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In this contribution, we summarize a recent attempt to understand hyperbolic Kac 
Moody 'algebras in terms of the string vertex operator construction [12] (which readers 
are also advised to consult for a comprehensive list of references). As is well known, 
Kac Moody algebras (see e.g. [21], [15]) fall into one of three classes corresponding to 
whether the associated Cartan matrices are positive definite, positive semi-definite and 
indefinite. Of these, the first two are well understood, leading to finite and affine Lie 
algebras (the latter being equivalent to current algebras in two space-time dimensions). 
Virtually nothing is known, however, about the last class of Kac Moody algebras, 
based on indefinite Cartan matrices. Nonetheless these have been repeatedly suggested 
as natural candidates for the still elusive fundamental symmetry of string theory (see 
e.g. [24], [28] for recent proposals in this direction). Being vastly larger than affine 
Kac Moody algebras, they are certainly "sufficiently big" for this purpose, but an even 
more compelling argument supporting such speculations is the intimate link that exists 
between Kac Moody algebras and the vertex operator construction of string theory 
which has been known for a long time. More specifically, it has been established that 
the elements making up a Kac Moody algebra of finite or affine type can be explicitly 
realized in terms of tachyon and photon emission vertex operators of a compactified 
open bosonic string [9], [14]. On the basis of these results, it has been conjectured 
that Kac Moody algebras of indefinite type might not only furnish new symmetries of 
string theory, but might themselves be understood in terms of string vertex operators 
associated with the higher excited (massive) states of a compactified bosonic string [ 14], 
[8]. 

Of what nature are these new symmetries then? In [17], it was argued that in the 
ultrahigh-energy limit of string theory, where the Planck mass goes to zero, an infinite 
number of linear relations exists between the scattering amplitudes of different string 
states that are valid order by order in perturbation theory. This suggests an enormous 
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symmetry which is restored at high energies. It may seem unreasonable to study such 
a queer limit but, in fact, it is a very conservative approach. For example, if we had 
not known the spontaneously broken symmetry of the electroweak interactions, we 
could have in principle discovered it at high energies where all gauge particles become 
massless again. In agreement with this analogy it is indeed a reasonable hope to find 
hints of the unbroken string gauge algebra by studying the relations between high 
energy scattering amplitudes. But since the latter, according to the above result, are 
essentially unique for a given number of scattered physical states, it is tempting to 
regard the Lie algebra of physical states itself as part of some universal gauge algebra. 
Note that we obtain, by construction, different Lie algebras of physical states when we 
consider inequivalent string backgrounds. Moreover, due to the presence of infinitely 
lnany massive physical states, each Lie algebra would have to be spontaneously broken 
almost completely. If we take this picture for granted then our task will be to make a 
clever choice for the specific string background in order to find a Lie algebra of physical 
states as large as possible. 'Clever' here apparently means "as symmetric as possible', 
and one is therefore naturally led to Minkowskian toms compactifications where all 
spacetime dimensions are chosen to be periodic (hence "finite in all directions" [24]). 
More specifically, for the 26-dimensional bosonic string there is a unique choice of 
maximal symmetry, namely the even selfdual Lorentzian lattice [I25,1 which indeed 
provides a "large" algebra - -  the infinite rank fake monster Lie algebra introduced 
by Borcherds [3]. To gain insight into the mathematical structure of  these symmetry 
algebras it is instructive to study toy models such as the 10-dimensional bosonic string 
compactified with momentum lattice//9,1. 

The above, to some extent heuristic arguments were recently put on more solid 
ground in [28]. In this paper, it was established that the fake monster Lie algebra is a 
symmetry of string theory in the sense that every physical state leads to a symmetry of 
the string scattering amplitudes. In view of this result one could now pose the question 
to which extent the vertices are already fixed by stipulating the fake monster Lie algebra 
as symmetry algebra. The degree of uniqueness would then give us a clue of how small 
the algebra is in comparison with the universal string gauge algebra. Certainly, they 
cannot be the same. For on the one hand it is clear that the string vertices describe 
the string field theory, on the other hand we know (see [24]) that the fake monster Lie 
algebra does not contain all Lie algebras arising from other string backgrounds. It is 
worth mentioning that the calculations were carried out in the so-called group theoretical 
approach to string theory which seems to be a powerful formalism to analyze the issue 
of string symmetries. 

Apart from possible relations to string theory, hyperbolic Kac Moody algebras 
might appear in the dimensional reduction of (extended) supergravity theories to one 
dimension [19]. Some evidence for this conjecture was presented in [25], where it was 
argued that the Matzner Misner group arising in the reduction of Einstein's theory to 
two dimensions can be generalized to a "Matzner Misner SL(3, !~)" group providing 
precisely the two nodes needed to extend the Dynkin diagram to a hyperbolic one. The 
null Killing reduction required for this investigation has been recently studied in [20], 
We also mention that these hidden symmetries may be related to S,T and U duality 
symmetries arising in string theories (see [18] for recent progress in this direction). 

Let us begin by reviewing how one constructs a Kac Moody algebra from a given 
Caftan matrix A = (aq), where the indices i, j are assumed to take d values (so d 
is the rank of this algebra), and where the matrix A may also be indefinite. The basic 
building blocks are the Chevalley generators ei, f i ,  hi, which are subject to the following 
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relations 

[hi, ej] -- ai jej ,  [hi, fj] = - a i j f j ~  (1) 

[el, fj] = ~hijhi. (2) 

The elements hi then automatically obey [hi, hi] = 0 and constitute a basis of the 
Caftan subalgebra of g(A). The free Lie algebra associated with A is obtained by 
forming multiple commutators of the elements { el, fi ,  hi I i} in all possible ways taking 
into account the above relations. To obtain the Kac Moody algebra g(A) itself we must 
still divide out by the Serre relations 

(ade i ) l -a"e j  = O, ( a d k ) l - a " f j  = 0. (3) 

It is a standard result [21] that this algebra can be written as a direct sum 

g(A) = n+ @ 0 • n_. (4) 

The subalgebras n_ and n+ are defined to consist of all linear combinations of multi- 
ple commutators of the form [f/,, [ f i2 , . . .  [fi . . . .  f /~] . . . ] ]  and [eil, [ei2, . . .  [ei,~_~, ei,~] 
...]], respectively, modulo the multilinear Sen'e relations (3). Since the subalgebras 
n+ and n_ are conjugate to each other, it is in practice sufficient to analyze either of 
them. In this way one gets for positive definite or positive semi-definite A just the 
finite or affine Kac Moody algebras, respectively (for the affine algebras, one still has 
to add an outer derivation to b due to the degeneracy of the Cartan matrix). When A 
is indefinite, on the other hand, the number of multiple commutators "explodes", and 
no manageable way to handle them is known that would be analogous to the realiza- 
tion of affine Kac Moody algebras in terms of current algebras. More specifically, the 
characteristic feature of indefinite Kac Moody algebras is the exponential growth in the 
number of Lie algebra elements associated with a root A as A 2 ~ -oc .  Thus for a 
given number of Chevalley generators %,  ..., ei,, the number of inequivalent ways of 
arranging them into non-vanishing multiple commutators increases exponentially with 
- A  2, where A = ri, + . . .  + r i ,  and ri are the simple roots associated with ei. This 
problem does not occur for either finite or affine Kac Moody algebras, for which A 2 = 2 
or 0 are the only possibilities. The problem here is not so much the enormous number of 
commutators, but rather the fact that all those multiple commutators which contain the 
Serre relation somewhere inside, or can be brought to such a form by use of the Jacobi 
identities, must be identified and discarded. Even the more modest question as to how 
many elements there are for a given root has defied all attempts at a general solution so 
far. For a limited number of cases, one knows explicit multiplicity formulas counting 
the dimensions of the root spaces, but the complete root multiplicities are not known for 
a single Kac Moody algebra of indefinite type (root multiplicities can be determined in 
principle from the Peterson recursion formula [23], but this formula quickly becomes 
too unwieldy for practical use). 

We are here mainly interested in hyperbolic Kac Moody algebras which are based 
on indefinite A, but obey the additional requirement that the removal of any point from 
the Dynkin diagram leaves a Kac Moody algebra which is either of affine or finite type. 
One can then show that the maximal rank is ten and that the associated root lattice 
must be Minkowskian, i.e. with metric signature (+ . . .  + [-). There are altogether three 
hyperbolic algebras of maximal rank. Of these, J~10 is not only the most interesting, 
containing Es and its affine extension E9 as subalgebras, but also distinguished by the 
tact that it has only one affine subalgebra that can be obtained by removing a point 
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from the Ez0 Dynkin diagram, while the other two rank 10 algebras contain at least 
two regular affine snbalgebras. Furthermore, the root lattice Q(EI0) coincides with 
the (unique) 10-dimensional even unimodular Lorentzian lattice/I9,1 [5], whereas the 
root lattices of the other two maximal rank hyperbolic algebras are not self-dual. For 
the further discussion it is useful to introduce the notion of level. Denoting the "over- 
extended root", which turns an affine into a hyperbolic Kac Moody algebra, by r_ 1 

(e.g. for Ez0, this is the left-most point in the Dynkin diagram, see below), one defines 
the level g E Z of a root such that positive g counts the number of e_l generators 
in [ell, [e~_, [ei~,_~, e~,,] ...]] (similarly, if ~' is negative, -~' counts the number of 
f-1 generators in [fil, [fi: . . . .  [.fi,_~, f i , ] . . . ] ] ) .  In terms of the corresponding root 
A = ri~ + . . . + tin, g is defined by 

g := - A . 6 ,  (5) 

where 6 is the null vector of the affine subalgebra obtained by deleting the over-extended 
node from the Dynkin diagram (in principle one could also use the null vector of other 
regular affine subalgebras to define a level which would be different from the above; 
however, then not all of the results to be stated below remain valid, e.g. the level-one 
states would no longer form the basic representation of this affine subalgebra). The level 
derives its importance from the fact that it grades the hyperbolic Kac Moody "algebra 
with respect to the affine subalgebra [7]. Consequently, the subspaces belonging to a 
fixed level can be decomposed into irreducible representations of the affine subalgebra. 
the level being equal to the eigenvalue of the central term on this representation (the 
full hyperbolic algebra contains representations of all integer levels). Multiplicities are 
known for levels g = 0 (corresponding to the affine subalgebra) and g = 1 (corresponding 
to the so-called basic representation). More precisely, we have [21] 

mult(a)  = Pd-2(1 -- ½A2), (6) 

where d is the rank of the algebra and the function Pd-2(n)  counts the partitions of n E N 
into "parts" of d - 2 "colours". For g = 2, one knows general multiplicity formulas in 
some cases, and in particular for/7710. Beyond g = 2, no general formula seems to be 
known, 

Now it is well known that, at least in principle, the string vertex operator construction 
can provide a more concrete realization of an indefinite Kac Moody algebra. To exploit 
it one interprets the root lattice as the momentum lattice of a fully compactified string, 
and flies to understand the multiple commutators in terms of string vertex operators 
associated with the excited string states. The real roots then correspond to spacelike 
(tachyon) momenta and the imaginary roots to either lightlike or timelike momenta. For 
the simple roots ri, all of which obey ri 2 = 2 (and hence are real), we have the following 
correspondence between Chevalley generators and tachyon and photon states: 

ei ~ [ri), (7) 

hi ~-+ ri(-1)10). (9) 

Here we use the shorthand notation r i ( - 1 )  - rl . o~_1 (where c~_~ is just the lowest 
string oscillator): furthermore, we define the states in such a way that cocycle factors 
have been absorbed and do not appear explicitly. The commutator between any two 
physical states ~> and ~ is quite generally defined by the formula (cf. [1]) 
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[% ~] := Resz (V(¢, z)~), (10) 

where V(~, z) is the string vertex operator associated with the state z/, (the residue 
formula here is completely equivalent to the contour integrals employed down in [14]). 
An important consequence of this formula is that the physical string states always form 
a Lie algebra (not to be confused with the Kac Moody algebra, see remarks below). 

Apart from yielding a concrete realization of an abstract algebraic structure, the 
string vertex operators construction has the advantage that the Serre relations (3) are 
built in from the outset: in this context they simply state that the string has no excited 
states "below" the tachyons. For finite and affine Kac Moody algebras, no other states 
beside tachyons and photons occur, whereas for indefinite A, excited string states 
of arbitrarily high levels must be taken into account. These will appear with certain 
polarizations, whose number increases rapidly with the mass level of the string state. 
Thus, in more physical parlance, the multiplicity of a root is equal to the number of 
linearly independent polarizations of the corresponding string state that can be reached 
by multiple commutators. This "easy" realization of the Kac Moody algebra might 
suggest thin the problem of classifying the Lie algebra elements is essentially solved 
by the string vertex operator construction. Unfortunately, this is by no means the case 
because the problem of accounting for the Serre relations is now replaced by another 
one: not all physical states can be obtained in terms of multiple commutators. Denoting 
the Lie algebra of all physical states by I;A, we rather have the proper inclusion 

~(A) C ~A- (11) 

In other words, the Lie algebra of physical states is well understood in physical terms, but 
the actual Kac Moody algebra g(A) is only a subalgebra thereof, and all the complications 
now reside in the way in which g(A) is embedded in the bigger, but simpler algebra gA. 
In particular, there are "'missing states", i.e. physical states that cannot be represented 
as multiple commutators of the Chevalley generators. A possible explanation for this 
phenomenon is the following. For continuous momenta it is well known that one can 
generate any physical state by multiple scattering of tachyons (multiple scattering is 
the equivalent of taking multiple commutators), so there can be no "missing states". 
This is no longer the case for the compactified string: when the tachyon momenta are 
on the lattice, certain "intermediate states" are no longer allowed, and therefore not all 
physical states are accessible in this way any more. The construction given in [12] is an 
attempt to make this intuitive argument more precise. As a further consequence of (11), 
the multiplicities are not given by the numbers of excited states of the string (which are 
of course well known), but only bounded above by them: 

multA < pd-l(1 1 2 _ - ~A ) - p d _ l ( - ½ a 2 ) .  (12) 

Only for Euclidean latices the two Lie algebras coincide, and we have equality in (11). 
To summarize: the root system of the Kac Moody algebra ~(A) is well understood 

though its root multiplicities are not completely known for a single example; whereas 
the Lie algebra of physical string states ~a has a much simpler structure (although it will 
not be easy to define a root system associated with it). Thus a complete understanding 
of (11) requires a "mechanism" which tells us how ~(A) has to be filled up with physical 
states to reach the complete Lie algebra of physical states. 

We mention that recently Borcherds [2] has introduced a new type of generalized 
Kac Moody algebras by admitting "'imaginary simple" roots (i.e. obeying ri 2 _< 0). In 
the present interpretion this means that one adds "by hand" those physical states not 
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obtainable as multiple commutators; the corresponding momenta will then be counted 
as new simple roots, whose multiplicity is simply given by the number of associated 
independent (missing) polarizations. However, this program has so far only been carried 
to completion for the 26-dimensional bosonic string, where special properties such as the 
no-ghost theorem play a crucial role. In this example, all missing states are under control 
(though not explicitly known): one has to adjoin a certain (infinite) set ofphotonic states 
as new Lie algebra generators to the ordinary Kac Moody generators in order to get a 
complete set of generators for the Lie algebra of physical states. The resulting algebra 
constitutes an example of a generalized Kac Moody algebra and has been dubbed fake 
monster Lie algebra (for historical reasons). The imaginary simple roots corresponding 
to the extra generators are just the positive integer multiples of the (lightlike) Weyl 
vector for the lattice II25,1, and their multiplicities are equal to the number of photon 
states (i.e. = 24). On the other hand, for algebras such as El0, not much is gained by this 
change of perspective, because supplying the missing generators "by hand" presupposes 
knowledge of what the missing Lie algebra elements are (not to mention the potential 
arbitrariness as to the number of ways in which this can be consistently done). So the 
problem identifying the elements belonging to t3a and not to g(A) in (11) remains. 

In [12] it is proposed to understand Kac Moody algebras of hyperbolic type, and in 
particular the maximally extended hyperbolic algebra El0, from a more "physical" (i.e. 
pedestrian) point of view by focussing on the "missing states" rather than on the Serre 
relations. For this purpose, we make use of a lattice version of the DDF construction. 
which provides the most direct and explicit solution of the physical state constraints in 
string theory [6]. The physical states, which by definition are annihilated by the Virasoro 
constraints, are simply obtained in this scheme by acting on a tachyonic groundstate with 
the DDF operators, which commute with all Virasoro generators and form a spectrum 
generating algebra. Our key observation is that for Kac Moody algebras of"subcritical" 
rank (i.e. d < 26), there appear longitudinal string states and vertex operators beyond 
level one, whose significance in this context has so far not been recognized to the best 
of our knowledge. The appearance of longitudinal states is already obvious from the 
known multiplicity formulas for level ~ = 2: for sufficiently large (negative) A 2, one can 

1 A2"~ (however, there may check that there are roots A such that mult(A) > pd-2(1 - ~S , 
also exist higher level roots whose multiplicity is less than the number of transversal 
states). This clearly implies that whereas transversal states are sufficient to characterize 
the elements of an ',fffine Kac Moody algebra (see below for further explanations of this 
point), theyare no longer sufficient for indefinite Kac Moody algebras. 

The necessary adaptation of the DDF construction involves a discretization of the 
string vertex operator formalism. As is well known [14], the allowed momenta of the 
string excitations must be elements of the weight lattice of the corresponding (affine or 
indefinite) Kac Moody algebra. For the definition of DDF operators one must choose a 
special Lorentz frame, in terms of which one can distinguish transversal and longitudinal 
DDF operators. On the lattice it is no longer possible to find a frame such that the relevant 
DDF vectors (see below for details) are still on the lattice, and we therefore are forced to 
make use of a rational extension of the (self-dual) root lattice as an auxiliary device. This 
is a curious feature of our construction, not encountered in previous studies. Despite the 
fact that our DDF vectors are not on the lattice, we employ them in our analysis because 
we can still use the associated (transversal and longitudinal) DDF operators to construct 
a complete basis for any root space of the Lie algebra of physical states g~.,,  of which 
the corresponding root space of the Kac Moody algebra g(A) is then a proper subspace. 
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As it turns out, longitudinal states are absent only for levels zero and one; this accounts 
for the comparative simplicity of the corresponding multiplicity formulas. 

A central role in the DDF construction is played by the tachyon momentum a (i.e. 
a ~- = 2) of the ground state la), on which the physical states are built by means of 
DDF operators, and a null vector k, subject to the condition k-a  = 1. For continuous 
momenta a, we can always find suitable k = k(a); moreover, we can rotate these vectors 
into a convenient frame by means of a Lorentz transformation [26]. On the lattice, 
however, the full Lorentz invariance is broken to a discrete subgroup (containing the 
Weyl group generated by the fundamental Weyl reflections), and for generic roots A, 
the associated DDF vectors a and k will not be elements of the root lattice in general. 
We can, however, still rotate the vectors a - nk into thefundamentaI Weyl chamber 
for 'rz sufficiently large. The lightlike momentum k is then proportional to the null-root 
5 characterizing the affine subalgebra; the latter is always in the fundamental Weyl 
chamber. Now we invoke the (obvious) fact that any root A in the fundamental Weyl 
chamber can be represented in the form 

A = @ - I  + M 6 + b ,  (13) 

where ~ is the level of A and b an element of the Es-root lattice Q(E8) (b need 
not be positive by itself as only M6 + b must be positive). We then define the DDF 
decomposition of A by 

A =  a - nk(a) ,  (14) 

where 

k ( a ) : =  - 3 6  (15) 

and 

1 2 n = l - g A  = l + ( M - ~ ) g -  ~b.1 2 (16) 

By construction, a obeys a 2 = 2 and is therefore associated with a tachyon state, and n 
is the number of steps required to reach the root A by starting from a and decreasing 
the momentum by k at each step (n is non-negative because A 2 _< 2; note also that k 
is always a negative root, so A is positive for all n). Obviously, for g > 1, neither k 
nor a belong to the lattice in general. As a consequence, the intermediate DDF states 
associated with momenta a - m k  not on the lattice will not correspond to elements of 
the algebra, but they are nonetheless indispensable for the construction of a complete 
basis for any given root space. On the other hand, states associated with the root A do 
belong to the algebra of physical states, and the DDF decomposition enables us to write 
down all possible polarization states associated with the root A in terms of transversal 
and longitudinal DDF states; the totality of these states constitutes the complete set of" 

(A) elements in the root space gzt9.1' whose dimension equals pd- 1 ( 1 - 1 A 2 ) -pa_I(-~A').I 
Explicitly, given a tachyon momentum a, the physical states are 

A2 ~, ( a ) . . .  AL~M (a)£_,~ (a) . .  ~ £_,~ . (a) la) ,  (17) 

explicitly indicating the dependence of the DDF operators and their polarizations on 
the tachyon momentum a and the associated lightlike vector k(a) = - ~ 6, and assuming 
'n, > 2 to exclude null states. The transversal DDF operators associated with a tachyonic 
momentum a and its light-like momentum k are defined by the well known formula 
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A~,~ = Res~ [ / ; (~i( - l )  I - ink}, z)], (t8) 

i.e. is given by the contour integral of the vertex operator corresponding to the photon 
state (i'c~_ 1[ ~ 6). The transversal DDF operators always form a (d-2)- fo ld  Heisenberg 
algebra. Note, however, that we have to deal with a whole plethora of transversal 
Heisenberg algebras, namely one for each admissible pair (a, k); this is in contrast to 
the single set of primitive oscillators, { c~ l l  _< # _< d, m ~ ~ }, which makes up the 
full Fock space when acting on the groundstates. The longitudinal DDF operators are 
given by more complicated (but also standard) expressions; they involve a logarithmic 
contribution (cf. [4]). Again, for each admissible pair (a, k), we end up with a different 
set of operators. An important technical point is that the longitudinal vertex operators 
cannot be associated with definite states, as their action cannot be defined on all of 
Fock space, including the vacuum state 10). Put differently, they do not correspond to 
summable operators in the sense of [ 10]; in this respect, vertex algebras encompassing 
longitudinal states transcend the definition given in [1], [10]° 

We quickly summarize some pertinent results about El0. It is defined from its Cartan 
matrix in terms of multiple commutators of the Chevalley generators as described above. 
The root lattice Q(EIo) of El0 is the unique even self-dual II9,1 in ten dimensions, which 
can be defined as the set of points x = (Xl , . . . ,  x9 Ix0) in 10-dimensional Minkowski 
space for which the xu's are all in Z or all in Z + ½ and which have integer inner product 

1 1 with the vector I = (1 . . . ,  g ] ~), all norms and inner products being evaluated in the 
Minkowskian metric x 2 = x 1 + . . .  + x 9 - x 2 (cf. [27]). According to [5], a set of positive 
norm simple roots for II9,1 is given by the ten vectors r - l ,  r0, r l , . . . ,  r8 in 119,1 for 
which r i2 = 2 and ri .p  = -1  where the Weyl vector is p = (0,, 1,2, . . . ,  8138) with 
p2 = _ 1240. The corresponding Coxeter-Dynkin diagram looks as follows 

/ 
• • • * * * ~' * * ( 1 9 )  

and is associated with the Cartan matrix: 

A = ( a i j )  = ( r i  .rj) = 

2 - 1  0 0 0 0 0 0 0 0 
- 1  2 - 1  0 0 0 0 0 0 0 

0 - 1  2 - 1  0 0 0 0 0 0 
0 0 - t  2 - 1  0 0 0 0 0 
0 0 0 - 1  2 - 1  0 0 0 0 
0 0 0 0 - 1  2 - 1  0 0 0 
0 0 0 0 0 -1  2 - 1  0 - 1  
0 0 0 0 0 0 - 1  2 - I  0 
0 0 0 0 0 0 0 - 1  2 0 
0 0 0 0 0 0 - 1  0 0 2 

Let us first describe the E9 subalgebra in terms of physical states. The Caftan 
subalgebra of Elo (and also of Eg) is spanned by the states 

6(-1)10) =: 1~', (20) 

(r_l +,~)(-1)10) =: d, (21) 

~i(-1)10) for i = 1 , . . . ,  8 ,  (22) 

where I i  represents the central element, d is the derivation of/?;9, and {~i(-1)[0) I i = 
1 , . . . ,  8} span the Caftan subalgebra of Es. This is the standard "'light-cone" basis of 



205 

~(E9) in tile sense that K and d are lightlike. The allowed (positive and negative) roots 
are all r E IIgj obeying r 2 = 2 and r -6  = 0 (hence having no r_l  component), and 
ru6 for m E Z x. These correspond to the tachyonic states Ir) and the photonic states 
~ i ( -  1)Imp5) (where ( i  6 = { i  r_  1 = 0) with multiplicities 1 and 8, respectively. The 
following commutation relations are already enough for a complete characterization of 
E9 

[~/(-1)10 ),ff(-1)10)] = O, (23) 

[,!(-1)10),5~(-1)1~,~)] = ~(w-,SK~(-1)l~(5),  (24) 

Ir)] 

1)lm6), Ir)] 

= 01.r)lr) ,  (25) 

= mh ....... 0((~ ~ ) 6 ( - 1 ) ] 0 ) .  (26) 

= ( ~ i ' r ) l r + m 6 ) ,  (27) 

0 i f r - s  _> 0, 
[Ir), Is)] = ~(r s ) l r+  s) i f r - s  = - 1 ,  (2S) 

- r ( - 1 ) l m 6  ) i f r + s = m 6 ,  

for ~t, ~ E h(Eg) and E9 roots r, s. In the last formula e denotes the cocycle factor. The 
bra and ket notation used here may appear a bit unusual (and is not really necessary 
at this point), but will prove invaluable as one goes to higher level elements of the 
hyperbolic algebra. The multiplicities of the corresponding Lie algebra elements can be 
read off directly, and are given by 1 and 8, respectively, for the tachyonic mad lightlikc 
roots in accord with the formula (6) above• 

The level-one elements exhibit'already a slightly more involved structure. Inspection 
of the inverse Cartan matrix shows that the only such roots in the fundamental Weyl 
chamber C are of the form (for k-1 ¢ l~) 

A = r-1 + (2+ k_l)6,  (29) 

corresponding to the DDF decomposition (14) with a = r_ l ,  k = - 6  and n = 2 + k-1. 
Since 'all these vectors are elements of the lattice, we can straightlorwardly apply the 
DDF construction to obtain the physical states 

A ~  ml • A *--Nra N IF_ 1 ), (30) 

where mi + . . .  + m N  = 2 + k_l and with the polarization vectors chosen such that 
~: .~j = bq and ~i.6 = ~; . r_l  = 0 for i, j = 1 , , . . ,  8. In terms of multiple commutators, 
these states correspond to 

• . . ,  • . .  j F i A )  [~il(-1)lml,5),  [ [~g,~(--1)imN,5), lr-1)] ]] E ~x0 ' (31) 

All relevant level-one states can now be obtained by acting with the/~9 Weyl group on 

these states and polarizations. Denoting the rotated DDF operators by A _ ~  - A ~(~') - - - - r r z  , 

we obtain the new states 

~m(iD Am(iN) . . ,  - - ~ , " "  -~N  rotr_l)) (32) 

in this fashion. The so-called basic representation is spanned by 'all elements of tile lorm 
(32); the highest weight vector of the representation is easily seen to be Ir_ 1 ). 
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At level two, a general multiplicity formula was derived in [22]; it reads 

- ~ A ) ,  mult(a) = ~(3 1 2 

where 

(33) 

(34) 
n > O  

and ¢(q) is the Euler function. The special example we have investigated in [12], is the 
level-two root A = A7, dual to the simple root r7, which has A~ = - 4  and is explicitly 
given by 

[ 7 ] = (0, 0, 0, 0, 0, 0, 0, 0, 012), (35) A7= 2 4 6 8 10 12 14 9 4 

where the first notation with square brackets refers to the simple roots in the above 
Dynkin diagram. We can now invoke the results of [7] which tell us that level g states 
can be obtained as (g - 1)-fold commutators of level-one states, for which we can use 
the representation (32). Our analysis reveals that the following states form a complete 

F(AT) (no summation convention!): basis of the root space ~10 

A~2AJ__I [a) for i, j arbitrary, 

A~_lAJ_tAk_lla ) f o r i g j 4 k 4 i ,  
{Ai_3- Ai_IAJ_IAJ_I}Ia ) f o r i4 j ,  

{5Ai_3 + Ai_lAi_~Ai_ 1 }]a) for i arbitrary, 

{Ai_3 - A~_I~z_2}I a) for i arbitrary. (36) 

Altogether, we get 64 + 2.56 + 2.8 = 192 states in agreement with the formula (33) 
predicting ~(3) = 192 [22]. Despite the fact that this number coincides with the number 
of transversal states, our result explicitly shows the appearance of longitudinal as well 
as the disappearance of some transversal states. The above states form irreducible 
representations of the little group; in particular, the longitudinal DDF operator is inert 
under the little Weyl group. To appreciate the simplicity of this result readers need 
only contemplate the problem of classifying the states in terms of 75-fold multiple 
commutators of the Chevalley generators for this example. 

Having a complete description of the root space ~(AT~ ~10 , we can now in principle 
explore root spaces associated with other level-two roots of the form A = A7 + n6 
(i.e. the root string associated with A7) by commuting the states (36) with the E9 
elements ~i(-1)lm6).  From (18) it is evident that all states obtained by acting with 

il iM a product A_2,~ ...A_2,~M on any of the states (36) belong to the root space of 

A = _/1_7 + ( m l  + • • • mM)6 (note that each operator A~_2,~(a) shifts the momentum by 
m6!). However, it is also clear that we cannot obtain all root space elements in this way. 
For this, it is necessary to calculate DDF commutators between appropriate elements of 
the form (32). An alternative, more elucidating way might be to consider the action of 
the Sugawara generators defined by 

£ s ~ g . -  1 { 8 } 
• i i • × ( 3 7 )  

n E E  i=1 S E Areal (Eg) 
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on the states (36); here, h v = 30 is the dual Coxeter number of  Es, the level is g = 2, 
and the normal-ordering of the operators adlr ) is chosen as 

× f adls+,~6 ) adlt+,~6 ) if m _> n, 
X adls+,~6) adlt+,~6) x := 1, adlt+,+6 ) adls+~6) if m < ~z, (38) 

for E ,  roots s, t and m,  n E Z . W e  get 

C~g la) = 0 (39) 

for m > 1. Furthermore, when evaluating rS~g 
_ n 0 on the ground state la), we find 

A~ la) = -2la),  and obtain 

£~ug. la) = l l a ) ,  (40) 

showing that the state la} is a highest weight vector of  weight h = ~ for the level-two 
Sugawara generators. In view of the results of  [22], we therefore expect these states to 

a and h = ~6" The problem that belong to the irreducible Virasoro module with c = 
remains is to relate the Sugawara generators to the longitudinal DDF operators. If  this 
can be done, a completely explicit description of all level-two root spaces is within 
reach. 

Let us finally return to the issue of missing states in more detail. Comparing (6) with 
(12), it becomes obvious that tachyonic and photonic physical states are necessarily 
transversal, so that 

(A) LT(A) for A 2 > 0 (41) ~119,1 ~ ~ 1 0  

(of course, for A 2 > 2, both spaces are empty). This means that there are no missing 
states for A 2 => 0. But already for the massive spin 2 states, we encounter one longi- 
tudinal physical state that surely does not belong to the Kac Moody algebra El0. It is 
clear that there is only one weight in g of  norm - 2 ,  namely the fundamental weight 
A~ = r_~ + 26. Since the latter is a level-one element, which we know to occur in E~0 
just with transversal polarizations, we infer that the longitudinal state ~_~ Ir_l ) is not 
contained in the root space p(A0) and thus represents a missing state, so ~ 1 0  

~t(A0) (A0) , 
/~9,1 ~ El0 "¢ R . £ _ 2 l r _ i ) .  (42) 

Acting with the full Weyl group on the missing state, we obtain the associated orbit 
of  missing states in El0. Our detailed analysis of  the root space for A7 now enables 
us to discuss the case of  norm - 4 ,  for A7 is the only weight in the fundamental Weyl 
chamber with this property. From the multiplicity formula we learn that there have to 
be 201 - 192 = 9 missing states, and in view of our DDF basis (36) we write 

~Lr9,1(ZT) ~ ~10m(a~)+ span~{£_3la);  A*_3la),i  = 1 , . . . ,  8}, (43) 

which can be also acted on with 213(E~0) to find its analogue in other chambers. 
The above formulas naturally suggest two ways of how to proceed. If  we are 

primarily interested in El0, we can try to systematize the way of splitting of g~,~ 
into E~0 states and missing states. In other words, we are seeking a mechanism which 
satisfactorily answers the following question: How do the missing states decouple from 
the El0 states? That this idea is not far-fetched shows the example of  the 26-dimensional 
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bosonic string. There we separate the longitudinal physical states from the transversal 
ones by introducing a positive semidefintite contravariant bilinear form which renders 
the former states to be null physical states. If one prefers the modern cohomological 
treatment then the decoupling is furnished by the nilpotent BRST operator and its 
cohomology. Thus we may rephrase the above question as: Is there a cohomology 
describing how F~lo is embedded in the Lie algebra of physical states, ~/9.1 ? 

The other point of view, as advocated by Borcherds, involves a generalization of 
the framework of Kac Moody algebras. We know how a large part of 9u9,,, namely the 
/~10 part. can be formulated in terms of generators and relations. The idea then is to 
extend this approach to the whole Lie algebra. We would have to find an additional set 
of Chevalley generators which, when adjoined to the generators for Elo, produce all 
physical states as multiple commutators. For example, we certainly have to add £_ = !r_ i ) 
as such a new generator. This amounts to saying that Ao constitutes an imaginary simple 
root with multiplicity one. Kac Moody algebras allowing for imaginary ( -  nonpositive 
norm) simple roots were invented by Borcherds [2]. So far, the introduction of this new 
generator seems to be very natural and appealing, but the second step of the procedure 
is subtle and becomes cumbersome when repeatedly done. In order to decide which 
missing states for the case of A7 have to be chosen as new generators, we need to take 
into account the previous additional generator 12_2 [r_ t). Thus we ought to calculate 
the commutator [Is), l]_2[r)] (where s + r + 28 = A7) and express it in terms of the 
DDF basis for ~ [ ~  to see which missing states now do appear. We have not completed 
this calculation yet, for we are mainly interested in E~o itself and hence focus on the 
first approach. Alternatively, it is also possible to determine recursively the imaginary 
simple roots by anticipating g~rg,, as a Borcherds algebra and then plug its well-known 

- ~ r  ) root multiplicities, p9(1 1 2 _ Pg(-½r2), into the Weyl-Kac-Borcherds denominator 
formula [2]. 

So, what have we learnt from our analysis of the root space F(A~) and how may ~10 
it be relevant for other hyperbolic Kac Moody algebras? Our approach suggests that 
root spaces of/{10 and other algebras of that type carry an additional structure related 
to polarization; this differs from the conventional point of view that a root space is 
essentially, up to its dimension, a black box. The DDF framework, as developed here, 
provides adequate tools for the analysis of the complicated structure of hyperbolic 
algebras. 

In particular, we now have a deeper understanding why Frenkel's conjecture [8] is 
wrong. Inspired by the example of the 26-dimensional bosonic string and the results 
about the canonical hyperbolic extension of zu(2) [7], he conjectured that for every 
hyperbolic algebra 9 of rank d one has, for any root r, dim ~(~ < Pd-2(1 -- ½r 2) as 
an upper bound. This conjecture was disproved in [22] by establishing the level-two 
multiplicity formula for El0 as a counterexample. We argue that the 26-dimensional 
bosonic string represents a rather untypical example, because there the longitudinal 
states span the radical of the contravariant bilinear form which is divided out. Hence 
only transversal states survive and we end up indeed with the exact multiplicity formula 
p24(1 - fir2). In the generic case, on the other hand, the longitudinal states do appear 
as Lie algebra elements. In terms of the DDF realization the following picture emerges. 
At level-zero and level-one we naturally obtain all transversal states giving the affine 
subalgebra and its basic representation, respectively. By commuting transversal level- 
one states, which is necessary for generating higher level elements, we cannot escape 
from producing longitudinal states, too. Hence there is no reason to expect a connection 

- ~Tr"), which just between higher level root multiplicities and the formula pa l -2 (1  1 
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counts the number of transversal states. Of course, we start off from the transversal 
level-one states, but the more commutators we take between them the more subtle the 
entanglement of longitudinal and transversal states becomes. 

For example, look at the canonical hyperbolic extension of ~u(2) whose level-two 
1 2 root multiplicities coincide with the number of transversal states, p~(1 - ~r ), up to 

r 2 _< - 3 6  (see [21, Table H3]) and then drop below this bound. We conjecture that, 
when we perform the DDF construction for this example, we shall see at level-two from 
the very begimfing longitudinal states to appear and transversal states to be missed, 
even though the multiplicity superficially suggests the existence of transversal states 
alone. For higher levels we predict an increasing mixing of longitudinal and transversal 
states which manifests itself in an increasing deviation of the multiplicities from the 
nulnber of transversal states. Thus the DDF analysis of a single level-two root space of 
£~0 allows us to make some reasonable predictions for some features occurring in other 
hyperbolic algebras of that type. 
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