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Abstract 
There are a number of fundamental problems in eomputational geometry for which work-optimal 

aJgorithDls exist which have a parallel running -fuDe of O(log n) in the PRAM model. These include 
problems like two and three dimensional convex-hulls, trapeSoidal decomposition, arrangement coDStruc:.­
tion, dommance among others. Further improvements in running time to sub-logarithmic range were not 
considered libly because of their close relationship to so~ for which an O(log n/ log log n) is DOwn to 
hold even with a polynomial number of processors. However, with recent progress in padded-sort aJgo­
rithms, which circumvents the conventionallower-bounds, there arises a natural question ab out speeding 

. np algorithms for the above-mentioned geometrie problems (with appropriate modific:ations in the output 
spec:ifica.tion). We present randomised 'parallel aJgorithms for some-fundamental problems like convex­
hulls and trapezoidal decomposition which execute in time O(Iogn/log1:) in an n1: (1: > 1) processor 
CRCW PRAM. Dur algorithms do not malte any assul!lptions abont the input distribution. Our work 
rdies hea.vily on results onpadded-sorting and some ea.rlier resultsof Reif and Sen [28, 27]. We further 
prove a matching lOwer-bound for these problems in the bounded degree decision tree. 

1 IntroductioD 

Designing efticie1it parallel algorithms for varlous fundamental problems in computational geometry has 
received much attention in the last few years. There have been two distind approaches to this area of 
research, namely the detemWüstie methods and algorithms th.at use random sampling. One of the earliest 
worl: in this area is due to Chow [10], who developed algorithms for a number of fundamental problems which 
were detenninistie and executed in inter~nnection networks with polyloganthmie running time. A more 
general approach fO"l deterministie PRAM algorithms was pioneered by Aggarwal et al. [1.] who developed 
some new techniques -for desigDing efticient parallel algorithms for fundamental geometrie problems. A 
number of the most efticient determi:nistic PRAM algorithms are dueto Atallah, Cole and Goodrich [3] who 
extended thetechDiques -used by Cole [14] for bis parallel mergesorl algorithm. Their technique is caD.ed 
CtuC4detl mtrging and has been subsequently used (independently by Chandran [8]) for anumber of other 
problems. Note that most of the geometrie problems in the context of resWch in parallel algorithms have 
sequential time complexity ofO(nlogn) and a typical performance that one aims to attain is O(1ogn) parallel 
time using an optimal numbei ofprocessors. 

In an independent development, Reif and Sen [28] were also able to deriveO(log n) time optimal algo­
rithms for point-Iocation and uapesoidal decomposition whieb were randomized. Later in [27], they extended 
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their methods to give optimal algorithms for 3-D convex hu1ls (and hence2-D Voronoi diagrams) on the 
CREW PRAM model. At the core oftheir algorithms were random sampling techniques which had also been 
introduced by Clarkson [11, 12, 13]and HaussIer and WeId [19). In addition, a new teSa.mpllng technique 
called Polling was used successfully to derlve the parallel algorithms. 

The randomized algorithms drew inspiration from the parallel sorting algorithm of Reischuk [30] and some 
of these algorithms were extended to the interconnection network model (without degradation of asymptotic 
complexity) in [26]. This can be viewed as being similar to the eft'orts of Reif and Valiant- [29] who were 
able to adapt Reischuk's algorithm in theinterconnection network model successfully although they had 
to resort to more sophisticated sampling techniques. Because of their close resemblance · to the randomised 
sorting algorithms, the algorithms of [28, 27] appear to be more directly dependent on the present state-of-~ 
of the complexity of randomised par~el sorting. With recent results in the area of padded-sorting (to be 
referred to aS padsort in future), one is tempted to conjecture that these must have some consequences in 
the area of geometric problems. Of course, like padsort, the output specification of these problems have to 
be suitably modified to circum.v.ent the lower bound of O(1ognjloglogn)) for input size n using polynomial 
numb~ of processoIS (Beame and Hastad [5]). Roughly speaking, the problem of padsort involves ordering 
the input of size n into an output array of size m. ~ n. When m = n, (or actually m is very close to n) the 
lower-bound of Beame and Hastad applies. This problem was first introduced by MacKensie and Stout [22] 
and recently· Hagerup andRaman [18] showed that. one can padsort n elements ~h kn proCes50IS in time 
O(1ognjlogk) in a CRew PRAM as long as m > n+njlogn (actually they give a trade-offbetween mjn 
and the number of processoIS). These bounds are asymptotically tight owing to the lower bound results in 
[2,4; 7] for the parallel-comparisontree model. These imply that the running time of any comparison based 
parallel algorithm for padsort is O(1og nj log k) using kn processoIS. 

To tUe advantage of the developments inpadsort, we will modify the output specüications of the problems 
relevant to this paper. For example, for tw~dimensional convex hulls we wiIlre!ax the output to be an ordered 
sequence of the hull vertices which could be embedded in an array of slightly Jarger size. The previous lower­
bound on padsort would imply a similar lower bound for this version of the convex hull problem. Even by 
relaxin.g the constramt of an ordered output,we pIOve a matching lower-bound for an,. teasonable output 
specüication of tbe convex hull, namely identifying the hull vertices. 

In this paper, we present algorithms for the following problems - two and thtee dimensional convex hulls 
and trapeioidal decomposition which achieve a running time of O(1og nj log k) with kn processoISm a CRCW 
PRAM. These in tum imply similar algorithms for two dimensional voronoi diagrams and triangulation of 
simple polygon. The bo~d for three dimensional convex-hull holds for k > log n . . Since the algorithms 
resemble those in [28, 27],;we will. be somewhat teISe in our description and focusmore on portions that will 
be cruc:ial for the analysis. We will eDcourage the reader to refer to the previous papers for more details of 
the individual . algorithms for specific problems. 

The rest of the paper is organized as fonows. We begin by reviewing some of the consequences of padsort 
in a more formal setting. Thenwe illustrate the litility of padsort on a simple example where the results 
on padsort can be applied almost directly to obtain a fast algorithm. In section three we review. a general 
randomized divide and conquer strategy which forms the backbone of our algorithms. In section four, we give 
details of the imp.ementations ofthe general strategy for the individual problems. We conclude by proving 
a matching lower bound for some of these problems on the fixed-degree algebraic decision-tree model. 

2 Padded Sorting and Parallel Algorithms 

A cruc:ial factor in the performance of the padsort algorithm is the size of the output array m or more 
specifically the ratiomjn. If m = (1 + A)n then Ais called the padding jactor. A slightly weaker version of 
the main result of Hagerup and Raman can be stated as 
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Theorem 2.1 Given n elements from an orderet! universe, these can be padded-sort with kn CRCW pro­
cessors in Ö(log n/ log k) time with a padding-factor ). ::; 1/ log n. Moreover between any log n consecutive 
input keys, there is no more than one empty cell in the output array. 

A nice consequence of Theorem 2.1 is to ordered searching. The output of the padsort algorithm makes it 
almost directly applicable to search for predecessor of a given key value. One simply probes the elements like 
a normal bin~y search except that when an empty cell is probed, we make an extra probe in the adjoining 
cello By consequence of Theorem 2.1, two adjacent cells cannot be empty. Alternatively. one may simply 
fill up the empty cells with the contents of the previous cell. and perform a usual binary search. The same 
holds true for any k - ary search. In summary 

Lemma 2.1 The output 01 the padded-sorting algorithm can be used lor performing k-ary seaf'Ch on. an 
n-element ordered array in O(1og nj log 1c) steps. 

Equipped with the above results, we can design a fast parallel algorithm for finding the dominating set 
in plane flom a set of n input points. 

Algorithm Dominance 

O. SoIt the given set of points with respect to z coordinate. 
1. If the problem me is larger than a certain threshold, partition the problem into 1c (nearly) 
equal subproblems based on the z-coordinates and call steps 1-3 recursively. Else solvedirectly 
and also compute the maximum y-coordinate and then return. 
2. Let the maximum of the y coordinate in each of the intervals and denote them as Y$, 1 ::; i ::; 1c. 
3. To merge the subproblems, we compare the y coordinate of each· element oUhe i-th subproblem 
with lj, j > i. For the surviving elements, (whose y coordinate is larger than lj's) we compute 
the maximum y-coordinate. This should be the element which has the least z-coordinate ainong 
the survivors. 

The analysis of this algorithm is quite straightforward. Each of the steps 1-3 can be performed in 0(1) 
time using 1cn processors. We discuss only step 3. With 1c processors per element and concurrent read and 
writes, each element can find outif it survives in constant time. To find out which is the least (in terms 
of z coordinate) element that survives, we can use the result on finding the smallest index '1' element in a 
boolean array. This takes constant time using n processors (see Ja'Ja' [20], Ex 2.13). The recurrence for 
steps 2 and 3 can be written as 

T(n) = T(n/1c) + 0(1) 

which is O(1ognjlog1c). Note that only the first step is randomized so that the following is almost an 
immediate consequence of the result of padded sorting. 

Theorem 2.2 The dominating set oln points in a plane can Oe computed in Ö(1ognjlog1c) using Jcn CRCW 
processors and this is optimal. 

Note that if we require ou ou~put to be the 'staircase' in a soIted order then this algorithm achieves 
optimal speed-up. However, we will establish the stronger notion of optimality which is independent of the 
ordering criterion in sedion 5. 

Processor allocation is a common problem that one encounters in most parallel algorithms. In this 
context Hagerup [17] defines the problem of interval allocation. as the following; Given n non-negative integers 
Zl'--' Zn, allocate memory blocks ofsizes Zl--, Zn flom a base segment ofme 0CEi=l zi) such that the blocks 
don't overlap_ Bast et al. [16] give a very fast algorithm for this problem which can be stated as 

Lemma 2.2 The inteM1alallocation. problem 01 size n can Oe solved in Ö(1c) time using nlog(l:) n CRCW 
PRAM processors. 
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We shall use this result for processor allocation in in the context of ow: parallel algorithms especially as 
a substitute for exact prefixsums whenever we have to compute it faster than O(logn/loglogn). Note that, 
in such cases the processors exceed O(nlog n) so that there is no problem in applying the previous lemma. 

A common scenario for our algorithms is the following. Suppose s is the number of subproblems (s< n) 
and each of the input elements for the subproblems has been tagged with an index in 1. .. s. Then these can 
be sorled on their indices into an array of size 5(1 +,\) from the previous theorem where 5 is the sum of 
the sizes of the sub problems. A processor indexed P is associated with the element in the cell numbered 
r P / S]. 1 In most cases, 5 = n, so that if we have kn. processors, then the number of processors allocated 
to a sub problem i of size Si is at least Si • k/(l + '\). The processor advantage (the ratio of the number of 
processors to the subproblem size) is not as good as it was initially, namely it is k/(l + ,\) in,stead of k. 
Bowever, for our purposes it will make liule difference because of the properly that the number of recursive 
levels in our algorithm will be boundedby O(1ogn/logk). Bence the processor advantage at any depth of 
the recursion is no WOISe than k/(l + ,\)°(101"/101 1:) which is still O(k). In our future discussions, we shall 
implicitly use this properly for processor allocation. 

3 Fast randomized divide-and-conquer 

For a number of efficient algorithms in computational geometry, Reif and Sen [28, 27] bad used. a versatile 
approach which can be called randomised divide-and-conquer. We shall recapitulate the mam. general steps 
of their strateg}' for the problems under consideration 

(1) Select O(1ogn) subsets ofrandom objects (in case of 2-D hulls these were half-planes) each 
of size LneJ for some 0 < € < 1. Each such subset is used to p~ition the origiD,al problem 
into smaller sub-problems. A sample is 'good' if the ma.ximum sub-problem size is less than 
O(n1-elogn) and the sum ofthe sub-problem sizes is lesS than Cn for some constant c. From the 
probabilistic bounds proved in [13,28], it is DOwn that the first condition for a 'good' sampie 
holds with high probability. From here it followstha.t the sum of the sub-problems is no more 
than Ö(nlogn). Bowever, the second condition which bounds the blow up in the size ·of the 
sub problems by ci. constant factor is DOwn to hold with with probability about 1/2. 
(2) Select a sampie that is 'good' with high probability using Polling. At least one ofthe log n 
sampies in the previous case is 'good' with high·probability. Polling [27] is a sampling tedmique 
which allows us to moose a 'good' sampie efliciently. This high probability bound is crucial to 
bound the running time ofthe algorithms byO(1ogn). 
(3) Divide the original problem into smaller sub-problems using the 'good'sample. The maDmum 
size can be bound by O(n1-elogn). 
(4) Use a Filtering procedure to bound the sum of the sub-problem sizes by some fixed measure lü:e 
the output size or input size. The reason far this being that the probabilistic bounds in step (1) 
bounds the sum of the sub-problems by Cn. If this increase by a multiplicative constant continues 
over each recursive stage, after i stages, the input size will have increased by a factor of2Cl(i). If i 
is large (that is larger than a constant), then the parallel algorithm becomes somewhat inefticient 
affecting the processor time produd bound. This jiltering procedure is problem dependent and 
uses the specific geometry properties of aproblem. 
(5) If ihe size of a sub-problem is more than a threshold, then call the algorithm recursively eise 
solve it using some direct method. At this stage the sub-problem sizes are so small (typically 
O(1og"-n) for some constant r)that relatively inefficient methods work weIl. 

The procedure used. for dividing the sub-prob1ems can often be reduced to point location in arrangements 
of hyperplanes, namely using a locus based approach. If one uses the Dobkin-Lipton method of searching, 

1 We will avoid using the c:eiling and Soor f1mctiODS whell itis dear from the context 

4 



then this reduces to searching in ordered lists and the preprocessing reduces to sorting (padsort sufiices). 
The following result is a corollary of the the above observations. 

Lemma 3.1 Given h kyperpw.nes in d dimensions, 11 data.;.s~ure for point IDeation can be constructed in 
O(d .logn/logk) time v.sing k ·n2"-1 processors. Tkis data-structure can be used to do point location in 
O( d·log n/ log m) steps v.sing m processors for eack point. 

In the locus based approach to partitioning the problem, each region in the arrangement gives öse to 
a set of elements which are labeled by the sub-problem they belong to. Each region in the arrangement is 
preprocessed, to determine its ·(unique) associated subproblems. Even though the processor complexity grows 
exponentially, for small (fixed) dimension, this approach an be used effectively. Note that even to 'read' the 
set of subproblems for a number of points, we have to solve a processor allocation problem; for this we shall 
use the resuIts on interval allocation stated in the previous section. Assume that we have kept a count of the 
number of subproblems associated with each region. This an be done easily during the preprocessing stage 
by 'compressing' a bit vector. Now we lUD the algorithm for interval allocation on the counts associated 
with each point. This enables us to rite the set of subproblems associated with each intervaL We nat 
sort them so that processor allocation an be done using the observation of the previous section. Note that 
although the total size of tbe intervals following the interval allocation algorithm can blow up by a constant 
factor, an application of padsort reduces that considerably (no more than the padding-factor). 

Polling involves selecting O(n/log2 n) input objects to test a sampie instead of testing a sampie with 
respect to the entire input set. Since there are O(logn) subsets, this saves the atra work we would have 
to do if we iested the 'goodness' of the sampie on the entire input. The Polling lemm4 [27] guarantees 
that with high probability we an choose a good sampie using this method. Since the test for 'goodness' is 
carried out independently for each of the sampie, this part of the algorithm is inherently parallelizable even 
on the networb. To each of the O(log n) sample that we apply polling, we use the locus-based approach 
described beiore to test the 'goodness' of the sampie. We simply select that sampie which gives us the 
smallest (estimated) blow-up ofthe problem size. We also make a note that although Polling appears crucial 
to obtaining optimal bounds when number of processors is about n, it is no longer so when processors 
exceed about n21os1o~ ... That is because any sample (with high probability) does not blow up the size of 
the subproblems by a factor of O(1ogn). Since the depth of the recursion is bounded by O(loglogn)j the 
cumulative blow-up is no more than the mentioned value. By observing that O(1og n/ log k) is asymptotically 
thesame as 0(1ogn/log(1:121oS1o~ .. ) for k exceeding O(nloglog2 n), we an dispense with polling for larger 
number of processors. 

Perhaps the step that is most. specmc to a problem is ihe Filtering step where we have to use some 
geometrie properties of the problem. While Polling controls the blow up by a constant factor at each 
recursive call, there could be blow up bya constant factor, say c. Over j levels this could grow up to 
O(ci). For any non-constant j this could be significant. Hence, we need to further control the blow-up 
(to unity) which is achieved during this step. This step an only follow polling, as poDing cuts down the 
problem size to O(n) (instead of O(nlogn». This step could be quite complicated for some problems (like 
the three .dimensional convex hull). Agam like our previous observation Filtering becomes redundant once 
the processor advantage exceeds O(1og n). 

Hence as the processor advantage increases, that is, for larger values of k, our algorithms actually become 
simpler because we can dispense first with Filtering and subsequently Polling. This is contrary to the case 
k :$ 1 when algorithms become more complicatedas processors increase and one tries to achieve optimal 
speed-up. The reason why this happens is because the speed-up is no longer linear in the number of 
processors. 

. In the remaining section, we shalllook closely at a recurrence relation whose solution will be the crux of 
our analysis ofthe akorithms that follow in the nat section. We shall assume that the number ofprocessors 
is kn with k > logn(i) n. For k less thanthis we will ouiline suitable modüications. 

T(n, nk) = T( (nk)*' ( .. ;t/c ) + alog n/ log k 
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Here c and aare constants !arger than 1. The reader can verify that the solution of this recurrence (with 
appropriate stopping criterion) is o (log njlog k) by induction. A phystcal interpretation of this recurrence 
is that T(n, m) represents parallel running time for input size n with 111. processors. When m = nk, the 
maximum subproblem size is no more than (nk)1/c with the processor advantage still k. Ea.ch recursive call 
(that is the divide step) takes no more than O(log n j log k). The constant cis such, that given nC: processors, 
one can solve the problem in constant time (for example in the maxima problem cis no more than 2 since 
one can determine using n processors per point if it is a maximal point). Our algorithms have a very similar 
property - we sampie rougbly (nk)l/C: input elements which we use to partition the problem. From our earlier 
discussion the maximum subproblem size is no more than (nk)1/c (actually we are ignoring a logarithmic 

factor which can be adjusted by choosing slightly larger sample) with high likelihood. Moreover, we shall 
show how to achieve the partitioning (including Polling and Filtering) in Ö(1ogn/logk) steps. 

Cleatly, we cannot use a deterministic solution of this recurrence directly for our purposes as our bounds 
are probabilistic. 50 we use a technique which is a simple extension of the solution outIined in (25]. View the 
algorithm as a tree whose root represents the given problem (of size n) and an interna! node as a subproblem. 
The children of anode represents the sub-problems obtained by partitioning the node (by random sampling) 
and the leaves represent problems which can be solved directly without resorting to recursive caDs. 

Denote the time taken at anode at depth i from the root by To. It can be shown that To satisfies the 
following inequality 

Proh[To 2: acQE'lognjlogk] :::; 2-hognc:o 

where a, c are constants and Q a positive integer. Then extending the proof in [25], we obtain the following 

Lemma 3.2 11 "ll the leo.l nodes 01 the tree representing the algorithm terminate 'lDithin T steps, then 
ProbfI' 2: Qlognflogk}:::; n-fo . where 1 is" constant; 

In other words, the algorithm terminates in O(log nj log k) time with very high likelihood. 

4 Applications of k-way divide-and-conquer 

In this section we apply the methods developed in the previous sections to obtaining very fast algorithms 
for a number of problems in computational geometry. We shall discuss only ODe oi them, namely the two­
dimensional cODVex hull more extensively and omit the details for the other problems which are qmte similar. 
The reader may refer to some previous worl: for further details. of these. 

4.1 Two-dimensional convex-hulls 

Given a set N of n points in two-dimensioDS we would like to compute the cODvex-hull of these points. For 
coDvenience, we shall assume that we are solving the dual problem, that is, computing the intersedioD of 
half-planes in two dimensions (CODtaining the origin) which are represented by linear inequalities. We will 
use O(N) to denote the intersectioD of the N half-planes. 

Following the general strategy discussed in the previous sectioD, we choose a sampie 5 of half-planes 
and construct their intersectioD. For example if we sampie 0«nk)1/41ogn) (= s) half-planes then we can 
compute all the 0(s2) pairwise intersections using S2 processors. Then check which of them lie within the 
intersectioD using s processors per point in 0(1) time. Hence with 0(s3) or nk processors, we can determine 
the vertices· of the intersectiOD. 50rting these points gives a standard representatioD of the coDvex-region 
(0(5)). By using padsort this can be dODe in Ö(lognjlogk) steps. 

For the remainjng N - S half-planes, we determine how they intersect with 0(5). This is more easily 
dODe if we partitioD 0(5) into trianglllar sectors (see Figure 6) and then determine where the 1ines defining 
the half-planes intersed the sectors. Note that each half-plane could intersect more than ODe sedor (in fact 
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an arbitrary number of sectors). Denote by Ni the half-planes intersecting sedor i . .As a consequence ofthe 
random sampling lemmas, for all i, Ni = Ö(n/(nk)1/4). To determine which sectors a half-plane intersects, 
we can use Chazelle and Dobkin's [9) Fibona.cci Searci!- which is easily modified to a k-ary search. It actually 
yields the interseetion points of a line (defining the half-plane) and the convex region C(5). From here one 
can easily determine the set of sectors the half-plane intersects. For polling, the number of sectors suffice. 

To apply Polling, one adually selects O(log n) random subsets and repeats the above procedure on a large 
fraction (about 0(n/log3 n» ofthe N -5 to select a 'good sampIe'. Once the sampIe is selected, the problem 
is partitioned using the procedure described in the previous section (locus-based approach). We describe 
below another alternative approach, that is the locus-based approach for problem parlitioning. This is a 
more general method which is applicable to other problems unlike the Fibonacci sea1'Ch. Consider the duals 
ofthe vertices ofthe C(S). The arrangements ofthese lines in the dual space induce a partitioning such that 
a (dual of) point in a fixed region intersects the same set of sectors of C(5). Hence the locus-based approach 
of the previous section is applicable directly in dimension two. This af[ects the ~ of the sampIe we choose 
initially as there is a big blow up in the number of processors required for preprocessing in Dobkin-Lipton 
algorithm. Hence we will choose s = 0« nk )1/6 but that will still allow application of Lemma 3.2. 

Nm we will apply the filterlng to further control Et Ni which is DaW Ö(n). Recall that when 1: > logn 
we can. actu:aJly skip this phase. After this step, we are lef:t with at most ODe copy of a half-plane that 
does not showup in C(N), that is a total of 2n .. The filtering step works as follows. For each sector i, one 
computes the intersections of the half-planes in Ni with the radial boundaries of the sedar. Let L(Ni) and 
R(Ni) represent these intersections and let L(Ni) (R(Ni» represent the ranks of the sorted sequence in the 
radial direction (distance nom origin). So each half-plane·is now associated with a tuple - the left and light 
rank. We now determine the maximal half~planes in each sector using the algorithm of section 2. Clearly the 
half-planes that are not maximal would not form a part of the output inside the sector and we can discard 
these (see Figure 6). We attach one processor to each half-plane that contributes to one venex in a sedor 
and two processors otherwise. The former condition is determined easlly by checking if it is visible in endly 
one of the (radial) boundaries. During further recursive calls, thisprocessor allocation strateg)" ensures that 
number of processors is proportionalto the output complexity within each of the subproblem and we have 
sufficient processors.Following filtering we call the algorithm recursively within each sector. 

For analysing the algoritbm we see that each cf the phases can be canied out in timeÖ(log n/ log 1:) and 
hence Lemma 3.2 can be applied to yield· a running time of Ö(log n/ log k). Moreover the final convex hull is 
obtained as a sorled sequence of vertices in an array which could have some ernpty cel1s Jike the padded-sort 
algorithm. 

Theorem 4.1 The C07I.tlU kull 01 n points in a plane can be computed in Ö(logn/logk) steps in a kn 
processOTs CRCW PRAM. Tke output 01 tkü algoritkm is an ordered set 01 tke kull tlertices in an arra.y 0/ 
sligktly larger size. 

Remark For the case when 1: :5 log n, the the output of the algorithm is exact, that is the output verlices 
appear in a compact sorted array. Moreover, we do not use padsort in the algorithm. 

4.2 3-D Convex hulls and 2-D Voronoi diagrams 

An almost identical approach wom for computing the convex hull of points in three-dimensions - where we 
vertices of the convex hull is produced as the output. We actually compute the intersection of half-spaces 
in three dimensions once we knowa point in the (non-empty) interior. We do encounter some difficulty in 
the Füterlng step (see [27] for details) where we need to build a data structure fordeteding intersections of 
half-planes witha convex polytope. For the range 1 < k :5 log n, this requires bullding this datrstructure 
faster than O(logn) which is currently a bottle-neck.. However, form our earlier remark, for k ~ logn, we 
can. dispense with Fütering and hence we can achieve the required speed-up. 
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Theorem 4.2 Tke convez-kull 01 n points in tkree dimensions can be constructed in Ö(log nj log k) steps 
oy kn CRCW PRAM processors lor k ~ logn. 

As a consequence of the 'lifting' transformation, we obtain a similar bound for 2-D Voronoi diagram. 
Here the output is the list of the Voronoi vertices with their adjacency information. 

4.3 Trapezoidal decomposition and triangulation 

The problem of trapezoidal decomposition is aversion of the vertical visibility problem. Given n non­
intersecting (except at end-points) segments, one has to determine for each end-point, which segment lies 
immediately above it, that is find the first segment intersected by a upward vertical ray. Reif and Sen [28] 
describe an algorithm which has the same basic structure as the previous algorithms. The modifi.eation we 
require is in the first step - that is, for building the data-structure for point-Ioeation in a trapezoidal map of s 
randomly chosen segments. We substitute the CtI.$CtUld. Mergingtechnique of [3] (whi.~ requires a fractional 
cascading data-structure) by the simpler poin~loeation data-structure of Dobm and Lipton [15]. This also 
simplliies the algorithm of Reif and Sen [28]. The Filtering step is simply compaction - the reader is referred 
to [28] for details. So we have the fonowing result 

Theorem 4.3 TM trepezoidal decomporition 01 n non-intersecting segments can be construded inÖ(log nj log k) 
steps using ·kn CRCW PRAM yrocessors. 

Combining this with a result of Yap [34], where he reduces the triangulation of a simple polygon to two 
calls of trapezoidal decomposition (one vertical and one horizontal) we obtain the fonowing corollary 

Theorem 4.4 Tke triangulation edges 01 a rimple polygon on n tlertices an be determined in Ö(log nj log k) 
steps using kn CRCW PRAM yrocessors. 

5 Lower bounds 

As mentioned earlier, some of our algorithms are optimal Ü we require the output to appear in a sorted 
order like the output vertices of the 2-D convex hull or the staircase of the ma.nm.as. In this section, we will 
further strengthen our results which will hold independent of such a rigid output specifieation. For example, 
we shall show that even \dentüieation of the convex-hull vertices require O(log nj log k) parallel time using 
kn Jnocessors which can be viewed as an extension of Yao's [33] observation in the sequential case. For this 
section, we shaD. use slightly modffied versions (used previously in [21, 32]) of the convex.;,hull (dominance) 
problem where the issue is to determine jf among a set of n points all the points belong to the convex-hull 
(~as). Note that these versions are constant time reducible to the standard versions in a CRew PRAM 
model with p ~ n processors. The model of computation is the parallel analogue of Bounded-degree decirion 
tree model(BDD Tree). At each node of this tree, each of the p processors computes the sign of a fixed 
degree polynomial and then the algorithm branches according to the sign tledor, that is considering all the 
signs. The algorithm ends as we reach a leaf node which gives the answer. This is a stronger model than 
any CRew PRAM model as it does not care about read-write con1licts and is not charged for branching 
decision time. 

Our first lower-bound proof uses the approach by Boppana [7] who had earlier dramaticaD.y simplified the 
lower-bound proof of [2] on parallel-sorting. An useful consequence of our result is that the lower boud on 
sorting also extends to this model. We will first review Boppana's elegant proof technique which establishes 
abound on the average-case complexity of parallel sorting and consequently any randomized algorithm for 
the worst-case. 

Fact 1 In a parallel comparison (BDD) tTee 01 1 leatles and m4Zimum arity a, the average patk-length is at 
least o (log ljlog a). 
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Given thls fact (credited to Shannon), one needs a reasonably tight upperbound on the arity ofthe parallel 
comparison (BDD) tree model and a lower bound on the number of leaves to establish a lower-bound of any 
parallel algorithm.. The number of leaves is related to the number of connected components in the solution 
space in R" where n is the dimension oft he solution space (which is often the input size). The arity oftbiS 
tree is the number of distinct outcomesof computations performed by p > 1 processors. For sorting, thls 
tree has n! leaves and Bopanna used a result of Manber and Tompa [23] which bounds the nu:mber of acyclic 
orientations of an undirected graph to (1 + 2m/nt where n and m represent number of vertices and edges 
respectively. Sorting can be viewed as assigning directions to the edges of a complete graph on n verticesand 
taking the transitive-clos1ll:e after every round of comparisons. Obviously the graph should remain acyclic 
at every stage because of the total ordering. The arity can be bounded by (1 + 2p/nt as each of the P 
processors can be viewed as Msigning direction to at most one edge - the. result of a single comparison. This 
immediately implies the required bound of O(logn/log(P/n». 

If we stick to the parallel-comparison model for the 2-D dominance problem, we can prove a similar lower 
boUJid as a corollary. Indeed, all DOwn algorithms for the maxima problem use only comparisons to arrive at 
the solution and hence 01ll: assumption is not unjustified. Since the :z: and the. y coordinates are independent, 
the only useful comparisons are between the :z: and y coordinates separately. Hence, at each stage,we have 
two independent acyclic orientations conesponding to each ofthe coordinate axes. Maximising product ofthe 
cardinalities ofthe two acyclic orientations is an upper-bound on the arity and thls is less than (1 + p/n)2n. 
It is known that for the n-input dominance problem the number of leaves is O«n/2)(fl/2» ([21]). 

Lemma 5.1 In a parallel comparison-tree model, any algoritAm tAat identifies the mazimal points among a 
set 0/ n points in a plane require O(log n/ log le) time using len processors. 

We now further strengihen 01ll: results to hold in the BDD Tree model. Also note that comparlson tree 
model is not a meaningful computing model for most problems in geometry like the convex hulls. Fot this, we 
will first prove a worst ease bound along the lines of Ben-Or [6] and subsequently extend it to the average 
case. Theadditional complication presented in a BDD tree model is that each leaf node may be associated 
with several connected components of the solution set W. Even if we know IWI (the number of connected 
components ofW),westill need lower bound on the I1umber ofleaves. Ben-Or tackles this by bOUI1ding the 
number of connected components associa.ted with a leaf using results of Milnor and Thom. His result shows 
that even under these conditions the 1Dorst-case sequentiallower bound is still about O(log IWI). 

If the parallel BDD algorithm. uses p processors then the signs of p polynomials can be computed simul­
taneously. Each test yields a sign and we branch according to the collective possibilities of all the tests. We 
shall use the following resuli on the number of conneded components induced by m fixed degree polynomial. 
inequaJities due to Pollack and Broy [24] . to bound the number of such possibilities 

Lemma 5.2 The number 0/ connectd components 0/ all fU1fU!mpty realizations 0/ rign conditions 0/ m 
polynomials in d variables, each 0/ degree at most b iS bounded by «O(bmjd)4. 

This gives us a baund on the arity of the parallel BDD tree model as well as the number of connected 
components associated with a leaf node at depth h. ~The number of polynomials defining the space in a 
leaf-node at depth h is hp and hence the number of connected compopents associa.ted with such anode is 
«O(bnp/d)4. In 01ll: context, the number ofprocessors and (hence the polynomial signs computed at each 
stage) is bound by kn and dis the dimension of the solution space which is approximately the size of the 
input. This gives us the following theorem 

Theorem 5.1 Let WeR" be a set tAat has IWI connected components. Tken any parallel BDD tree 
algorithm that decides membership in W using kn (Je ~ 1) processors has time complemy O(log IWI/nlogle). 

Proof: If h is the length of the longest path in the tree then from Lemma 5.2 

(elen/n)"ft . (ehlen/nt ~ IWI 
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where eisa constant that subsumes the degree ofthe polynomials. The fustexpression on the l.h.s. represnts 
maximum number of leaves and the second expression is the maximum number of connected components 
associa.ted with a leaf at depth h. By simple manipulations and using hn> hlogn we arrive at the required 
result. 0 

The above theorem immediately yields as corollary O(logn/logk) worst-case bound for a number of 
problems for which IWI at least (n/2)(n./2). This includ~ sorting, dommance and the convex hull problems 
([32, 21)). 

To extend the above result to the average case we require a mild assumption about the algorithms. We 
shall restrict the parallel algorithms to be efficient, that is the worst-case time boud is polylogarithmic. This 
implies that the longest path in the parallel BDD tree is bounded by some logt n for some constant f. This is 
not umeasonable as there exists deterministic algorithms with polylog running time using only n processors 
for all our problems. We can then bound the number of lea.ves of the BDD treeto be O(IWI/(enkL/n)n.) 
where L is the longest path to a leaf node. This yields abound similar to the previous theorem. 

Theorem 5.2 Let WeR'" be a set that has IWI connected comp<m.ents. Then any parallel BDD tree 
algorithm which Aas a worst case polylog time complezity to decide membership in W u.sing kn (1c 2: 1) 
procusors Aas a1lemge time compluity O(log IWI/nlogk). 

Bemark: This extrarestriction on the worst case complexity is probably unnecessary - it is only to get 
around a Iiasty optimisation problem in the general lower bound proof. 

Since lWI is at least (n/2)(n./2). for the the two dimensional convex hull, the average running time at 
least O(logl/nlogk) time. For sorting and the dominance problem, the same bouds hold. By a simple 
reduction of ~D dominanceto trapezoidal decomposition, we get a similar bound for the latter 'Problem. 

6 Conclusion 

We have presented · a wüfi.edapproach to speeding up various algorithms in computational geometry. Our 
method relies hea.vily on the results on padded sorting and exploit the generic randomized divide-and-conquer 
teclmiques of [31]. In addition we have demonstrated that these are the best possible in a fairly strong sense, 
namely average speed-up. Our algorithms can be made somewhat stronger by making the rmming time hold 
with probability 1 - 2"'. for some ~ > 0 instea.d of the standard high probability bounds derived in the paper. 

This paper lea.ves openvarious directions for further research, the most signüica.nt being matching deter­
ministic algorithms_ We do not achieve optimal speed-up for 3-D convex hulls for processors in the range n 
to nlogn. 

Regarding lower bouds, it will be interesting to extend these to the algebraic model which allows arith­
metic computations ([6)). However, it appears that the presently known Milnor-Thom bounds are too weak 
for our purpose. Our algorihms do not match the lower bounds for small output instances for which one 
may be able to obtain better speed-up, nainely O(log h/ log k) where h is the output size. 
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