

Tight bounds for some problems in

computational. geometry: the complete

sub-Iogarithmic parallel time range

Sandeep Sen

MPI-I-93-129 July 1993

Tight bounds for some problems in computational geometry .
the complete sub-logarithmic parallel time range

(extend~ abstract)

Sandeep Sen *

July 9, 1993

Abstract
There are a number of fundamental problems in eomputational geometry for which work-optimal

aJgorithDls exist which have a parallel running -fuDe of O(log n) in the PRAM model. These include
problems like two and three dimensional convex-hulls, trapeSoidal decomposition, arrangement coDStruc:.­
tion, dommance among others. Further improvements in running time to sub-logarithmic range were not
considered libly because of their close relationship to so~ for which an O(log n/ log log n) is DOwn to
hold even with a polynomial number of processors. However, with recent progress in padded-sort aJgo­
rithms, which circumvents the conventionallower-bounds, there arises a natural question ab out speeding

. np algorithms for the above-mentioned geometrie problems (with appropriate modific:ations in the output
spec:ifica.tion). We present randomised 'parallel aJgorithms for some-fundamental problems like convex­
hulls and trapezoidal decomposition which execute in time O(Iogn/log1:) in an n1: (1: > 1) processor
CRCW PRAM. Dur algorithms do not malte any assul!lptions abont the input distribution. Our work
rdies hea.vily on results onpadded-sorting and some ea.rlier resultsof Reif and Sen [28, 27]. We further
prove a matching lOwer-bound for these problems in the bounded degree decision tree.

1 IntroductioD

Designing efticie1it parallel algorithms for varlous fundamental problems in computational geometry has
received much attention in the last few years. There have been two distind approaches to this area of
research, namely the detemWüstie methods and algorithms th.at use random sampling. One of the earliest
worl: in this area is due to Chow [10], who developed algorithms for a number of fundamental problems which
were detenninistie and executed in inter~nnection networks with polyloganthmie running time. A more
general approach fO"l deterministie PRAM algorithms was pioneered by Aggarwal et al. [1.] who developed
some new techniques -for desigDing efticient parallel algorithms for fundamental geometrie problems. A
number of the most efticient determi:nistic PRAM algorithms are dueto Atallah, Cole and Goodrich [3] who
extended thetechDiques -used by Cole [14] for bis parallel mergesorl algorithm. Their technique is caD.ed
CtuC4detl mtrging and has been subsequently used (independently by Chandran [8]) for anumber of other
problems. Note that most of the geometrie problems in the context of resWch in parallel algorithms have
sequential time complexity ofO(nlogn) and a typical performance that one aims to attain is O(1ogn) parallel
time using an optimal numbei ofprocessors.

In an independent development, Reif and Sen [28] were also able to deriveO(log n) time optimal algo­
rithms for point-Iocation and uapesoidal decomposition whieb were randomized. Later in [27], they extended

.Presenf; address: Depanment of Computer Science and EzasjneeriDg. ~dian Institute of Tedmology. New Delhi 110016.
India. Work done .. hen the author was visitiDg Max-Phmk Institute for Informatik. Germany

1

their methods to give optimal algorithms for 3-D convex hu1ls (and hence2-D Voronoi diagrams) on the
CREW PRAM model. At the core oftheir algorithms were random sampling techniques which had also been
introduced by Clarkson [11, 12, 13]and HaussIer and WeId [19). In addition, a new teSa.mpllng technique
called Polling was used successfully to derlve the parallel algorithms.

The randomized algorithms drew inspiration from the parallel sorting algorithm of Reischuk [30] and some
of these algorithms were extended to the interconnection network model (without degradation of asymptotic
complexity) in [26]. This can be viewed as being similar to the eft'orts of Reif and Valiant- [29] who were
able to adapt Reischuk's algorithm in theinterconnection network model successfully although they had
to resort to more sophisticated sampling techniques. Because of their close resemblance · to the randomised
sorting algorithms, the algorithms of [28, 27] appear to be more directly dependent on the present state-of-~
of the complexity of randomised par~el sorting. With recent results in the area of padded-sorting (to be
referred to aS padsort in future), one is tempted to conjecture that these must have some consequences in
the area of geometric problems. Of course, like padsort, the output specification of these problems have to
be suitably modified to circum.v.ent the lower bound of O(1ognjloglogn)) for input size n using polynomial
numb~ of processoIS (Beame and Hastad [5]). Roughly speaking, the problem of padsort involves ordering
the input of size n into an output array of size m. ~ n. When m = n, (or actually m is very close to n) the
lower-bound of Beame and Hastad applies. This problem was first introduced by MacKensie and Stout [22]
and recently· Hagerup andRaman [18] showed that. one can padsort n elements ~h kn proCes50IS in time
O(1ognjlogk) in a CRew PRAM as long as m > n+njlogn (actually they give a trade-offbetween mjn
and the number of processoIS). These bounds are asymptotically tight owing to the lower bound results in
[2,4; 7] for the parallel-comparisontree model. These imply that the running time of any comparison based
parallel algorithm for padsort is O(1og nj log k) using kn processoIS.

To tUe advantage of the developments inpadsort, we will modify the output specüications of the problems
relevant to this paper. For example, for tw~dimensional convex hulls we wiIlre!ax the output to be an ordered
sequence of the hull vertices which could be embedded in an array of slightly Jarger size. The previous lower­
bound on padsort would imply a similar lower bound for this version of the convex hull problem. Even by
relaxin.g the constramt of an ordered output,we pIOve a matching lower-bound for an,. teasonable output
specüication of tbe convex hull, namely identifying the hull vertices.

In this paper, we present algorithms for the following problems - two and thtee dimensional convex hulls
and trapeioidal decomposition which achieve a running time of O(1og nj log k) with kn processoISm a CRCW
PRAM. These in tum imply similar algorithms for two dimensional voronoi diagrams and triangulation of
simple polygon. The bo~d for three dimensional convex-hull holds for k > log n . . Since the algorithms
resemble those in [28, 27],;we will. be somewhat teISe in our description and focusmore on portions that will
be cruc:ial for the analysis. We will eDcourage the reader to refer to the previous papers for more details of
the individual . algorithms for specific problems.

The rest of the paper is organized as fonows. We begin by reviewing some of the consequences of padsort
in a more formal setting. Thenwe illustrate the litility of padsort on a simple example where the results
on padsort can be applied almost directly to obtain a fast algorithm. In section three we review. a general
randomized divide and conquer strategy which forms the backbone of our algorithms. In section four, we give
details of the imp.ementations ofthe general strategy for the individual problems. We conclude by proving
a matching lower bound for some of these problems on the fixed-degree algebraic decision-tree model.

2 Padded Sorting and Parallel Algorithms

A cruc:ial factor in the performance of the padsort algorithm is the size of the output array m or more
specifically the ratiomjn. If m = (1 + A)n then Ais called the padding jactor. A slightly weaker version of
the main result of Hagerup and Raman can be stated as

2

Theorem 2.1 Given n elements from an orderet! universe, these can be padded-sort with kn CRCW pro­
cessors in Ö(log n/ log k) time with a padding-factor). ::; 1/ log n. Moreover between any log n consecutive
input keys, there is no more than one empty cell in the output array.

A nice consequence of Theorem 2.1 is to ordered searching. The output of the padsort algorithm makes it
almost directly applicable to search for predecessor of a given key value. One simply probes the elements like
a normal bin~y search except that when an empty cell is probed, we make an extra probe in the adjoining
cello By consequence of Theorem 2.1, two adjacent cells cannot be empty. Alternatively. one may simply
fill up the empty cells with the contents of the previous cell. and perform a usual binary search. The same
holds true for any k - ary search. In summary

Lemma 2.1 The output 01 the padded-sorting algorithm can be used lor performing k-ary seaf'Ch on. an
n-element ordered array in O(1og nj log 1c) steps.

Equipped with the above results, we can design a fast parallel algorithm for finding the dominating set
in plane flom a set of n input points.

Algorithm Dominance

O. SoIt the given set of points with respect to z coordinate.
1. If the problem me is larger than a certain threshold, partition the problem into 1c (nearly)
equal subproblems based on the z-coordinates and call steps 1-3 recursively. Else solvedirectly
and also compute the maximum y-coordinate and then return.
2. Let the maximum of the y coordinate in each of the intervals and denote them as Y$, 1 ::; i ::; 1c.
3. To merge the subproblems, we compare the y coordinate of each· element oUhe i-th subproblem
with lj, j > i. For the surviving elements, (whose y coordinate is larger than lj's) we compute
the maximum y-coordinate. This should be the element which has the least z-coordinate ainong
the survivors.

The analysis of this algorithm is quite straightforward. Each of the steps 1-3 can be performed in 0(1)
time using 1cn processors. We discuss only step 3. With 1c processors per element and concurrent read and
writes, each element can find outif it survives in constant time. To find out which is the least (in terms
of z coordinate) element that survives, we can use the result on finding the smallest index '1' element in a
boolean array. This takes constant time using n processors (see Ja'Ja' [20], Ex 2.13). The recurrence for
steps 2 and 3 can be written as

T(n) = T(n/1c) + 0(1)

which is O(1ognjlog1c). Note that only the first step is randomized so that the following is almost an
immediate consequence of the result of padded sorting.

Theorem 2.2 The dominating set oln points in a plane can Oe computed in Ö(1ognjlog1c) using Jcn CRCW
processors and this is optimal.

Note that if we require ou ou~put to be the 'staircase' in a soIted order then this algorithm achieves
optimal speed-up. However, we will establish the stronger notion of optimality which is independent of the
ordering criterion in sedion 5.

Processor allocation is a common problem that one encounters in most parallel algorithms. In this
context Hagerup [17] defines the problem of interval allocation. as the following; Given n non-negative integers
Zl'--' Zn, allocate memory blocks ofsizes Zl--, Zn flom a base segment ofme 0CEi=l zi) such that the blocks
don't overlap_ Bast et al. [16] give a very fast algorithm for this problem which can be stated as

Lemma 2.2 The inteM1alallocation. problem 01 size n can Oe solved in Ö(1c) time using nlog(l:) n CRCW
PRAM processors.

3

We shall use this result for processor allocation in in the context of ow: parallel algorithms especially as
a substitute for exact prefixsums whenever we have to compute it faster than O(logn/loglogn). Note that,
in such cases the processors exceed O(nlog n) so that there is no problem in applying the previous lemma.

A common scenario for our algorithms is the following. Suppose s is the number of subproblems (s< n)
and each of the input elements for the subproblems has been tagged with an index in 1. .. s. Then these can
be sorled on their indices into an array of size 5(1 +,\) from the previous theorem where 5 is the sum of
the sizes of the sub problems. A processor indexed P is associated with the element in the cell numbered
r P / S]. 1 In most cases, 5 = n, so that if we have kn. processors, then the number of processors allocated
to a sub problem i of size Si is at least Si • k/(l + '\). The processor advantage (the ratio of the number of
processors to the subproblem size) is not as good as it was initially, namely it is k/(l + ,\) in,stead of k.
Bowever, for our purposes it will make liule difference because of the properly that the number of recursive
levels in our algorithm will be boundedby O(1ogn/logk). Bence the processor advantage at any depth of
the recursion is no WOISe than k/(l + ,\)°(101"/101 1:) which is still O(k). In our future discussions, we shall
implicitly use this properly for processor allocation.

3 Fast randomized divide-and-conquer

For a number of efficient algorithms in computational geometry, Reif and Sen [28, 27] bad used. a versatile
approach which can be called randomised divide-and-conquer. We shall recapitulate the mam. general steps
of their strateg}' for the problems under consideration

(1) Select O(1ogn) subsets ofrandom objects (in case of 2-D hulls these were half-planes) each
of size LneJ for some 0 < € < 1. Each such subset is used to p~ition the origiD,al problem
into smaller sub-problems. A sample is 'good' if the ma.ximum sub-problem size is less than
O(n1-elogn) and the sum ofthe sub-problem sizes is lesS than Cn for some constant c. From the
probabilistic bounds proved in [13,28], it is DOwn that the first condition for a 'good' sampie
holds with high probability. From here it followstha.t the sum of the sub-problems is no more
than Ö(nlogn). Bowever, the second condition which bounds the blow up in the size ·of the
sub problems by ci. constant factor is DOwn to hold with with probability about 1/2.
(2) Select a sampie that is 'good' with high probability using Polling. At least one ofthe log n
sampies in the previous case is 'good' with high·probability. Polling [27] is a sampling tedmique
which allows us to moose a 'good' sampie efliciently. This high probability bound is crucial to
bound the running time ofthe algorithms byO(1ogn).
(3) Divide the original problem into smaller sub-problems using the 'good'sample. The maDmum
size can be bound by O(n1-elogn).
(4) Use a Filtering procedure to bound the sum of the sub-problem sizes by some fixed measure lü:e
the output size or input size. The reason far this being that the probabilistic bounds in step (1)
bounds the sum of the sub-problems by Cn. If this increase by a multiplicative constant continues
over each recursive stage, after i stages, the input size will have increased by a factor of2Cl(i). If i
is large (that is larger than a constant), then the parallel algorithm becomes somewhat inefticient
affecting the processor time produd bound. This jiltering procedure is problem dependent and
uses the specific geometry properties of aproblem.
(5) If ihe size of a sub-problem is more than a threshold, then call the algorithm recursively eise
solve it using some direct method. At this stage the sub-problem sizes are so small (typically
O(1og"-n) for some constant r)that relatively inefficient methods work weIl.

The procedure used. for dividing the sub-prob1ems can often be reduced to point location in arrangements
of hyperplanes, namely using a locus based approach. If one uses the Dobkin-Lipton method of searching,

1 We will avoid using the c:eiling and Soor f1mctiODS whell itis dear from the context

4

then this reduces to searching in ordered lists and the preprocessing reduces to sorting (padsort sufiices).
The following result is a corollary of the the above observations.

Lemma 3.1 Given h kyperpw.nes in d dimensions, 11 data.;.s~ure for point IDeation can be constructed in
O(d .logn/logk) time v.sing k ·n2"-1 processors. Tkis data-structure can be used to do point location in
O(d·log n/ log m) steps v.sing m processors for eack point.

In the locus based approach to partitioning the problem, each region in the arrangement gives öse to
a set of elements which are labeled by the sub-problem they belong to. Each region in the arrangement is
preprocessed, to determine its ·(unique) associated subproblems. Even though the processor complexity grows
exponentially, for small (fixed) dimension, this approach an be used effectively. Note that even to 'read' the
set of subproblems for a number of points, we have to solve a processor allocation problem; for this we shall
use the resuIts on interval allocation stated in the previous section. Assume that we have kept a count of the
number of subproblems associated with each region. This an be done easily during the preprocessing stage
by 'compressing' a bit vector. Now we lUD the algorithm for interval allocation on the counts associated
with each point. This enables us to rite the set of subproblems associated with each intervaL We nat
sort them so that processor allocation an be done using the observation of the previous section. Note that
although the total size of tbe intervals following the interval allocation algorithm can blow up by a constant
factor, an application of padsort reduces that considerably (no more than the padding-factor).

Polling involves selecting O(n/log2 n) input objects to test a sampie instead of testing a sampie with
respect to the entire input set. Since there are O(logn) subsets, this saves the atra work we would have
to do if we iested the 'goodness' of the sampie on the entire input. The Polling lemm4 [27] guarantees
that with high probability we an choose a good sampie using this method. Since the test for 'goodness' is
carried out independently for each of the sampie, this part of the algorithm is inherently parallelizable even
on the networb. To each of the O(log n) sample that we apply polling, we use the locus-based approach
described beiore to test the 'goodness' of the sampie. We simply select that sampie which gives us the
smallest (estimated) blow-up ofthe problem size. We also make a note that although Polling appears crucial
to obtaining optimal bounds when number of processors is about n, it is no longer so when processors
exceed about n21os1o~ ... That is because any sample (with high probability) does not blow up the size of
the subproblems by a factor of O(1ogn). Since the depth of the recursion is bounded by O(loglogn)j the
cumulative blow-up is no more than the mentioned value. By observing that O(1og n/ log k) is asymptotically
thesame as 0(1ogn/log(1:121oS1o~ ..) for k exceeding O(nloglog2 n), we an dispense with polling for larger
number of processors.

Perhaps the step that is most. specmc to a problem is ihe Filtering step where we have to use some
geometrie properties of the problem. While Polling controls the blow up by a constant factor at each
recursive call, there could be blow up bya constant factor, say c. Over j levels this could grow up to
O(ci). For any non-constant j this could be significant. Hence, we need to further control the blow-up
(to unity) which is achieved during this step. This step an only follow polling, as poDing cuts down the
problem size to O(n) (instead of O(nlogn». This step could be quite complicated for some problems (like
the three .dimensional convex hull). Agam like our previous observation Filtering becomes redundant once
the processor advantage exceeds O(1og n).

Hence as the processor advantage increases, that is, for larger values of k, our algorithms actually become
simpler because we can dispense first with Filtering and subsequently Polling. This is contrary to the case
k :$ 1 when algorithms become more complicatedas processors increase and one tries to achieve optimal
speed-up. The reason why this happens is because the speed-up is no longer linear in the number of
processors.

. In the remaining section, we shalllook closely at a recurrence relation whose solution will be the crux of
our analysis ofthe akorithms that follow in the nat section. We shall assume that the number ofprocessors
is kn with k > logn(i) n. For k less thanthis we will ouiline suitable modüications.

T(n, nk) = T((nk)*' (.. ;t/c) + alog n/ log k

5

Here c and aare constants !arger than 1. The reader can verify that the solution of this recurrence (with
appropriate stopping criterion) is o (log njlog k) by induction. A phystcal interpretation of this recurrence
is that T(n, m) represents parallel running time for input size n with 111. processors. When m = nk, the
maximum subproblem size is no more than (nk)1/c with the processor advantage still k. Ea.ch recursive call
(that is the divide step) takes no more than O(log n j log k). The constant cis such, that given nC: processors,
one can solve the problem in constant time (for example in the maxima problem cis no more than 2 since
one can determine using n processors per point if it is a maximal point). Our algorithms have a very similar
property - we sampie rougbly (nk)l/C: input elements which we use to partition the problem. From our earlier
discussion the maximum subproblem size is no more than (nk)1/c (actually we are ignoring a logarithmic

factor which can be adjusted by choosing slightly larger sample) with high likelihood. Moreover, we shall
show how to achieve the partitioning (including Polling and Filtering) in Ö(1ogn/logk) steps.

Cleatly, we cannot use a deterministic solution of this recurrence directly for our purposes as our bounds
are probabilistic. 50 we use a technique which is a simple extension of the solution outIined in (25]. View the
algorithm as a tree whose root represents the given problem (of size n) and an interna! node as a subproblem.
The children of anode represents the sub-problems obtained by partitioning the node (by random sampling)
and the leaves represent problems which can be solved directly without resorting to recursive caDs.

Denote the time taken at anode at depth i from the root by To. It can be shown that To satisfies the
following inequality

Proh[To 2: acQE'lognjlogk] :::; 2-hognc:o

where a, c are constants and Q a positive integer. Then extending the proof in [25], we obtain the following

Lemma 3.2 11 "ll the leo.l nodes 01 the tree representing the algorithm terminate 'lDithin T steps, then
ProbfI' 2: Qlognflogk}:::; n-fo . where 1 is" constant;

In other words, the algorithm terminates in O(log nj log k) time with very high likelihood.

4 Applications of k-way divide-and-conquer

In this section we apply the methods developed in the previous sections to obtaining very fast algorithms
for a number of problems in computational geometry. We shall discuss only ODe oi them, namely the two­
dimensional cODVex hull more extensively and omit the details for the other problems which are qmte similar.
The reader may refer to some previous worl: for further details. of these.

4.1 Two-dimensional convex-hulls

Given a set N of n points in two-dimensioDS we would like to compute the cODvex-hull of these points. For
coDvenience, we shall assume that we are solving the dual problem, that is, computing the intersedioD of
half-planes in two dimensions (CODtaining the origin) which are represented by linear inequalities. We will
use O(N) to denote the intersectioD of the N half-planes.

Following the general strategy discussed in the previous sectioD, we choose a sampie 5 of half-planes
and construct their intersectioD. For example if we sampie 0«nk)1/41ogn) (= s) half-planes then we can
compute all the 0(s2) pairwise intersections using S2 processors. Then check which of them lie within the
intersectioD using s processors per point in 0(1) time. Hence with 0(s3) or nk processors, we can determine
the vertices· of the intersectiOD. 50rting these points gives a standard representatioD of the coDvex-region
(0(5)). By using padsort this can be dODe in Ö(lognjlogk) steps.

For the remainjng N - S half-planes, we determine how they intersect with 0(5). This is more easily
dODe if we partitioD 0(5) into trianglllar sectors (see Figure 6) and then determine where the 1ines defining
the half-planes intersed the sectors. Note that each half-plane could intersect more than ODe sedor (in fact

6

an arbitrary number of sectors). Denote by Ni the half-planes intersecting sedor i . .As a consequence ofthe
random sampling lemmas, for all i, Ni = Ö(n/(nk)1/4). To determine which sectors a half-plane intersects,
we can use Chazelle and Dobkin's [9) Fibona.cci Searci!- which is easily modified to a k-ary search. It actually
yields the interseetion points of a line (defining the half-plane) and the convex region C(5). From here one
can easily determine the set of sectors the half-plane intersects. For polling, the number of sectors suffice.

To apply Polling, one adually selects O(log n) random subsets and repeats the above procedure on a large
fraction (about 0(n/log3 n» ofthe N -5 to select a 'good sampIe'. Once the sampIe is selected, the problem
is partitioned using the procedure described in the previous section (locus-based approach). We describe
below another alternative approach, that is the locus-based approach for problem parlitioning. This is a
more general method which is applicable to other problems unlike the Fibonacci sea1'Ch. Consider the duals
ofthe vertices ofthe C(S). The arrangements ofthese lines in the dual space induce a partitioning such that
a (dual of) point in a fixed region intersects the same set of sectors of C(5). Hence the locus-based approach
of the previous section is applicable directly in dimension two. This af[ects the ~ of the sampIe we choose
initially as there is a big blow up in the number of processors required for preprocessing in Dobkin-Lipton
algorithm. Hence we will choose s = 0« nk)1/6 but that will still allow application of Lemma 3.2.

Nm we will apply the filterlng to further control Et Ni which is DaW Ö(n). Recall that when 1: > logn
we can. actu:aJly skip this phase. After this step, we are lef:t with at most ODe copy of a half-plane that
does not showup in C(N), that is a total of 2n .. The filtering step works as follows. For each sector i, one
computes the intersections of the half-planes in Ni with the radial boundaries of the sedar. Let L(Ni) and
R(Ni) represent these intersections and let L(Ni) (R(Ni» represent the ranks of the sorted sequence in the
radial direction (distance nom origin). So each half-plane·is now associated with a tuple - the left and light
rank. We now determine the maximal half~planes in each sector using the algorithm of section 2. Clearly the
half-planes that are not maximal would not form a part of the output inside the sector and we can discard
these (see Figure 6). We attach one processor to each half-plane that contributes to one venex in a sedor
and two processors otherwise. The former condition is determined easlly by checking if it is visible in endly
one of the (radial) boundaries. During further recursive calls, thisprocessor allocation strateg)" ensures that
number of processors is proportionalto the output complexity within each of the subproblem and we have
sufficient processors.Following filtering we call the algorithm recursively within each sector.

For analysing the algoritbm we see that each cf the phases can be canied out in timeÖ(log n/ log 1:) and
hence Lemma 3.2 can be applied to yield· a running time of Ö(log n/ log k). Moreover the final convex hull is
obtained as a sorled sequence of vertices in an array which could have some ernpty cel1s Jike the padded-sort
algorithm.

Theorem 4.1 The C07I.tlU kull 01 n points in a plane can be computed in Ö(logn/logk) steps in a kn
processOTs CRCW PRAM. Tke output 01 tkü algoritkm is an ordered set 01 tke kull tlertices in an arra.y 0/
sligktly larger size.

Remark For the case when 1: :5 log n, the the output of the algorithm is exact, that is the output verlices
appear in a compact sorted array. Moreover, we do not use padsort in the algorithm.

4.2 3-D Convex hulls and 2-D Voronoi diagrams

An almost identical approach wom for computing the convex hull of points in three-dimensions - where we
vertices of the convex hull is produced as the output. We actually compute the intersection of half-spaces
in three dimensions once we knowa point in the (non-empty) interior. We do encounter some difficulty in
the Füterlng step (see [27] for details) where we need to build a data structure fordeteding intersections of
half-planes witha convex polytope. For the range 1 < k :5 log n, this requires bullding this datrstructure
faster than O(logn) which is currently a bottle-neck.. However, form our earlier remark, for k ~ logn, we
can. dispense with Fütering and hence we can achieve the required speed-up.

7

Theorem 4.2 Tke convez-kull 01 n points in tkree dimensions can be constructed in Ö(log nj log k) steps
oy kn CRCW PRAM processors lor k ~ logn.

As a consequence of the 'lifting' transformation, we obtain a similar bound for 2-D Voronoi diagram.
Here the output is the list of the Voronoi vertices with their adjacency information.

4.3 Trapezoidal decomposition and triangulation

The problem of trapezoidal decomposition is aversion of the vertical visibility problem. Given n non­
intersecting (except at end-points) segments, one has to determine for each end-point, which segment lies
immediately above it, that is find the first segment intersected by a upward vertical ray. Reif and Sen [28]
describe an algorithm which has the same basic structure as the previous algorithms. The modifi.eation we
require is in the first step - that is, for building the data-structure for point-Ioeation in a trapezoidal map of s
randomly chosen segments. We substitute the CtI.$CtUld. Mergingtechnique of [3] (whi.~ requires a fractional
cascading data-structure) by the simpler poin~loeation data-structure of Dobm and Lipton [15]. This also
simplliies the algorithm of Reif and Sen [28]. The Filtering step is simply compaction - the reader is referred
to [28] for details. So we have the fonowing result

Theorem 4.3 TM trepezoidal decomporition 01 n non-intersecting segments can be construded inÖ(log nj log k)
steps using ·kn CRCW PRAM yrocessors.

Combining this with a result of Yap [34], where he reduces the triangulation of a simple polygon to two
calls of trapezoidal decomposition (one vertical and one horizontal) we obtain the fonowing corollary

Theorem 4.4 Tke triangulation edges 01 a rimple polygon on n tlertices an be determined in Ö(log nj log k)
steps using kn CRCW PRAM yrocessors.

5 Lower bounds

As mentioned earlier, some of our algorithms are optimal Ü we require the output to appear in a sorted
order like the output vertices of the 2-D convex hull or the staircase of the ma.nm.as. In this section, we will
further strengthen our results which will hold independent of such a rigid output specifieation. For example,
we shall show that even \dentüieation of the convex-hull vertices require O(log nj log k) parallel time using
kn Jnocessors which can be viewed as an extension of Yao's [33] observation in the sequential case. For this
section, we shaD. use slightly modffied versions (used previously in [21, 32]) of the convex.;,hull (dominance)
problem where the issue is to determine jf among a set of n points all the points belong to the convex-hull
(~as). Note that these versions are constant time reducible to the standard versions in a CRew PRAM
model with p ~ n processors. The model of computation is the parallel analogue of Bounded-degree decirion
tree model(BDD Tree). At each node of this tree, each of the p processors computes the sign of a fixed
degree polynomial and then the algorithm branches according to the sign tledor, that is considering all the
signs. The algorithm ends as we reach a leaf node which gives the answer. This is a stronger model than
any CRew PRAM model as it does not care about read-write con1licts and is not charged for branching
decision time.

Our first lower-bound proof uses the approach by Boppana [7] who had earlier dramaticaD.y simplified the
lower-bound proof of [2] on parallel-sorting. An useful consequence of our result is that the lower boud on
sorting also extends to this model. We will first review Boppana's elegant proof technique which establishes
abound on the average-case complexity of parallel sorting and consequently any randomized algorithm for
the worst-case.

Fact 1 In a parallel comparison (BDD) tTee 01 1 leatles and m4Zimum arity a, the average patk-length is at
least o (log ljlog a).

8

Given thls fact (credited to Shannon), one needs a reasonably tight upperbound on the arity ofthe parallel
comparison (BDD) tree model and a lower bound on the number of leaves to establish a lower-bound of any
parallel algorithm.. The number of leaves is related to the number of connected components in the solution
space in R" where n is the dimension oft he solution space (which is often the input size). The arity oftbiS
tree is the number of distinct outcomesof computations performed by p > 1 processors. For sorting, thls
tree has n! leaves and Bopanna used a result of Manber and Tompa [23] which bounds the nu:mber of acyclic
orientations of an undirected graph to (1 + 2m/nt where n and m represent number of vertices and edges
respectively. Sorting can be viewed as assigning directions to the edges of a complete graph on n verticesand
taking the transitive-clos1ll:e after every round of comparisons. Obviously the graph should remain acyclic
at every stage because of the total ordering. The arity can be bounded by (1 + 2p/nt as each of the P
processors can be viewed as Msigning direction to at most one edge - the. result of a single comparison. This
immediately implies the required bound of O(logn/log(P/n».

If we stick to the parallel-comparison model for the 2-D dominance problem, we can prove a similar lower
boUJid as a corollary. Indeed, all DOwn algorithms for the maxima problem use only comparisons to arrive at
the solution and hence 01ll: assumption is not unjustified. Since the :z: and the. y coordinates are independent,
the only useful comparisons are between the :z: and y coordinates separately. Hence, at each stage,we have
two independent acyclic orientations conesponding to each ofthe coordinate axes. Maximising product ofthe
cardinalities ofthe two acyclic orientations is an upper-bound on the arity and thls is less than (1 + p/n)2n.
It is known that for the n-input dominance problem the number of leaves is O«n/2)(fl/2» ([21]).

Lemma 5.1 In a parallel comparison-tree model, any algoritAm tAat identifies the mazimal points among a
set 0/ n points in a plane require O(log n/ log le) time using len processors.

We now further strengihen 01ll: results to hold in the BDD Tree model. Also note that comparlson tree
model is not a meaningful computing model for most problems in geometry like the convex hulls. Fot this, we
will first prove a worst ease bound along the lines of Ben-Or [6] and subsequently extend it to the average
case. Theadditional complication presented in a BDD tree model is that each leaf node may be associated
with several connected components of the solution set W. Even if we know IWI (the number of connected
components ofW),westill need lower bound on the I1umber ofleaves. Ben-Or tackles this by bOUI1ding the
number of connected components associa.ted with a leaf using results of Milnor and Thom. His result shows
that even under these conditions the 1Dorst-case sequentiallower bound is still about O(log IWI).

If the parallel BDD algorithm. uses p processors then the signs of p polynomials can be computed simul­
taneously. Each test yields a sign and we branch according to the collective possibilities of all the tests. We
shall use the following resuli on the number of conneded components induced by m fixed degree polynomial.
inequaJities due to Pollack and Broy [24] . to bound the number of such possibilities

Lemma 5.2 The number 0/ connectd components 0/ all fU1fU!mpty realizations 0/ rign conditions 0/ m
polynomials in d variables, each 0/ degree at most b iS bounded by «O(bmjd)4.

This gives us a baund on the arity of the parallel BDD tree model as well as the number of connected
components associated with a leaf node at depth h. ~The number of polynomials defining the space in a
leaf-node at depth h is hp and hence the number of connected compopents associa.ted with such anode is
«O(bnp/d)4. In 01ll: context, the number ofprocessors and (hence the polynomial signs computed at each
stage) is bound by kn and dis the dimension of the solution space which is approximately the size of the
input. This gives us the following theorem

Theorem 5.1 Let WeR" be a set tAat has IWI connected components. Tken any parallel BDD tree
algorithm that decides membership in W using kn (Je ~ 1) processors has time complemy O(log IWI/nlogle).

Proof: If h is the length of the longest path in the tree then from Lemma 5.2

(elen/n)"ft . (ehlen/nt ~ IWI

9

where eisa constant that subsumes the degree ofthe polynomials. The fustexpression on the l.h.s. represnts
maximum number of leaves and the second expression is the maximum number of connected components
associa.ted with a leaf at depth h. By simple manipulations and using hn> hlogn we arrive at the required
result. 0

The above theorem immediately yields as corollary O(logn/logk) worst-case bound for a number of
problems for which IWI at least (n/2)(n./2). This includ~ sorting, dommance and the convex hull problems
([32, 21)).

To extend the above result to the average case we require a mild assumption about the algorithms. We
shall restrict the parallel algorithms to be efficient, that is the worst-case time boud is polylogarithmic. This
implies that the longest path in the parallel BDD tree is bounded by some logt n for some constant f. This is
not umeasonable as there exists deterministic algorithms with polylog running time using only n processors
for all our problems. We can then bound the number of lea.ves of the BDD treeto be O(IWI/(enkL/n)n.)
where L is the longest path to a leaf node. This yields abound similar to the previous theorem.

Theorem 5.2 Let WeR'" be a set that has IWI connected comp<m.ents. Then any parallel BDD tree
algorithm which Aas a worst case polylog time complezity to decide membership in W u.sing kn (1c 2: 1)
procusors Aas a1lemge time compluity O(log IWI/nlogk).

Bemark: This extrarestriction on the worst case complexity is probably unnecessary - it is only to get
around a Iiasty optimisation problem in the general lower bound proof.

Since lWI is at least (n/2)(n./2). for the the two dimensional convex hull, the average running time at
least O(logl/nlogk) time. For sorting and the dominance problem, the same bouds hold. By a simple
reduction of ~D dominanceto trapezoidal decomposition, we get a similar bound for the latter 'Problem.

6 Conclusion

We have presented · a wüfi.edapproach to speeding up various algorithms in computational geometry. Our
method relies hea.vily on the results on padded sorting and exploit the generic randomized divide-and-conquer
teclmiques of [31]. In addition we have demonstrated that these are the best possible in a fairly strong sense,
namely average speed-up. Our algorithms can be made somewhat stronger by making the rmming time hold
with probability 1 - 2"'. for some ~ > 0 instea.d of the standard high probability bounds derived in the paper.

This paper lea.ves openvarious directions for further research, the most signüica.nt being matching deter­
ministic algorithms_ We do not achieve optimal speed-up for 3-D convex hulls for processors in the range n
to nlogn.

Regarding lower bouds, it will be interesting to extend these to the algebraic model which allows arith­
metic computations ([6)). However, it appears that the presently known Milnor-Thom bounds are too weak
for our purpose. Our algorihms do not match the lower bounds for small output instances for which one
may be able to obtain better speed-up, nainely O(log h/ log k) where h is the output size.

Acknowledgement

The author wishes to thank S. Kapoor for suggesting use of Milnor-Thom like results for the lower bouds
and P. Agarwal for pointing out the refereilce [23] and helpful comments.

References
[1] A. Agganral, B. Chazelle, L. Guibas, C. O'Dunlaing, end C. Yap. Parallel computaticmal geom.etry. Proc. 01 15th Annu,"

Symposium on. FOUM~ 01 Ccnn.pute-r Scitnt:e, pages 468 - 477, 1985. also appcars in full version in Algorithmica, Vol.
3, No. 3, 1988, pp. 293-327.

10

BoIcIÜDes

~
sampIe

eacb ofllle

sectors ABC 0

ÜDe 3 is fiIu:red out by iiDe 1

Figure 1: mustration of the basic divide-and-conquer strategy for computing intersecüon of half-planes

[2] N. Alon &Ud Y. Azar. The average complexity of deterministic &Ud randomizecl parallel comparison-sortmg algorithms.
SIAM J_f'fUd on Comp.tir&g, 17:1178-1192, 1988.

[3] M.J. Atallah, R. Cole, and M.T. Goodrich. Casc:ading divide-and-ccmquer:, a tedmiqueCor desipiDg parallel algorithms.
SIAM J_f'fUd on Comp.tir&g, 18:499 - 532, 1989.

[4] Y. Azar and U. V1Shkin.. Tight comparison bounds on the complexity oC parallel soniDg. SIAM Jounr.al on Computiflg,
16:458-464,1987.

[5] P. Beame and J. Bastad. Optimal bounds Cor decision problems GD, crew pram. Pf"DC. of tAe 19th. Atmual STOC, pages
83 - 93, 1987.

[6] M. Beu-Or. Lcnrcr bolUlds Cor algebn.ic computation trees. Proc. of tke FijteentA STOC, paces 80-86, 1983.

[7] R.B. Boppana. Tbe averep-case parallel complexity oC sorting. I"'fonr&4tion Pf"DCC6sif&g LeU",., 33:145-146,1989.

[8] S. Chandnm. Mtf'gif&g it\ P.nJllcl Computaticmal Geom.dry. PhD thesis, Univeni.ty oC Marylaud, 1989.

[9] B. Chazelle -.ci D. Dobldn. Inte:rsec:tionof conYeX objects in iwo &Ud three dimensiODS. J.A.C.M., 34(1):1-27,1987.

[10] A. Chow. Parallel Algoritb..,.. fM' Geomme ProbleiM. PhD thesis, Univeni.tyorIlliD.ois at UrbaDa-Champaign,l980.

[11] K.L. Clarbon. A probabilistic aJsorithm Cor the post-oftice problem. Proc 01 tAe 17tA A"'f&ual SIGA CT Sympomm, pages
174 - 184, 1985.

[12] K.L.Clarbon. New appliC6UOIIS of random sampliDg in computaticmal geometry. DUcnte .M Comput.täof&al Geomet11l,
paces 195 - 222, 1987.

[13] K.L. Clarlaon. ApplicatiODS oC random samplmg in computatioual geometry ü. Pf"DC 01 tAe 4tA A",,,,ual ACM Symp on
ComputGticmal Geomet11l, paces 1 -11, 1988.

{14] R. Cole. Parallel merge sort. SIAM JOUf'f&al on Computmg, 17:770 - 785, 1988.

[15] D. DobkiD and R.J. Lipton. Mcludimensional searehiD.g problems. SIAM J. OA Computmg, 5:181 - 186, 1976.

[16] M. DietdelbiDger B. Bast and T. Bageru:p. A perfect parallel dictionary. Pf"DC. of tke 17th I",tL Symp on M .tA, FouruI.tiO'l&$
01 Comput~ Scicf&ce, LNCS 6%9, pageS 133-141, 1992.

[17] T. Bagerup. The log star revoI.ution. Pf"DC. of tAe 9th. Af&lI.ual STACS, LNCS 577, pages 259 - 278, 1992.

[18lT. Bage:rup and R. Raman. Waste m.akes haste: Tight bolUlds Cor loose, parallel soniDg. Pf"DC. of tAe /J/Jrd. A",,,,ual FOCS,
paces 628- 637,1992.

[19] D. Baussler &Ud E. Weld. ~nets and simplex range quenes. DUcrete .",d Computllticmal Geomet11l, 2(2):127 -152, 1987.

[20] Joseph Jaia: A", IlI.tr04uction to P.nJllel AlgofttAms. Addison-Wesley, 1992.

11

[21] S. Kapoor and P. Ramanan. Lowcr bounds for maximal and convex laycr problems. AlgorithmiC4, pages 447-459,1989.

[22] P. Med(enme and Q. Stout. tntre.-fasttexpected time parallel algorithms. Proc. oi the tn.d SODA, pages 414-423, 1991.

[23] U. Manber and M. Tompa. The e:fIect of numbcr of hamiltoDian paths on the complexity of a vertu: colouring problem.
SIAM J. COMPUT, 13:109-115,1984.

[24] R. Pollack and M.F. Broy. On. the number of c:dls cl.efined by a set ofpolynomials. TB 618 Dqt Compu~ Seien« NYU,
1992.

[25] S. Rajaselcaran. and S. Sen. &ntlom s4ml"mg Techmpes 4nd1'4ndlel Algorithm design. J .B. Reif editor. Morgan., KaUfman
Publishers, 1993.

[26] J.H. Reif and S. Sen. Randomised algorithms for binary search and load balauc:iDg 0, fixed-c02ln.ecti.on nüworb with
app!ieations. Proc. oi the Intl AnnU4l SPAA, pages 327 - 337, 1990. to appear in SIAM Journ.al on. Comput.

[27] J .B. Reif and S. Sen. Optimal parallel randomized algorithms for 3-d convex hull, and re!ated problems. SIAM Jouf'fUll
on Ct>mputing, 21:466 - 485,1992.

[28] J.B. Reif and S. Sen.. Optimal raDC10mized parallel algorithms for, computatioual geometry. AlgorithmicG, 7:91 - 117,
1992.

[29] J.B. Reifand L.G. Valiant. A loprithmic time sort for linear sise networb. JovnuJ oi the ACM, 34:60- 76,1987.

[30] R. Reischuk. A fast probabilistic parallel sortin.g algorithm. Proc. oi the lInd IEEE FOCS, pages 212 - 219, 1981.

[31] S. Sen. &ndt>m S4ml'ling Technipe./or Efficim.t P4nallel, Algorithms in ComputAticmal Geomdry. PhD thesis, Duke
University, 1989.

[32] J. Steele and A.C. Yao. Lowe:r bounds for alse~C: decision. t.rees. Jouf'fUll 01 Algoritlms, pages 1-8, 1982.

[33] A.C. Yao. Al_ bound for finding _n:vex halls. J_f'ftAl oi the A.C.M., 28:780-787,1981.

[34] C.K. Yap. Parallel triangulation. o{ a polygon in. two eaDs to the, trapezoidal map. Algorithmica., 3:279 -288, 1988.

12

	93-1290001
	93-1290002
	93-1290003
	93-1290004
	93-1290005
	93-1290006
	93-1290007
	93-1290008
	93-1290009
	93-1290010
	93-1290011
	93-1290012
	93-1290013
	93-1290014
	cover-hinten_2099-2897-300dpi

