp ({fi})〉 :=
1

‖hA‖r ‖φB‖
∑

(hA,i)

f1

...

fk

fk+1

...

fr

φB h′′
A,1

...h′′
A,k

h′′
A,k+1

... h′′
A,r

h′
A,1

...

h′
A,k

h′
A,k+1

...

h′
A,r

,

(5.81)

|ψA,Bp∪q ({fi})〉 :=
1

‖hA‖r+1‖φB‖2
∑

(hA,i)(hA)

f1

...

fk

fk+1

...

fr

φB

φB

h′′
A,1

...h′′
A,k

h′′
A,k+1

... h′′
A,r

h′′
A

h′
A,1

...

h′
A,k

h′
A,k+1

...

h′
A,r

h′
A

,

(5.82)

|ψA,Bs ({fi})〉 :=
1

‖hA‖r
∑

(hA,i)

f1

...

fk

fk+1

...

fr

h′′
A,1

...

h′′
A,k h′′

A,k+1

...

h′′
A,r

h′
A,1

...

h′
A,k h′

A,k+1

...

h′
A,r

,

(5.83)

and

|ψA,Bs∪t ({fi})〉 :=
1

‖hA‖r+1

∑
(hA,i)(hA)

f1

...

fk

fk+1

...

frh′′
A,1

...

h′′
A,k h′′

A,k+1

...

h′′
A,r

h′′
A

h′
A,1

...

h′
A,k h′

A,k+1

...

h′
A,r

h′
A

.

(5.84)

83



Chapter 5 Hierarchy of Hopf tensor network states

As before we simply write |ψR(f1, . . . , fr)〉 whenever A = H and B = X. Note
that in this case one deals with a fragment of a quantum double model ground state!

Proposition 8.

IF |ψp(f1, . . . , fr)〉 = |ψp∪q(f1, . . . , fr)〉, (5.85)

IAV |ψA,Bs (f1, . . . , fr)〉 = |ψA,Bs∪t (f1, . . . , fr)〉. (5.86)

Proof. First let us prove the relation involving the face isometry. It is enough to
consider a face which is bounded by two edges. In this case we first transform the
right hand side of the equation in order to eliminate one of the virtual loops:

|ψp∪q(f1, f2)〉

= |H| 52
∑

(hi)(h)

φ(h′′′1 h
′′′)φ

(
h′′′2 S(h′′)

) 2∏
j=1

fj
(
S(h′′j )

)
|h′1〉 ⊗ |h′〉 ⊗ |h′2〉

= |H| 32
∑
(hi)

φ(h′′′2 h
(3)
1 ) f1

(
S(h

(2)
1 )
)
f2

(
S(h′′2)

)
|h(1)

1 〉 ⊗ |S(h
(4)
1 )〉 ⊗ |h′2〉

= |H| 32
∑
(hi)

φ(h′′′2 h
(4)
1 ) f1

(
S(h

(3)
1 )
)
f2

(
S(h′′2)

)
|h(2)

1 〉 ⊗ |S(h
(1)
1 )〉 ⊗ |h′2〉

where in the second line we employed Lemma 7.
In diagrammatic notation the above amounts to

|ψp∪q(f1, f2)〉 = |H| 32
∑
(hi)

φf1 f2

h′′
2

h′′′
1

h′
1 h′

2h′′
1

which proves the claim about the face isometry.
As for the vertex isometries we can in fact assume A = H without loss of generality.

By the same token we will never make use of fi ∈ B in the following argument,
hence it suffices to assume B = X, too. We begin with the state on the original
graph:

|ψs(f1, . . . , fr)〉 = ‖h‖−r
∑
(hi)

r∏
j=1

fj
(
S(h′′j )h′′′j+1

)
|h′1〉 ⊗ · · · ⊗ |h′r〉.

Applying IV yields:

‖h‖r+1
IV |ψs(f1, . . . , fr)〉

=
∑

(h)(hi)

r∏
j=1

fj
(
S(h′′j )h′′′j+1

) k⊗
l=1

|h(l)h′l〉 ⊗ |h(k+1)〉 ⊗ |h′k+1〉 ⊗ · · · ⊗ |h′r〉

=
∑

(hi)(h)

fr
(
S(h′′r )h′′′1

) k∏
j=1

fj
(
S(h′′j )h′′′j+1

) k⊗
l=1

|h(l)h′l〉 ⊗ |h(k+1)〉 ⊗ · · ·
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where in the last line we have abbreviated the remaining tensor factor

r−1∏
j=k+1

fj
(
S(h′′j )h′′′j+1

) r⊗
l=k+1

|h′l〉

by the trailing ellipsis. In order to simplify notation we will continue to do so in
the following. Hence:

‖h‖r+1
IV |ψs(f1, . . . , fr)〉

=
∑

(hi)(h)

fr
(
S(h′′r )h′′′1

)
f1

(
S(h′′1)h′′′2

) k∏
j=2

fj
(
S(h′′j )h′′′j+1

)
|h(1)h′1〉 ⊗ · · · ⊗ |h(k)h′k〉 ⊗ |h(k+1)〉 ⊗ · · ·

=
∑

(hi)(h)

fr
(
S(h′′r )S(h(1))h′′′1

)
f1

(
S(h′′1)h(2)h′′′2

)
f2

(
S(h′′2)h′′′3

) k∏
j=3

fj
(
S(h′′j )h′′′j+1

)
|h′1〉 ⊗ |h(3)h′2〉 ⊗ · · · ⊗ |h(k+1)h′k〉 ⊗ |h(k+2)〉 ⊗ · · ·

=
∑

(hi)(h)

fr
(
S(h′′r )S(h(1))h′′′1

)
f1

(
S(h′′1)h′′′2

)
f2

(
S(h′′2)h(2)h′′′3

) k∏
j=3

fj
(
S(h′′j )h′′′j+1

)
|h′1〉 ⊗ |h′2〉 ⊗ |h(3)h′3〉 ⊗ · · · ⊗ |h(k)h′k〉 ⊗ |h(k+1)〉 ⊗ · · ·

=
∑

(hi)(h)

fr
(
S(h′′r )S(h(1))h′′′1

)
fk
(
S(h′′k)h(2)h′′′k+1

) k−1∏
j=1

fj
(
S(h′′j )h′′′j+1

)
|h′1〉 ⊗ · · · ⊗ |h′k〉 ⊗ |h(3)〉 ⊗ · · ·

=
∑

(hi)(h)

fk
(
S(h′′k)h′′′h′′′k+1

)
fr
(
S(h′′r )S(h′′)h′′′1

) ∏
j 6=k,r

fj
(
S(h′′j )h′′′j+1

)
|h′1〉 ⊗ · · · ⊗ |h′k〉 ⊗ |h′〉 ⊗ |h′k+1〉 ⊗ · · · ⊗ |h′r〉

= ‖h‖r+1|ψs∪t(f1, . . . , fr)〉.

Note that from the third line on we repeatedly applied Lemma 6.

Unfortunately, we do not know how arbitrary hierarchy states |ψA,BΓ 〉 are affected

by the associated face isometries IA,BF for a general finite-dimensional Hopf C∗-
algebra. However, for H = CG we can state the following and leave the proof to
the reader.

Lemma 5. Let K ⊂ G a subgroup and N CG a normal subgroup. Furthermore let
fi ∈ CG/N . Then

IK,NF |ψK,Np (f1, . . . , fr)〉 =

√
|KN |
|G| |ψ

K,N
p∪q (f1, . . . , fr)〉. (5.87)

The above lemma shows that unless one draws the quantum state from the top of
the hierarchy one needs to include an additional factor of

√
|KN |/|G| for each face

to insure proper relative normalization of the Hopf tensor network states. In order
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to fix the normalization absolutely we may calculate the norm of a single (preferably
small) Hopf tensor network state on a given surface. Since all other states on the
same surface can be reached from this initial one via isometries their norm will be
determined automatically. It turns out that the absolute normalization factor is
entirely a property of the surface the Hopf tensor network state is embedded in. For
example, absorbing the additional factor per face into the definition of the Hopf
tensor network states one has for arbitrary graphs Γ on S2

‖|ψK,NΓ 〉‖ =
√
|KN/N | (5.88)

while on T 2 one has

‖|ψK,NΓ 〉‖ =
1√

|KN/N |

√ ∑
g∈KN/N

|CKN/N (g)|. (5.89)

Here CG(g) denotes the centralizer of the element g in the group G. In order to keep
the following discussion as general as possible we will stick to relative normalization
unless otherwise noted.

5.2.3 Entanglement entropy

Having defined the isometries IF and IV we finally embark on an exact calculation
of the entanglement entropy for a simply connected region R on S2. We focus on
the Hopf tensor network state |ψΓ〉.

In the following we show how the inner product between two face pieces of the
Hopf tensor network state |ψΓ〉 depends on the boundary degrees of freedom.

Proposition 9 (Face-like boundaries). Let fi, gi ∈ X and r = |∂R|. Then

〈ψp(f1, . . . , fr)|ψp(g1, . . . , gr)〉 = |H|
∑
(hi)

φ(h′1 · · ·h′r)
r∏
j=1

(gjf
∗
j )(h′′j ). (5.90)

Proof. Let λi = hi = h the Haar integral of H. Then from Definition 7 we get

〈ψp(f1, . . . , fr)|ψp(g1, . . . , gr)〉

= ‖h‖−2r ‖φ‖−2
∑

(hi)(λi)

φ(h′′′r · · ·h′′′1 )φ(λ′′′r · · ·λ′′′1 )

r∏
j=1

fj
(
S(h′′j )

)
gj
(
S(λ′′j )

)
〈h′j |λ′j〉

= |H|r+1
∑

(hi)(λi)

φ(h′′′1 · · ·h′′′r )φ(λ′′′r · · ·λ′′′1 )

r∏
j=1

f∗j (h′′j ) gj
(
S(λ′′j )

)
φ(h′jλ

′
j)

where we used (4.80), the properties of h and the involution ∗ as well as (4.36) for
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the second line. Employing Lemma 8 we can simplify this to

〈ψp(f1, . . . , fr)|ψp(g1, . . . , gr)〉

= |H|r
∑

(hi)(λi)

φ(h′′′1 · · ·h′′′r )φ
(
λ′′′r · · ·λ′′′2 S(h′1)

)
(g1f

∗
1 )(h′′1)

r∏
j=2

f∗j (h′′j ) gj
(
S(λ′′j )

)
φ(h′jλ

′
j)

= |H|
∑
(hi)

φ(h′′′1 · · ·h′′′r )φ
(
S(h′1 · · ·h′r)

) r∏
j=1

(gjf
∗
j )(h′′j ).

Finally, the claim follows from φ2 = φ.

Analogously, we are interested in the inner product between vertex pieces of the
same Hopf tensor network state.

Proposition 10 (Vertex-like boundaries). Let fi, gi ∈ X and r = |∂R|. Then

〈ψs(f1, . . . , fr)|ψs(g1, . . . , gr)〉 =
∑
(hi)

r∏
j=1

f∗j
(
h

(3)
j S(h

(4)
j+1)

)
gj
(
h

(2)
j S(h

(1)
j+1)

)
. (5.91)

Proof. Let again λi = hi = h the Haar integral of H. From Definition 7 one has

〈ψs(f1, . . . , fr)|ψs(g1, . . . , gr)〉

= ‖h‖−2r
∑

(hi)(λi)

r∏
j=1

fj
(
S(h′′j )h′′′j+1

)
gj
(
S(λ′′j )λ′′′j+1

)
〈h′j |λ′j〉

= |H|r
∑

(hi)(λi)

r∏
j=1

f∗j
(
h′′j S(h′′′j+1)

)
gj
(
S(λ′′j )λ′′′j+1

)
φ(h′jλ

′
j).

Additionally, Lemma 8 yields

∑
(λi)

r∏
j=1

φ(ajλ
′
j) gj

(
S(λ′′j )λ′′′j+1

)
= |H|−r

∑
(ai)

r∏
j=1

gj
(
a′′j S(a′j+1)

)
where aj ∈ H is arbitrary. Armed with this identity it is easy to verify the claim.

We now state the main result of this section.

Theorem 4. Let R ⊂M a simply connected region and let ΓR ⊂ Γ the corresponding
subgraph. Then for any α ≥ 0 the state |ψΓ〉 has the Rényi entanglement entropies

Sα(ρR) = |∂R| log|H| − log|H|. (5.92)

In particular, the topological entanglement entropy reads

γ = log|H|. (5.93)
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Proof. Without loss of generality we restrict to M ' S2. Acting with the isome-
tries IF and IV on |ψΓ〉 we may wipe out the bulk of both R and R̄ completely and
reduce Γ to the graph Γ0 given by

e1

e2

...

er .

For the resulting Hopf tensor network state on this graph Proposition 4 yields the
natural splitting

|ψΓ0〉 = ‖φ‖−r
∑
(φi)

|ψR(φ′1, . . . , φ
′
r)〉 ⊗ |ψR̄(φ′′1 , . . . , φ

′′
r )〉

= |H|r/2
∑
(φi)

|ψp(φ′1, . . . , φ′r)〉 ⊗ |ψs(φ′′1 , . . . , φ′′r )〉

where r = |∂R| denotes the length of the boundary.

We determine the reduced density operator ρR = N−1ρ̃R of the region R as
follows. Let φi = ϕi = φ the Haar integral of X and hi = λi = κi = h the Haar
integral of H. Ignoring the normalization factor N for a moment one has

ρ̃R = trR̄ (|ψΓ0〉〈ψΓ0 |)
= |H|r

∑
(φi)(ϕi)

|ψp(φ′1, . . . , φ′r)〉〈ψp(ϕ′1, . . . , ϕ′r)| · 〈ψs(ϕ′′1 , . . . , ϕ′′r )|ψs(φ′′1 , . . . , φ′′r )〉

= |H|r
∑

(φi)(ϕi)

|ψp(φ′1, . . . , φ′r)〉〈ψp(ϕ′1, . . . , ϕ′r)|
∑
(hi)

r∏
j=1

(ϕ′′r+1−j)
∗(h(3)

j S(h
(4)
j+1)

)
φ′′r+1−j

(
h

(2)
j S(h

(1)
j+1)

)
= |H|2r+1

∑
(φi)(ϕi)

(∑
(λi)

φ(λ′′′r · · ·λ′′′1 )

r∏
k=1

φ′k
(
S(λ′′k)

)
|λ′1, . . . , λ′r〉

)(∑
(κi)

φ(κ′′′r · · ·κ′′′1 )
r∏
l=1

ϕ′l
(
S(κ′′l )

)
〈κ′1, . . . , κ′r|

)
∑
(hi)

r∏
j=1

(ϕ′′j )∗
(
h

(3)
j S(h

(4)
j−1)

)
φ′′j
(
h

(2)
j S(h

(1)
j−1)

)
= |H|2r+1

∑
(hi)

∑
(κi)

∑
(λi)

φ(λ′′′r · · ·λ′′′1 )φ(κ′′′1 · · ·κ′′′r )

r∏
j=1

φ
(
h

(2)
j S(h

(1)
j−1)S(λ′′j )

)
φ
(
h

(3)
j S(h

(4)
j−1)κ′′j

)
|λ′1〉 ⊗ · · · ⊗ |λ′r〉 ⊗ φ(κ′1?)⊗ · · · ⊗ φ(κ′r?)

where we used Proposition 10 in the third line.
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Furthermore, using Lemma 9 we may derive∑
(κi)

φ(κ′′′1 · · ·κ′′′r )

r∏
j=1

φ(bjκ
′′
j )

r⊗
k=1

φ(κ′k?) = |H|−r
∑
(bi)

φ(b′′r · · · b′′1)

r⊗
j=1

φ
(
S(b′j) ?

)
.

With this under our belt we arrive at

ρ̃R = |H|r+1
∑

(hi)(λi)

φ(λ′′′r · · ·λ′′′1 )φ
(
h(4)
r S(h

(5)
r−1) · · ·h(4)

2 S(h
(5)
1 )h

(4)
1 S(h(5)

r )
) r∏
j=1

φ
(
h

(2)
j S(h

(1)
j−1)S(λ′′j )

)
|λ′1, . . . , λ′r〉

r⊗
k=1

φ
[
S
(
h

(3)
k S(h

(6)
k−1)

)
?
]

= |H|r+1
∑

(hi)(λi)

φ(λ′′′r · · ·λ′′′1 )

r∏
j=1

φ
(
h

(2)
j S(h

(1)
j−1)S(λ′′j )

)
|λ′1, . . . , λ′r〉

r⊗
k=1

φ
(
h

(4)
k−1 S(h

(3)
k ) ?

)
.

Again some more preparation, namely Lemma 10 allows us to find∑
(λi)

φ(λ′′′r · · ·λ′′′1 )

r∏
j=1

φ(ajλ
′′
j )

r⊗
k=1

|λ′k〉 = |H|−r
∑
(aj)

φ(a′′1 · · · a′′r )

r⊗
j=1

|S(a′j)〉

and subsequently we have for the reduced density operator:

ρ̃R = |H|
∑
(hi)

r⊗
j=1

|h(2)
j S(h

(1)
j−1)〉

r⊗
k=1

φ
(
h

(4)
k−1 S(h

(3)
k ) ?

)
.

Finally, it can be shown that the reduced density operator of the region R takes
the simple form

ρ̃R = |H|
∑
(hi)

|h(1)
1 〉 ⊗ · · · ⊗ |h

(1)
r−1〉 ⊗ |S(h

(4)
r−1 · · ·h

(4)
1 )〉

⊗ φ
(
S(h

(2)
1 ) ?

)
⊗ · · · ⊗ φ

(
S(h

(2)
r−1) ?

)
⊗ φ(h

(3)
r−1 · · ·h

(3)
1 ?).

up to normalization. It is easy to see that

tr(ρ̃R) = |H|
∑
(hi)

r−1∏
j=1

φ
(
S(h

(2)
j )h

(1)
j

)
φ
(
h

(3)
r−1 · · ·h

(3)
1 S(h

(4)
r−1 · · ·h

(4)
1 )
)

= |H|
and hence we can fix the normalization by setting N = |H|.

Furthermore it is not difficult to show that ρR is proportional to a projector.
Indeed, consider

ρ2
R =

∑
(hi)(λi)

r−1∏
j=1

φ
(
S(h

(2)
j )λ

(1)
j

)
φ
(
h

(3)
r−1 · · ·h

(3)
1 S(λ

(4)
r−1 · · ·λ

(4)
1 )
)

|h(1)
1 〉 ⊗ · · · ⊗ |h

(1)
r−1〉 ⊗ |S(h

(4)
r−1 · · ·h

(4)
1 )〉 ⊗ φ

(
S(λ

(2)
1 ) ?

)
⊗ · · · ⊗ φ

(
S(λ

(2)
r−1) ?

)
⊗ φ(λ

(3)
r−1 · · ·λ

(3)
1 ?)

= |H|1−rρR.
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This means that the spectrum of ρR is flat.
Finally one can prove that the rank of the reduced density operator ρR is given

by |H|r−1
hence each non-zero eigenvalue equals |H|1−r. Then the Rényi entropies

read

Sα(ρR) =
1

1− α log
(
tr(ραR)

)
= |∂R| log|H| − log|H|. (5.94)

independently of α.

Remark 7. We would like to stress that any reduced density operator ρR obtained
from the states |ψK,N 〉 is proportional to a projector as has been noted before for
the case of group algebras at the top of the hierarchy [23]. In other words, the
entanglement spectrum is flat and all Rényi entropies are equal.

5.2.4 Boundary configurations

We would like to illustrate the topological constraint on the (internal) boundary of a
Hopf tensor network state in more detail. This topological constraint is responsible
for the emergence of the universal correction γ to the area law.

To this end we analyze the boundary configuration (f1, . . . , fr) ∈ Xr of the
state |ψR(f1, . . . , fr)〉 in particular canonical bases BF (X) or BG(X) of X which
are derived via a generalized Fourier construction (see Chapters 3 and 6). The
dependence of the interior state |ψR(f1, . . . , fr)〉 on this boundary configuration
is considerably different if H is a group algebra, the dual of a group algebra or a
non-trivial Hopf C∗-algebra like H8.

For example, if H is a group algebra one has BF (CG) = {δg | g ∈ G} and the
topological constraint is a parity constraint obtained from group multiplication
along the boundary as the following theorem shows.

Theorem 5. Let H = CG and gi ∈ G. Then

1. |ψR(δg1 , . . . , δgr )〉 6= 0 iff g1 · · · gr = e and

2. all such non-zero interior states are pairwise orthogonal with identical norm.

Proof. It is enough to consider purely face- and vertex-like regions R since a general
simply connected region works similarly. From Propositions 9 and 10 one can easily
show that

〈ψp(δs1 , . . . , δsr )|ψp(δt1 , . . . , δtr )〉 = 〈ψs(δs1 , . . . , δsr )|ψs(δt1 , . . . , δtr )〉

= |G|1−rδs1···sr,e
r∏
j=1

δsj ,tj

which proves the claim.

If H is the dual of a (non-Abelian) group algebra then we use the canonical
basis BG(CG) = G. As the following theorem shows the topological constraint is an
equivalence relation between boundary configurations differing by a global offset.
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Theorem 6. Let H = CG and gi ∈ G. Then

1. ‖|ψR(g1, . . . , gr)〉‖ = 1,

2. |ψR(s1, . . . , sr)〉 = |ψR(t1, . . . , tr)〉 iff ti = gsi for some g ∈ G and

3. all non-identical interior states are pairwise orthogonal.

Proof. Again it is enough to consider purely face- and vertex-like regions R. From
Proposition 9 we get

〈ψp(s1, . . . , sr)|ψp(t1, . . . , tr)〉 =
∑
g∈G

r∏
j=1

δgsj ,tj

for all si, ti ∈ G and from Proposition 10

〈ψs(s1, . . . , sr)|ψs(t1, . . . , tr)〉 =

r∏
j=1

δs−1
j sj−1,t

−1
j tj−1

.

It is not difficult to see that these conditions are in fact the same and establish
an equivalence relation (s1, . . . , sr) ∼ (t1, . . . , tr) ⇔ ti = gsi among boundary
configurations. It follows that if two boundary configurations are not equivalent
their corresponding interior states are orthogonal.

In particular, we have

‖|ψp(g1, . . . gr)〉‖ = ‖|ψs(g1, . . . gr)〉‖ = 1

for any boundary configuration (g1, . . . , gr) ∈ Br.

Finally, if H is a nontrivial Hopf C∗-algebra like H8 one will observe a combination
of the two mechanisms just described. More precisely, there exists no basis of H∗8
for which the topological constraint on the boundary configuration is purely the
mechanism of either Theorem 5 or Theorem 6.

5.3 Discussion

First of all, we have developed a tensor network language, based on the formalism of
finite-dimensional Hopf C∗-algebras, which is both more flexible and more natural
than conventional descriptions for topological states. We have given rules to evaluate
tensor network diagrams by means of tensor traces and to construct quantum states
on the lattice, as well as to perform operations related to the spatial lattice structure,
such as cutting and joining along region boundaries.

This tensor network language has been shown to directly lead to the construction
of well-known topologically ordered states, namely ground states of Kitaev’s
quantum double models based on groups [39]. All these states are written, in a
basis-independent way, in the form of tensor networks involving the intrinsic Hopf
C∗-algebra structure only.
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Chapter 5 Hierarchy of Hopf tensor network states

Relaxing this property gently leads us to a hierarchy of states defined from
different subalgebras of a given Hopf C∗-algebra. We study the classes obtained
from group algebras, i.e. Kitaev’s original models, and show that the hierarchy
arises from the mechanism of condensation of topological charges [3, 4], and so we
conjecture that this mechanism can be described in general in our language.

Furthermore the hierarchy states can be regarded as ground states of certain
frustration-free Hamiltonians beyond the D(H)-model. These are obtained from
Theorem 2 by replacing the Haar integrals h ∈ H and φ ∈ X with hA ∈ A and
φB ∈ B respectively where A ⊂ H and B ⊂ X are Hopf C∗-subalgebras.

Not least, we have established isometric mappings defining entanglement renor-
malization [74, 73] extending the work of [1] for the states at the top of the hierarchy.
This is a systematic procedure to thin out degrees of freedom keeping the topological
nature of the states, and hence their nonlocal properties, intact. Our computation
of the topological entanglement entropy is an application of this general scheme.
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Chapter 6

Electric-magnetic duality

So far the extension of the electric-magnetic duality of the toric code to non-Abelian
models has remained an open problem, and thus a deep insight into the structure of
topological order has been only available in the very restricted Abelian setting. As
mentioned in the introduction the natural place to look for a well defined electric-
magnetic duality are Kitaev’s quantum double models, since the excitations there
are clearly understood and can be assigned electric and magnetic quantum numbers,
while this characterisation is absent in string-net models.

In this chapter we uncover electric-magnetic duality for all of Kitaev’s D(CG)-
models, both Abelian and non-Abelian, and beyond. We do this by identifying its
natural setting as the quantum double models based on Hopf algebras, a class of
models anticipated in [39] and defined and studied in Chapters 4 and 5. Extending
the methods employed in Chapter 3 we then use Fourier techniques to write these
generalised quantum double models as extended string-net (ESN) models, a variant
of Levin and Wen’s SN models with a canonically enlarged Hilbert space, such that
anyons can be understood in representation theoretic language. ESN models can be
defined independently, in analogy to Levin and Wen’s SN models, by data from
unitary tensor categories, equipped in this case with a so-called fibre functor [11].
By EM duality, each ESN model maps to two SN models, its electric and magnetic
projections (as depicted in Figure 6.2). We conjecture that all SN models are
obtained in such a way from parent ESN models with a generalised algebraic
structure, in which EM duality continues to hold. These results lead us to propose
the duality landscape of Figure 6.1.

6.1 Toric code and self-duality

Let us begin by reviewing the well-known self-duality in the toric code [39], the
quantum double model based on the group Z2. This is a model of qubits along the
edges of a graph Γ embedded in a two-dimensional surface, with a Hamiltonian of
the form

H = −
∑
s∈V

A(s)−
∑
p∈F

B(p) , (6.1)
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D(H)

D(CG)

D(CG)

D(CA)

D(W )

Figure 6.1: Duality landscape. D(CA) denotes quantum double models based on Abelian
groups (for example, the toric code). D(CG) denotes quantum double models based on
arbitrary (finite) groups (for example, G = S3). By electric-magnetic duality these are
related to quantum double models D(CG) based on algebras of functions. D(H) denotes
quantum double models based on Hopf C∗-algebras. D(W ) denotes quantum double models
based on weak quasi-Hopf C∗-algebras which we conjecture to correspond to ESN models.

where s runs over vertices and p runs over faces of Γ. Mutually commuting vertex
and face operators are projectors involving Pauli operators

A(s) =
1

2

(
id +

⊗
i∈E(s)

σxi

)
, (6.2)

B(p) =
1

2

(
id +

⊗
j∈E(p)

σzj

)
, (6.3)

with support on the edges around the corresponding vertex s or face p. Ground
states |ψ〉 of the frustration-free Hamiltonian (6.1) minimize each individual term in
the sum, i.e. they satisfy all vertex and face constraints A(s)|ψ〉 = |ψ〉, Bp|ψ〉 = |ψ〉.
Breakdown of any one such constraint means that the state is in an excited level
and can be interpreted as the presence of a quasiparticle excitation located at the
vertex or the face whose constraint is broken. From the gauge theory interpretation,
these are called electric and magnetic excitations, respectively.

Self-duality means that the global unitary map

UΓ =
⊗
i∈E
Ui (6.4)

built from the local Hadamard maps

Ui =
1√
2

(σxi + σzi ) (6.5)
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6.2 Revisiting quantum double models

at each edge i maps the toric code on Γ to a toric code on the dual graph Γ∗

UΓA(s)U†Γ = B̃(s) , (6.6)

UΓB(p)U†Γ = Ã(p) (6.7)

where now B̃(s) corresponds to a dual face s and Ã(p) to a dual vertex p in Γ∗.
The electric-magnetic nature of this duality comes from the interchange of vertices
and faces in going from the original to the dual graph.

Hidden in the action of the global map UΓ are (a) the mapping from Γ to Γ∗ with
the corresponding reinterpretation of vertex and face operators, and (b) a mapping
of the elements of the group Z2 to the functions from this group to C. We obtain
again a toric code on the dual graph because, for an Abelian group A, the space
of functions CA has the same structure as the group algebra CA. One can exploit
this algebraic fact to extend the self-duality of the toric code to all quantum double
models based on Abelian groups in a straightforward way: this is the D(CA) region
of Figure 6.1.

6.2 Revisiting quantum double models

Recall from Section 1.2 that for Kitaev’s quantum double models based on a
group G the operators constituting the Hamiltonian are the following projectors:

A(s) g1

g2

...

gr

s
=

1

|G|
∑
g∈G

gg1

gg2

...

ggr

s
, (6.8)

B(p) p

g1

g2

...

gr = δgr···g1,e p

g1

g2

...

gr . (6.9)

The obvious parallelism of faces and vertices in the Abelian case is lost if G is non-
Abelian. Upon switching to the dual graph we cannot reinterpret the operators A(s)
and B(p) as face and vertex operators in a quantum double model based on a group
since the algebra of functions CG on a non-Abelian group G no longer has the same
structure as the group algebra CG itself. Hence, the extension of the EM duality
to non-Abelian D(CG)-models is not possible within the class of quantum double
models based on groups. Yet dual models can be constructed—these are quantum
double models based no longer on groups, but rather on algebras of functions.
This duality is indicated by the arrow between the regions D(CG) and D(CG) in
Figure 6.1.

In order to make sense of this one has to extend the construction of quantum
double lattice models beyond the group case. As we will show the natural habitat for
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the EM duality of D(CG)-models is the class of quantum double models based on
Hopf algebras from Chapter 4. This corresponds to the region D(H) in Figure 6.1.
This is the smallest class which contains all the D(CG)-models and is closed under
EM duality. The duality, moreover, takes a remarkably simple form in the language
of Hopf algebras.

While the generalized quantum double models based on Hopf C∗-algebras are
discussed in detail in Chapter 4 let us briefly recall their essential features and our
motivation for considering more general symmetries than those furnished by group
theory in the first place. Perhaps the most important reason for why these more
general symmetries emerge in quantum many-body systems is the fact that linear
transformations in tensor products of vector spaces almost naturally lead to Hopf
algebras.

Consequently, let us regard a Hopf algebra H as a space of transformations on a
many-body Hilbert space. First of all, the linear nature of the target is naturally
extended to its transformations, so Hopf algebras are vector spaces. We must be able
to compose transformations and to include the identity transformation, so H has a
multiplication of vectors, and a unit, making it into an algebra. Most importantly,
we must have a rule to distribute the action of an element of H into a tensor product
of target spaces. This is the so called comultiplication. Additionally H has a trivial
representation ε, called counit, making precise the notion of spaces invariant under
the action of H. As for groups, the representation theory of Hopf algebras includes
a notion of dual representation, implemented via an antipode mapping S, which for
groups is just the inversion g 7→ g−1.

To be able to construct Hilbert spaces we use finite-dimensional Hopf C∗-algebras
where an inner product can be defined. In addition they come equipped with a
canonical, normalized, highly symmetric element, the Haar integral h ∈ H, which is
invariant under multiplication in the sense that ah = ε(a)h for all elements a ∈ H.
As emphasized before this canonical element is crucial for the construction of the
lattice model and its ground states.

The root of the EM duality to be unveiled shortly is the following algebraic
fact: Hopf C∗-algebras are closed under dualisation. In other words, given a finite-
dimensional Hopf C∗-algebra H its dual space H∗ (the functions from H to C) is
again a Hopf C∗-algebra whose structure is determined by the structure of H (see
Section 4.1.1 and Appendix C for details and examples). This closure property is
shared by the class of Abelian group algebras, which are all self-dual, but not by the
whole class of group algebras. The landscape of Figure 6.1 reflects these statements
at the physical level of topologically ordered spin models.

Quantum double models based on Hopf algebras, D(H)-models for short, are a
class of topological models defined on two-dimensional graphs (lattices) Γ whose
local Hilbert space along oriented edges is a finite-dimensional Hopf C∗-algebra H.
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Recall from Section 4.2.1 that there are two kinds of operators

Aa(s, p) x1

x2

...

xr

p

s
=
∑
(a)

a(1)x1

a(2)x2

...

a(r)xr

p

s
, (6.10)

Bf (s, p)

x1

x2

...

xr

s

p

=
∑
(xi)

f
(
S(x′r · · ·x′1)

)
x′′

1

x′′
2

...

x′′
r

s

p

(6.11)

acting on the vertices and faces of Γ. These operators depend on elements a ∈ H
and f ∈ X = (Hop)∗ respectively. When these elements are taken as the canonical
Haar integrals h ∈ H and φ ∈ X the resulting operators

A(s) = Ah(s, p) , (6.12)

B(p) = Bφ(s, p) (6.13)

are mutually commuting projectors defining via (6.1) the Hamiltonian of the D(H)-
model. The Hamiltonian is thus entirely constructed from the canonical elements h
and φ as well as the algebraic structure of H.

Kitaev’s original models constitute a subclass of the D(H)-models which is
recovered once H is the group algebra of a finite group G. Both this algebra CG
and its dual CG have particularly simple Hopf C∗-algebra structures summarised in
Appendix C. In particular, their Haar integrals read

h =
1

|G|
∑
g∈G

g ∈ CG (6.14)

φ = δe ∈ CG . (6.15)

From here it is not difficult to deduce (6.8) and (6.9) from their general counter-
parts (6.12) and (6.13).

6.3 Electric-magnetic duality

We now define EM duality for general D(H)-models. Consider the following unitary
map U : H → H∗:

a
U7−→ fa , fa(x) :=

√
|H|φ(ax) , (6.16)

where |H| is the dimension of H, and the function fa is constructed via the dual
Haar integral φ ∈ H∗. For example, it is easy to check that in the case of a group G
one has

U(g) =
√
|G| δg−1 . (6.17)
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Indeed, the map U is unitary because

(fa, fb)H∗ =
∑
(h)

f∗a (h′) fb(h
′′)

= |H|
∑
(h)

φ
(
S(a∗)h′

)
φ(bh′′)

= |H|
∑
(h)

φ(h′)φ(ba∗h′′)

= |H|φ(h)φ(ba∗)

= φ(a∗b)

= (a, b)H

where we used f∗a = fS(a∗) in the second line. Furthermore, its adjoint U† : H∗ → H
is given by

U†(f) =
√
|H|T f−(h) =

√
|H|

∑
(h)

f
(
S(h′)

)
h′′ (6.18)

as one may easily verify.
Next we associate this map with the transformation of an edge in Γ into its dual

edge in Γ∗ as follows:

x U−→ fx (6.19)

The global map

UΓ :=
⊗
i∈E(Γ)

Ui (6.20)

then sends the vertex (6.10) and face operators (6.11) precisely to the face and
vertex operators associated with the D(H∗)-model on the dual graph Γ∗. Note that
in the following p is both a face of Γ and a vertex of Γ∗ while s is both a vertex
of Γ and a face of Γ∗.

Theorem 7 (Duality of local symmetry algebra). Let a ∈ H and f ∈ H∗.

UΓBf (s, p)U†Γ = Ãf (p, s) , (6.21)

UΓAa(s, p)U†Γ = B̃a(p, s) . (6.22)

Proof. See Appendix F.

Focussing on the projectors which constitute the Hamiltonian we naturally obtain
from Theorem 7:

UΓB(p)U†Γ = Ã(p) , (6.23)

UΓA(s)U†Γ = B̃(s) . (6.24)
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It is this very expression which generalises (6.6), singling out UΓ as the actual
EM duality map.

Thus UΓ identifies the D(H)-model on Γ with the D(H∗)-model on Γ∗ as it
transforms the Hilbert spaces and Hamiltonian of the former into those of the latter.
We write this symbolically as

D(H)Γ = D(H∗)Γ∗ . (6.25)

But EM duality is deeper than a mere identification of energy levels. The
Hamiltonian involves just the projectors A(s) and B(p) but according to Theorem 7
the duality map UΓ induces a transformation of all local symmetry operators (6.10)
and (6.11). Most importantly, this transformation respects their algebra structure
and thus relates the anyonic excitations of both models [11].

6.4 Net of dualities

We now make the connection with Levin and Wen’s string-net models [48]. Recall
from Chapter 3 that the D(CG)-model is identified, via a Fourier mapping, with an
extended string-net model on the same graph, with edge degrees of freedom given
by irreducible representations of G and auxiliary matrix indices depending on each
such representation (see also [35]). String-net vertex conditions amount to knitting
the matrix indices together by means of 3j-symbols, effectively mapping the local
Hilbert spaces isometrically to those of a Levin-Wen SN model, whose degrees of
freedom and underlying category theoretical structure are given solely by irreducible
representations of G and their fusion properties. The ground levels of SN and their
extended versions are identical.

Now the representation theory of finite-dimensional Hopf C∗-algebras is essentially
identical to that of finite groups, the only real difference being that the fusion of
representations need not be commutative. Therefore the construction of Chapter 3
generalises to any D(H)-model. That is, if H has irreducible representations µ with
particular matrix realizations Dµ of dimension dµ we define a Fourier basis BF (H) =
{bµ,ij} in H by

bµ,ij :=
√
|H| dµ

∑
(h)

Dµ
ij(h

′)h′′ (6.26)

where 1 ≤ i, j ≤ dµ are matrix indices for the irreducible representation Dµ. This is
an orthonormal basis for each edge, and the analysis of Chapter 3 carries through
intact to show that the D(H)Γ-model can be written as an extended string-net
model ESN(H)Γ with edge degrees of freedom labelled by triplets (µ, i, j). The
extended string-net model reduces to a Levin-Wen string-net model mSN(H)Γ,
whose degrees of freedom are only the irreducible representations µ of H and whose
ground level is identical to that of the extended model. This we call the magnetic
projection of the original model on Γ.

The same construction can be applied to the D(H∗)Γ∗-model which we have
shown to be exactly equivalent to the original D(H)Γ-model via EM duality. By
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using the Fourier basis BF (H∗) for H∗ we write the D(H∗)Γ∗ -model as an equivalent
extended string-net model ESN(H∗)Γ∗ on the dual graph. Its magnetic projection
is the (original) string-net model mSN(H∗)Γ∗ on the dual graph, with irreducible
representations of H∗ as edge degrees of freedom. We regard this as the electric
projection of the original extended string-net model ESN(H)Γ and write

eSN(H)Γ∗ := mSN(H∗)Γ∗ (6.27)

These relations between quantum double models, extended string-net models and
their electric and magnetic projections are conveniently summarized in Figure 6.2.

From here it becomes clear that in Chapter 3 we analyzed the magnetic SN pro-
jection of the D(CG)-model. Its electric SN projection on the other hand has the
same local degrees of freedom as the D(CG)-model since group elements are the
(one-dimensional) irreducible representations of the dual CG of the group algebra1.

Thus, by the (Morita) duality between quantum double and string-net models
EM duality extends to those string-net models which are obtained by reduction of
ESN models. This leads us to the following

Conjecture 1. All string-net models can be extended into quantum double models
based on a sufficiently general algebraic structure, the class of weak Hopf C∗-
algebras2[31, 50]. Moreover, electric-magnetic duality can be defined for all extended
string-net models so that the pattern of Figure 6.2 holds.

6.5 Topological invariants from tensor network
states

Some physical consequences of EM duality are immediate. First of all, EM duality
allows us to measure the topology of the surface underlying the lattice models by
using locally defined states only.

As shown in Chapter 5 each D(H)Γ-model has one canonical tensor network
ground state

|ψ(H,Γ)〉 := |ψH,XΓ 〉 (6.28)

constructed from identical tensors at each site and these are defined solely by the
structure of H.

From the corresponding canonical state |ψ(H∗,Γ∗)〉 of the dual D(H∗)Γ∗ -model
on the dual graph we can obtain another ground state of the original D(H)Γ-model
by using the EM duality map (6.16):

|ψ̃(H,Γ)〉 := U†Γ |ψ(H∗,Γ∗)〉 . (6.29)

1This connection of SN and D(CG)-models had been recognised independently by Héctor Bomb́ın.
2The excitations in such models would be classified by representations of the double D(W ) of

the weak Hopf C∗-algebra W , which is expected to be a weak quasi-Hopf algebra in the sense
of [50].
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Figure 6.2: Relations between quantum double models, extended string-net models and
their electric and magnetic projections. The D(H)-model on the graph Γ is equivalent to
the D(H∗)-model on the dual graph Γ∗ by electric-magnetic duality. Furthermore, the
D(H)-model is identical to the extended string-net model ESN(H) on the same graph
by Morita duality. This Morita duality is transported to the right column by electric-
magnetic duality. Magnetic projection reduces the degrees of freedom of ESN(H)Γ and
yields the string-net model mSN(H)Γ. Electric projection in turn produces the string-net
model eSN(H)Γ∗ on the dual graph. Small labels at edges denote the respective local
degrees of freedom of the models. Note that quasiparticle excitations are much more
symmetric in ESN models than in string-net models: in the latter violating a vertex
constraint implies violating all surrounding face constraints.
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Chapter 6 Electric-magnetic duality

The relation between |ψ(H,Γ)〉 and |ψ̃(H,Γ)〉 depends on the topology of the
surface underlying Γ. On the sphere, for instance, the ground level is nondegenerate
hence both ground states coincide. On a topologically nontrivial surface such as the
torus these ground states can be shown to always be linearly independent.

For instance, in the toric code the tensor network construction of the canonical
state |ψ(H,Γ)〉 coincides with the projected entangled-pair state (PEPS) ansatz
in [72]. On the torus this yields the logical |++〉 state. The dual ground state |ψ̃(H,Γ)〉
is the logical |00〉 state. For details including the non-Abelian case see [11].

On the other hand, the correspondence between string-net and quantum double
models can be used to relate these PEPS to the tensor network descriptions of
string-net ground states put forward in Chapter 2 (also see [28]). These come from
the |ψ(H,Γ)〉 construction of the corresponding D(H)Γ-model, while the |ψ̃(H,Γ)〉
can be seen to yield a new TN given simply by the knitting together of 3j-symbols
at vertices in the ESN degrees of freedom. More details will be given in [11]. The
Fourier construction is also expected to relate the entanglement renormalization
analyses of generalized quantum double models from Chapter 5 (see [1] for an earlier
result) and string-net models [45].

6.6 Discussion

We have defined EM duality for non-Abelian D(CG)-models, showing how it arises
naturally in the context of D(H)-models. The connection to SN models comes
from the Fourier construction of extended string-nets models and their electric and
magnetic projections. We conjecture that all SN models have extended versions,
and that EM duality can be defined for all the extended models. EM duality offers
nonlocal information about the systems, unveiling global characteristics of space,
from tensor networks defined locally. Beyond this, it serves as an organising principle
for topological models. Indeed, we envisage a net of dualities for topological phases.
This then reflects on the field theories underlying topological systems and on their
mathematical structures, such as category theory.

We wish to stress the importance of the whole class of models based on Hopf
algebras. This is indeed the natural class of models to study to understand electric-
magnetic duality for lattice models based on non-Abelian groups. We thus shift
the focus away from lattice gauge theories based on groups, which are a primary
concern in high energy theory, even when the Hopf algebra language is applied [60].
Ours is, moreover, the first proposal for a general EM duality of topological phases.

The Hopf algebraic language renders the EM duality transparent and easy to
grasp, instead of obscuring it. In addition, this language can be learnt here hands-on
from the standpoint of quantum many-body systems, which can even be built in a
laboratory. We also provide, with the Fourier construction, a way to understand
some aspects of category theory in terms of representations, more familiar to many
physicists.
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Appendix A

Fat lattice reduction

Here we show how a part of the fat lattice configuration (2.1) is eventually reduced
to the canonical representative in several steps. In the following we omit the vacuum
label 1 on all grey edges. For the sake of clarity we also set{

i j m
k l n

}
:= F ijmkln . (A.1)

The first step consists in applying F -moves to all horizontal vacuum edges that
we may add to the state |{αp}〉 on the fat lattice:

α0 α1

α2α3

α4

α5 α6

=

N∑
ip=1

{
α∗0 α0 1
α∗1 α1 i0

}{
α∗3 α3 1
α∗2 α2 i3

}

×
{
α∗4 α4 1
α∗0 α0 i4

}{
α∗5 α5 1
α∗6 α6 i5

}

i5

i0i4

i3

α0 α1

α2α3

α4

α5 α6

. (A.2)

Note that the labels αp do not change in the process. In particular, all (black)
loop segments whose nearest puncture pierces the face p carry the same label αp
throughout. This is because they originate from the same isolated loop.
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We repeat the same procedure for the diagonal vacuum edges:

i5

i0i4

i3

α0 α1

α2α3

α4

α5 α6

=

N∑
kp=1

{
α∗0 α0 1
α∗2 α2 k0

}{
α∗4 α4 1
α∗3 α3 k4

}

×
{
α∗5 α5 1
α∗0 α0 k5

}{
α∗6 α6 1
α∗1 α1 k6

}

i5

i0i4

i3

k6k5

k0k4

α0 α1

α2α3

α4

α5 α6

, (A.3)

and

i5

i0i4

i3

k6k5

k0k4

α0 α1

α2α3

α4

α5 α6

=

N∑
jp=1

{
α∗0 α0 1
α∗6 α6 j0

}{
α∗2 α2 1
α∗1 α1 j2

}

×
{
α∗3 α3 1
α∗0 α0 j3

}{
α∗4 α4 1
α∗5 α5 j4

}

i5

i0i4

i3

k6k5

k0k4

j0j4

j2j3

α0 α1

α2α3

α4

α5 α6

. (A.4)
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Using the normalization (2.3) of the F -symbols we obtain at this point

α0 α1

α2α3

α4

α5 α6

=
1

d3
α0

√∏6
p=1 d

3
αp

∑
{ip,jp,kp}?

√
di0di3di4di5

×
√
dj0dj2dj3dj4

√
dk0dk4dk5dk6

i5

i0i4

i3

k6k5

k0k4

j0j4

j2j3

α0 α1

α2α3

α4

α5 α6

(A.5)

where we only sum over configurations {ip, jp, kp}? which together with the {αp}
satisfy the fusion rules at each branch point.

Before we proceed let us state that by using two F -moves (1.8), relation (1.7),
normalization (2.3) and relation (1.6) one may fully evaluate

i i

j

k

=

√
djdk
di

δijk∗
i
. (A.6)

Furthermore, by employing two F -moves (1.8), relation (1.7), normalization (2.3)
and twice the previous result we can remove the loop segments at a vertex as follows

i

jk

αp

αq

αr =

√
dαpdαr
di

{
k∗ αr α∗q
α∗p j∗ i

}
i

jk

, (A.7)

or alternatively as

i

jk

αp

αq

αr =

√
dαpdαq
dj

{
α∗q k∗ αr
i αp j

}
i

jk

(A.8)
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Appendix A Fat lattice reduction

which follows from the symmetries of the F -symbols [48]. Note that fusion rules are
implicitly contained in these expressions through the convention for the F -symbols.

In summary we obtain the following local reduction from the state |{αp}〉 on the
fat lattice to its canonical representative on the physical lattice:

∑
αp

(∏
p

dαp

)
α0 α1

α2α3

α4

α5 α6

=
∑
αp

√
dα3

dα6

N∑
ip,jp,kp=1

√
di0 · · · di5dk0 · · · dk6

dj0dj3

{
α∗2 k∗0 α0

i0 α1 j2

}

×
{
α∗0 k0 α2

i∗3 α3 j∗3

}{
α∗3 k∗4 α4

i4 α0 j3

}{
α∗5 k5 α0

i∗4 α4 j∗4

}{
α∗0 k∗5 α5

i5 α6 j0

}

×
{
α∗6 k6 α1

i∗0 α0 j∗0

}

i5

i0i4

i3

k6k5

k0k4

j0j4

j2j3

α1

α2α3

α4

α5 α6

. (A.9)
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Appendix B

Classical F -symbols from 3j-symbols

It can be shown that the projector onto the trivial representation subspace of the
product µ ⊗ ν ⊗ λ ⊗ ρ of irreducible representations of the group G splits into a
sum of orthogonal projectors associated with the internal channel σ in the coupling
scheme µ⊗ ν σ→ λ⊗ ρ, say, as

Wµνλρ =
⊕
σ∈Ĝ

Πµν,λρ
σ , (B.1)

where the projectors(
Πµν,λρ
σ

)
mnlr,m̄n̄l̄r̄

= dσ
∑
s,s̄

Wµνσ
mns,m̄n̄s̄W

λρσ∗

lrs,l̄r̄s̄
(B.2)

are expressed in terms of W connecting three irreducible representations1. This
leads to the definition of the F̂ operation as the change of basis, within the range
of Wµνλρ, from the states associated with Πµν,λρ

σ to those of the alternative coupling
scheme Πρµ,νλ

τ . Explicitly, the operators read

F̂µνσλρτ = Πµν,λρ
σ Πρµ,νλ

τ (B.3)

and obviously commute with Wµνλρ. From here it is immediate to check, for
instance, that ∑

τ

F̂µνσλρτ F̂
ρµτ
νλξ = δσξ∗Π

µν,λρ
σ . (B.4)

In components, taking into account (3.9) for rank one projectors, one has(
F̂µνσλρτ

)
mnlr,m̄n̄l̄r̄

=
(
pµν,λρσ

)
rmnl

Fµνσλρτ

(
pρµ,νλτ

)∗
m̄n̄l̄r̄

, (B.5)

where (
pµν,λρσ

)
mnlr

=
√
dσ
∑
s

[
µ ν σ
m n s

] [
λ ρ σ∗

l r s

]
(B.6)

are +1 eigenvectors of the (rank one) projectors in (B.2),(
Πµν,λρ
σ

)
mnlr,m̄n̄l̄r̄

=
(
pµν,λρσ

)
mnlr

(
pµν,λρσ

)∗
m̄n̄l̄r̄

(B.7)

1It can be seen easily that tr Πµν,λρσ = ∆µνσ∆λρσ∗ , so these are rank one projectors as long as
the three-irrep W ’s are.
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and

Fµνσλρτ =
√
dσdτ

∑
mnlrst

[
µ ν σ
m n s

] [
λ ρ σ∗

l r s

] [
ρ µ τ
r m t

] [
ν λ τ∗

n l t

]
(B.8)

for which, for instance, ∑
τ

Fµνσλρτ F
ρµτ
νλξ = ∆µνσ∆λρξδσξ∗ (B.9)

and

Fµν1
λρτ =

√
dτ
dµdλ

δµν∗δλρ∗∆µλ∗τ (B.10)

(up to a phase from the square root).
Now the effect of the F̂ operators can be interpreted directly in the string-net

lattice by forgetting about the p tensors, whose role is enforcing physical constraints
throughout. The Fµνσλρτ are the same as the F -symbols in [48].
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Appendix C

Trivial Hopf algebras and their quantum

doubles

Here we briefly discuss some cases of how Hopf algebras can arise from groups. In
particular we focus on how a group itself can be directly understood in the language
of Hopf algebras.

C.1 Trivial Hopf algebras

A finite-dimensional Hopf algebra is said to be trivial if it is a group algebra or the
dual of a group algebra for some finite group G. Let {g | g ∈ G} be a basis of the
group algebra CG with multiplication

µ(g ⊗ h) = gh (C.1)

and unit η(1C) = e. Its comultiplication and counit are given by

∆(g) = g ⊗ g, ε(g) = 1C (C.2)

and extended by linearity. Similarly, the antipode map is defined by

S(g) = g−1. (C.3)

It is easy to see that every group algebra CG is cocommutative, but in general
non-commutative. Furthermore, one may endow CG with the involution map

g∗ = g−1 (C.4)

which is extended by conjugate linearity. This turns CG into a Hopf C∗-algebra.
Its Haar integral reads

h =
1

|G|
∑
g∈G

g. (C.5)

The dual (CG)∗ of a group algebra coincides with the space CG of linear functions
from the group to the field of complex numbers. For the dual basis {δg | g ∈ G}
multiplication and unit are defined by

δgδh = δg,hδg, η(1C) =
∑
g∈G

δg = 1 (C.6)
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where δg,h denotes the Kronecker delta. The comultiplication, counit and antipode
maps are given by

∆(δg) =
∑
uv=g

δu ⊗ δv, ε(δg) = δg(e) = δg,e, S(δg) = δg−1 (C.7)

for each g ∈ G. One may check that every function algebra CG is commutative,
but in general non-cocommutative. When contrasted with the corresponding group
algebra, this is not too surprising: since CG and CG are dual to each other, one
obtains the multiplication of one algebra from the comultiplication of the other one
and vice versa. Again, CG is a Hopf C∗-algebra via

δ∗g = δg (C.8)

and conjugate-linear extension1 . Finally,

φ = δe (C.9)

is the Haar integral of CG.

C.2 Quantum doubles of trivial Hopf algebras

As a vector space the quantum double of a group algebra is nothing but D(CG) =
CG ⊗ CG with basis {δx ⊗ g | (x, g) ∈ G×G}. The fact that the quantum double
is a crossed product is reflected in the multiplication map

(δx ⊗ g)(δy ⊗ h) = δx,gyg−1δx ⊗ gh (C.10)

where the algebra acts on itself by conjugation. Actually, this is fully determined
by the straightening formula

gδx := (1⊗ g)(δx ⊗ e) = δgxg−1 ⊗ g (C.11)

(and the embeddings δx 7→ δx ⊗ e and g 7→ 1⊗ g being algebra morphisms). Here
gδx is a frequently used shorthand notation and should be clear from context
whenever it appears. The unit of D(CG) is 1⊗ e. Comultiplication and counit are
given by

∆(δx ⊗ g) =
∑
uv=x

(δv ⊗ g)⊗ (δu ⊗ g), (C.12)

ε(δx ⊗ g) = ε(g) δx(e) = δx,e (C.13)

on the basis elements. Note that the comultiplication in D(CG) is derived from the
comultiplication in CG and (CG)cop = ((CG)op)∗ rather than from CG itself! This

1If G is an Abelian group then δ?g = δg−1 defines another Hopf ∗-structure for the standard
convention. In fact, for G non-Abelian the choice of ∗ or ? corresponds to a choice of either the
standard convention or the convention (a⊗ b)? = b? ⊗ a? for the action on tensor products.
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is because as an algebra the quantum double is the bicrossed product D(CG) =(
(CG)op

)∗
./ CG.

The antipode map is

S(δx ⊗ g) = δg−1x−1g ⊗ g−1. (C.14)

C.3 Hopf subalgebras of trivial Hopf algebras

The Hopf subalgebras of a Hopf algebra will be important for the construction of
our hierarchy of Hopf tensor network states.

If H = CG, all the Hopf subalgebras A and B can be characterized easily [3, 4].
One finds that the Hopf subalgebras of CG are precisely the group algebras CK
for K ⊂ G a subgroup. Furthermore the Hopf subalgebras of CG are exactly given
by CG/N with N CG a normal subgroup. It is also not difficult to find the Haar
integrals of these Hopf subalgebras. In the first case one has

hK =
1

|K|
∑
g∈K

g. (C.15)

For the second case note that CG/N can be identified with the functions in CG
which are constant on cosets of N . Now consider the character χN of G that
factors through N to the regular character of G/N . It is easy to see that when
multiplied with the above functions χN acts as a two-sided integral. Hence taking
normalization into account, one may convince oneself that |G/N |−1

χN is precisely
the Haar integral of CG/N . By abuse of notation we may write it as:

φN =
∑
n∈N

δn. (C.16)
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Appendix D

An example of a nontrivial

finite-dimensional Hopf C∗-algebra

We are primarily interested in finite-dimensional nontrivial Hopf C∗-algebras, i.e.
finite-dimensional nontrivial Hopf algebras over C with a compatible involution. In
order to find an example of such a Hopf algebra it is enough to investigate semisimple
Hopf algebras in low dimensions and check whether these support a compatible
∗-structure. It turns out that any semisimple Hopf algebra H of dimension p or pq
with prime numbers p < q is trivial [20]. The same applies to dimensions p2 [52].
Hence one may expect nontrivial semisimple Hopf algebras only for dimH ≥ 8.

D.1 The Hopf algebra H8

In fact, we need to look no further than dimH = 8 for an example. At this dimension
there exists a unique nontrivial semisimple Hopf algebra (up to isomorphism) which
is commonly denoted by H8 and is due to Kac and Paljutkin [34]. Interestingly,
it can also be endowed with a compatible involution which turns H8 into a Hopf
C∗-algebra.

Following [51] this algebra can be presented by generators x, y, z and the relations

x2 = y2 = 1, z2 =
1

2
(1 + x+ y − xy), (D.1)

xy = yx, zx = yz, zy = xz. (D.2)

It is now easy to see that B = {1, x, y, xy, z, zx, zy, zxy} is a basis of H8. We will
denote the corresponding dual basis by {δa | a ∈ B}. The coalgebra structure is
determined by

∆(x) = x⊗ x, ∆(y) = y ⊗ y, (D.3)

∆(z) =
1

2
(1⊗ 1 + y ⊗ 1 + 1⊗ x− y ⊗ x)(z ⊗ z), (D.4)

ε(x) = ε(y) = ε(z) = 1, (D.5)

and from this it is evident that G(H8) = {1, x, y, xy} ' Z2 × Z2. The antipode
reads

S(x) = x, S(y) = y, S(z) = z. (D.6)
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Finally, the involution is given by

x∗ = x, y∗ = y, z∗ = z−1 =
1

2
(z + zx+ zy − zxy) = z3. (D.7)

This shows in particular that antipode and involution act differently on the generators
of H8.

The Haar integrals h ∈ H8 and φ ∈ H∗8 are given by:

h =
1

8
(1 + x+ y + xy + z + zx+ zy + zxy), (D.8)

φ = δ1. (D.9)

Remarkably they look like the Haar integrals of a group algebra and its dual! The
dual Haar integral φ and the complex involution automatically yield a Hermitian
inner product on H8 as discussed in Section 4.2.2. Explicitly, we have for all a, b ∈ H8

(a, b) = δ1(a∗b). (D.10)

It follows that B is an orthonormal basis of H8.

D.2 Hopf subalgebras of H8 and its dual

The Hopf subalgebras of H = H8 read {1}, {1, x} ' CZ2, {1, y} ' CZ2, {1, xy} '
CZ2, {1, x, y, xy} ' C(Z2 × Z2) and H8. This is because Hopf subalgebras of a
Hopf algebra H correspond bijectively to sets of irreducible representations of H∗

which close under fusion and dualisation [3, 4]. Now H∗8 has four one-dimensional
irreducible representations Q1, Qx, Qy and Qxy derived from G(H8) and the two-
dimensional representation given by

Q2 =
1

2

(
z + zx z − zx
zy − zxy zy + zxy

)
. (D.11)

From the fusion rules

Qg ×Qg′ = Qgg′ (D.12)

Qg ×Q2 = Q2 (D.13)

Q2 ×Q2 = Q1 +Qx +Qy +Qxy (D.14)

for all g, g′ ∈ G(H8) one concludes that precisely the sets {Q1}, {Q1, Qx}, {Q1, Qy},
{Q1, Qxy}, {Q1, Qx, Qy, Qxy} and {Q1, Qx, Qy, Qxy, Q2} close under fusion (and du-
alization) and therefore are the ones that correspond bijectively to Hopf subalgebras
of H8.

The Haar integrals of the Hopf subalgebras read

h{1} = 1, (D.15)

h〈x〉 =
1

2
(1 + x), (D.16)

114



D.2 Hopf subalgebras of H8 and its dual

h〈y〉 =
1

2
(1 + y), (D.17)

h〈xy〉 =
1

2
(1 + xy), (D.18)

h〈x,y〉 =
1

4
(1 + x+ y + xy), (D.19)

h =
1

8
(1 + x+ y + xy + z + zx+ zy + zxy). (D.20)

Since H∗8 ' H8 as Hopf algebras the Hopf subalgebras B ⊂ H∗8 are given as the
images of the Hopf subalgebras of H8 under the isomorphism. A particular such
Hopf isomorphism can be obtained as follows. From the dual basis {δa} of the
basis B ⊂ H8 define another basis {fa} ⊂ H∗8 via

f1 := δ1 + δx + δy + δxy + δz + δzx + δzy + δzxy, (D.21)

fx := δ1 − δx − δy + δxy + iδz − iδzx − iδzy + iδzxy, (D.22)

fy := δ1 − δx − δy + δxy − iδz + iδzx + iδzy − iδzxy, (D.23)

fxy := δ1 + δx + δy + δxy − δz − δzx − δzy − δzxy, (D.24)

fz := δ1 − iδx + iδy − δxy − i
√

2 (δzx − δzy), (D.25)

fzx := δ1 + iδx − iδy − δxy +
√

2 (δz − δzxy), (D.26)

fzy := δ1 + iδx − iδy − δxy −
√

2 (δz − δzxy), (D.27)

fzxy := δ1 − iδx + iδy − δxy + i
√

2 (δzx − δzy). (D.28)

Then the map H8 → H∗8 given by a 7→ fa for all a ∈ B and linear extension is a
Hopf isomorphism.

Consequently, the Haar integrals φB read:

φ{f1} = δ1 + δx + δy + δxy + δz + δzx + δzy + δzxy = ε, (D.29)

φ〈fx〉 = δ1 + δxy +
1 + i

2
(δz + δzxy) +

1− i
2

(δzx + δzy), (D.30)

φ〈fy〉 = δ1 + δxy +
1− i

2
(δz + δzxy) +

1 + i

2
(δzx + δzy), (D.31)

φ〈fxy〉 = δ1 + δx + δy + δxy, (D.32)

φ〈fx,fy〉 = δ1 + δxy, (D.33)

φ = δ1. (D.34)
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Appendix E

Hopf singlets

We collect here some lemmas, with their proofs, that are used throughout the text.

Lemma 6. Let h ∈ H the Haar integral, a, b, c ∈ H and f, g ∈ X. Then one has∑
(h)

f
(
S(h′′) b

)
g(ch′′′) ah′ =

∑
(a)(h)

f
(
S(h′′) a′′b

)
g
(
c S(a′)h′′′

)
h′. (E.1)

Proof. It is clear that the statement will follow from∑
(h)

ah′ ⊗ S(h′′)⊗ h′′′ =
∑

(a)(h)

h′ ⊗ S(h′′) a′′ ⊗ S(a′)h′′′. (E.2)

Indeed, we have∑
(h)

ah′ ⊗ S(h′′)⊗ h′′′ =
∑

(a)(h)

a′h′ ⊗ S(h′′) ε(a′′)⊗ h′′′

=
∑

(a)(h)

a′h′ ⊗ S(h′′)S(a′′) a′′′ ⊗ h′′′

=
∑

(a)(h)

a(1)h′ ⊗ S(a(2)h′′) a(4) ⊗ ε(a(3))h′′′

=
∑

(a)(h)

a(1)h′ ⊗ S(a(2)h′′) a(5) ⊗ S(a(4)) a(3)h′′′

=
∑
(a)

∑
(a′h)

(a′h)′ ⊗ S
(
(a′h)′′

)
a′′′ ⊗ S(a′′) (a′h)′′′

=
∑

(a)(h)

ε(a′)h′ ⊗ S(h′′) a′′′ ⊗ S(a′′)h′′′

=
∑

(a)(h)

h′ ⊗ S(h′′) a′′ ⊗ S(a′)h′′′.

Lemma 7. Let a, b ∈ H and h ∈ H as well as φ ∈ X the respective Haar integrals.
Then ∑

(h)

φ(ah′′′)φ
(
b S(h′′)

)
h′ = |H|−1

∑
(a)

φ(ba′)S(a′′). (E.3)
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Appendix E Hopf singlets

Proof. Similarly to the proof of Lemma 6 one can first show that∑
(h)

h′ ⊗ S(h′′)⊗ ah′′′ =
∑

(a)(h)

S(a′′)h′ ⊗ S(h′′) a′ ⊗ h′′′

holds for any a ∈ H. Then we use the defining property (4.23) of the dual (Haar)
integral: ∑

(h)

φ(ah′′′)φ
(
b S(h′′)

)
h′ =

∑
(a)(h)

φ(h′′′)φ
(
b S(h′′) a′

)
S(a′′)h′

=
∑

(a)(h)

φ
[
b S
(
h′′ φ(h′′′)

)
a′
]
S(a′′)h′

=
∑

(a)(h)

φ
(
b S(1H) a′

)
S(a′′)h′ φ(h′′)

= φ(h)
∑
(a)

φ(ba′)S(a′′).

Lemma 8. Let a, b, c, d ∈ H and f, g ∈ X. Furthermore let h ∈ H and φ ∈ X the
respective Haar integrals. Then∑

(h)

φ(ah′) f
(
b S(h′′) c

)
g(dh′′′) = |H|−1

∑
(a)

f(ba′′c) g
(
dS(a′)

)
. (E.4)

Proof. From (E.2) we get∑
(h)

φ(ah′) f
(
b S(h′′) c

)
g(dh′′′) =

∑
(a)(h)

φ(h′) f
(
b S(h′′) a′′c

)
g
(
dS(a′)h′′′

)
=
∑

(a)(h)

f(ba′′c) g
(
dS(a′)φ(h′)h′′

)
= φ(h)

∑
(a)

f(ba′′c) g
(
dS(a′)

)
which proves the claim.

Lemma 9. Let a, b, c, d ∈ H and h ∈ H and φ ∈ X the respective Haar integrals.
Then ∑

(h)

φ(h′a)φ(bh′′)φ(ch′′′d) = |H|−1
∑
(b)

φ
(
S(b′) a

)
φ
(
c S(b′′) d

)
. (E.5)

Proof. We first show that∑
(h)

h′ ⊗ bh′′ ⊗ h′′′ =
∑

(b)(h)

S(b′)h′ ⊗ h′′ ⊗ S(b′′)h′′′.
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Indeed, we have∑
(h)

h′ ⊗ bh′′ ⊗ h′′′ =
∑

(b)(h)

ε(b′)h′ ⊗ b′′h′′ ⊗ h′′′

=
∑

(b)(h)

S(b′) b′′h′ ⊗ b′′′h′′ ⊗ h′′′

=
∑

(b)(h)

S(b(1)) b(2)h′ ⊗ b(3)h′′ ⊗ ε(b(4))h′′′

=
∑

(b)(h)

S(b(1)) b(2)h′ ⊗ b(3)h′′ ⊗ S(b(5)) b(4)h′′′

=
∑
(b)

∑
(b′′h)

S(b′) (b′′h)′ ⊗ (b′′h)′′ ⊗ S(b′′′) (b′′h)′′′

=
∑

(b)(h)

S(b′) ε(b′′)h′ ⊗ h′′ ⊗ S(b′′′)h′′′

=
∑

(b)(h)

S(b′)h′ ⊗ h′′ ⊗ S(b′′)h′′′.

Again by property (4.23) of the dual (Haar) integral we deduce:∑
(h)

φ(h′a)φ(bh′′)φ(ch′′′d) =
∑

(b)(h)

φ
(
S(b′)h′a

)
φ(h′′)φ

(
c S(b′′)h′′′d

)
=
∑

(b)(h)

φ
(
S(b′) a

)
φ
(
c S(b′′)φ(h′)h′′d

)
= φ(h)

∑
(b)

φ
(
S(b′) a

)
φ
(
c S(b′′) d

)
.

Lemma 10. Let a, b, c ∈ H and h ∈ H as well as φ ∈ X the respective Haar
integrals. Then∑

(h)

φ(h′′a)φ(bh′′′c)h′ = |H|−1
∑
(a)

φ
(
b S(a′′) c

)
S(a′). (E.6)

Proof. Along the same lines as the proof of Lemma 9 one can show that∑
(h)

h′ ⊗ h′′a⊗ h′′′ =
∑

(a)(h)

h′ S(a′)⊗ h′′ ⊗ h′′′ S(a′′).

As before the rest then follows from the properties of the dual Haar integral.
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Appendix F

Proof of Theorem 7

First recall from Section 4.2.1 that both the face operator Bf (s, p) and the alternative

face operator B̃f (s, p) yield the same algebra action on a face of the graph. In that
sense we may simple state

Bf∈X(s, p) = B̃f∈H∗(s, p) . (F.1)

As indicated the subtle difference between the two lies in how the function f is
interpreted: in the former case we have f ∈ X = (Hop)∗ = (H∗)cop while in the
latter we have f ∈ H∗. This is reflected in the different orientations in which the
arrows wind around the face p in (4.51) and (4.52) because the Hopf algebra X has
exactly the opposite comultiplication of the Hopf algebra H∗. Needless to say, this
will become important in any computation involving the coproduct of f .

By analogy, let us define an alternative vertex operator, too. While for a ∈ H we
have the vertex operator

Aa(s, p) x1

x2

...

xr

p

s
=
∑
(a)

a(1)x1

a(2)x2

...

a(r)xr

p

s
(F.2)

as introduced in (4.50) assume now that a ∈ Hcop and set

Ãa(s, p) x1

x2

...

xr

s

p

:=
∑
(a)

a(r)x1

a(r−1)x2

...

a(1)xr

s

p

(F.3)

As far as only the algebra action is concerned there is no difference between the
two operators so we may write

Aa∈H(s, p) = Ãa∈Hcop(s, p) . (F.4)
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Appendix F Proof of Theorem 7

Now we turn to the actual proof of Theorem 7.

Proof. Evaluate for f ∈ X the expression1

UΓBf (s, p)U†Γ f1

f2

...

fr

p

s

= |H| r2 UΓBf (s, p)
∑
(hi)

〈f1, S(h′1)〉 · · · 〈fr, S(h′r)〉 h′′
1

h′′
2

...

h′′
r

p

s

= |H| r2 UΓ

∑
(hi)

〈f1, S(h′1)〉 · · · 〈fr, S(h′r)〉〈f, S(h′′r · · ·h′′1)〉 h′′′
1

h′′′
2

...

h′′′
r

p

s

= |H|r
∑
(hi)

〈f1, S(h′1)〉 · · · 〈fr, S(h′r)〉〈f, S(h′′r · · ·h′′1)〉 φ(h′′′
1 ?)

φ(h′′′
2 ?)

...

φ(h′′′
r ?)

p

s

= |H|r
∑
(hi)

∑
(f)

〈f1, S(h′1)〉〈f (r), S(h′′1)〉 · · · 〈fr, S(h′r)〉〈f (1), S(h′′r )〉

×φ(h′′′1 ?)⊗ · · · ⊗ φ(h′′′r ?)

= |H|r
∑
(f)

∑
(hi)

〈f1, h
′′′
1 〉〈f (r), h′′1〉 · · · 〈fr, h′′′r 〉〈f (1), h′′r 〉

×φ
(
S(h′1) ?

)
⊗ · · · ⊗ φ

(
S(h′r) ?

)
= |H|r

∑
(f)

∑
(hi)

〈f (r) · f1, h
′′
1〉 · · · 〈f (1) · fr, h′′r 〉φ

(
S(h′1) ?

)
⊗ · · · ⊗ φ

(
S(h′r) ?

)

=
∑
(f)

f(r)f1

f(r−1)f2

...

f(1)fr

p

s

1Note that it does not make any difference whether we take fi ∈ X or fi ∈ H∗ since comultipli-
cation is never used on the fi.
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= Ãf (p, s) f1

f2

...

fr

p

s

.

Here the penultimate line follows from∑
(h)

f(h′′)φ
(
S(h′) ?

)
= |H|−1

f

as can one verify by evaluation on an arbitrary x ∈ H.
In summary we have proven that

UΓBf∈X(s, p)U†Γ = Ãf∈X(p, s) = Af∈H∗(p, s) , (F.5)

i.e. the duality map takes any face operator of the D(H)-model on the graph Γ to a
vertex operator of the D(H∗)-model on the dual graph Γ∗.

Similarly one proves the other assertion.
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[1] Miguel Aguado and Guifré Vidal. Entanglement renormalization and
topological order. Phys. Rev. Lett. 100.7 (2008), p. 070404.

[2] Frank W. Anderson and Kent R. Fuller. Rings and categories of modules.
2nd ed. Vol. 13. Graduate Texts in Mathematics. Springer, 1992. isbn:
978-0-387-97845-1.

[3] F. Alexander Bais, Bernd J. Schroers, and Joost K. Slingerland. Broken
quantum symmetry and confinement phases in planar physics. Phys. Rev.
Lett. 89.18 (2002), p. 181601.

[4] F. Alexander Bais, Bernd J. Schroers, and Joost K. Slingerland. Hopf
symmetry breaking and confinement in (2 + 1)-dimensional gauge theory.
J. High Energ. Phys. 2003.5 (2003), p. 068.

[5] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of
superconductivity. Phys. Rev. 108.5 (1957), pp. 1175–1204.
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density matrix structure. Phys. Rev. Lett. 103.26 (2009), p. 261601.

[24] Michael H. Freedman, Alexei Y. Kitaev, and Zhenghan Wang. Simulation
of topological field theories by quantum computers. Commun. Math. Phys.
227.3 (2002), pp. 587–603.

[25] Michael H. Freedman, Michael J. Larsen, and Zhenghan Wang. A
modular functor which is universal for quantum computation. Commun.
Math. Phys. 227.3 (2002), pp. 605–622.

[26] Michael H. Freedman and David A. Meyer. Projective plane and planar
quantum codes. Found. Comput. Math. 1.3 (2001), pp. 325–332.

[27] Michael H. Freedman, Chetan Nayak, and Kirill Shtengel. Extended
Hubbard model with ring exchange: a route to a non-Abelian topological
phase. Phys. Rev. Lett. 94.6 (2005), p. 066401.

[28] Zheng-Cheng Gu, Michael A. Levin, Brian Swingle, and Xiao-Gang Wen.
Tensor-product representations for string-net condensed states. Phys. Rev. B
79.8 (2009), p. 085118.

[29] Zheng-Cheng Gu, Michael A. Levin, and Xiao-Gang Wen.
Tensor-entanglement renormalization group approach as a unified method for
symmetry breaking and topological phase transitions. Phys. Rev. B 78.20
(2008), p. 205116.

[30] Alioscia Hamma, Radu Ionicioiu, and Paolo Zanardi. Ground state
entanglement and geometric entropy in the Kitaev model. Phys. Lett. A
337.1–2 (2005), p. 22.

[31] Takahiro Hayashi. A canonical Tannaka duality for finite semisimple tensor
categories. 1999. arXiv:math/9904073.

[32] Sofyan Iblisdir, David Pérez-Garćıa, Miguel Aguado, and
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