
Polycritical Gravities

Teake Nutma*

Max-Planck-Institut für Gravitationsphysik (Albert Einstein Institut), Am Mühlenberg 1, 14476 Golm, Germany
(Received 10 April 2012; published 19 June 2012)

We present higher-derivative gravities that propagate an arbitrary number of gravitons of different mass

on (anti-)de Sitter backgrounds. These theories have multiple critical points, at which the masses

degenerate and the graviton energies are non-negative. For six derivatives and higher there are critical

points with positive energy.
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I. INTRODUCTION

Two-derivative Einstein gravity in four dimensions is
nonrenormalizable. It can be made perturbatively renorma-
lizable by adding four-derivative terms to the Lagrangian
[1,2]. However, the addition of the curvature-squared terms
spoils unitarity: around a Minkowski background they
introduce a massive spin-0 and spin-2 mode. These mas-
sive modes have norm opposite of the massless spin-2
mode, and thus are ghosts. The spin-0 mode can be elim-
inated by tuning the coefficients of the curvature-squared
terms, but the massive spin-2 modes cannot.

Recently, a consistent four-derivative theory of gravity
in three dimensions, called ‘‘new massive gravity’’ was
introduced in [3]. New massive gravity is ghost-free due to
the fact that massless gravitons have no propagating de-
grees of freedom in three dimensions, which makes it
possible to choose the overall sign of the action such that
the massive gravitons have positive energy. This, however,
is not possible in higher dimensions, as there both massive
and massless gravitons propagate.

One way around this problem is to perturb around
an (anti-)de Sitter [(A)dS] background, instead of a
Minkowski background. The cosmological constant and
the coefficients of the curvature-squared terms can then
be tuned such that the massive modes becomes massless
[4]. This is known as ‘‘critical gravity’’ [5]. As the massive
modes disappear at the critical point, the theory is poten-
tially unitary.

However, at the critical point the massive modes are
replaced by so-called log modes [6–8]. As it turns out,
these log modes are ghosts [9], and must the truncated to
restore unitarity. As their falloff in the radial AdS coordi-
nate is logarithmic (hence the name), this may be done by
imposing certain boundary conditions.

The resulting theory is then unitary, but, unfortunately,
also empty. Namely, at the critical point the energy of the
massless graviton modes vanishes, together with the mass
of the Schwarzschild black hole. It was recently argued
from a conformal field theory perspective [10] that this is
essentially due to the fact that critical gravity is of rank two

(with the rank being half the number of maximum deriva-
tives). Instead, gravity theories of odd rank should not
suffer from this ‘‘zero-energy-problem.’’
The purpose of this paper is to investigate the criticality

conditions for higher-rank theories of gravity. It is organ-
ized as follows. We first give a nonlinear Lagrangian for
arbitrary rank r, that, on (A)dS backgrounds, propagates
one massless and r� 1 massive gravitons, but not the
scalar ghost mode. Next, we show that the quadratic per-
turbation of this Lagrangian and its linear equations of
motion can be concisely written in terms of the so-called
Schouten operator. This reformulation enables us to cal-
culate the global charges (such as black hole masses) and
graviton energies for arbitrary rank. From the latter we
deduce that the theory is critical, i.e., all energies are non-
negative, whenever sufficiently enough graviton masses
are degenerate. In general there will be more than one
critical point; hence the name polycritical gravities.

II. NON-LINEAR ACTION

For a gravity theory of rank r (thus containing at most 2r
derivatives), wewould like its linear equations of motion to
be1

Yr�1

n¼0

ð �h� 2��m2
nÞh�� ¼ 0; (1a)

�r�h�� ¼ 0; (1b)

�g��h�� ¼ 0: (1c)

This a straightforward generalization of the Fierz-Pauli
equations of motion for a single massive graviton [11].
Here however we have r graviton modes with a priori
different masses m0, m1; . . . ; mr�1. Because these equa-
tions of motion should follow from some covariant non-
linear Lagrangian, one of the masses (say m0) will always
be zero. This is due to the diffeomorphism invariance of the
nonlinear theory. We will use the index n ¼ 0; 1; . . . ; r� 1
to indicate all gravitons, and the index i ¼ 1; . . . ; r� 1 for
only the massive gravitons.
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In four dimensions and higher, a nonlinear Lagrangian
whose linearized equations of motion are those given
above, is

L ¼ ffiffiffiffiffiffiffi�g
p �

R� ðd� 2Þðd� 1Þ�

þ 1

4
C����

�Xr�1

i¼1

aih
i�1

�
C����

�
: (2)

Here C denotes the Weyl tensor, and the coefficients ai ¼
aiðr; d;�; miÞ are functions of the rank, the dimension, the
cosmological constant, and the graviton masses. For r ¼ 2,
this action was already written down in [12]. We will give
explicit values for the coefficients ai for r ¼ 3 below.

Note that we use the canonical sign for the Einstein-
Hilbert term in the above action. Flipping its sign is
equivalent to changing the overall sign of the action,
upon redefining � and ai accordingly. Such a change of
sign also changes the sign of the energy of the solutions
(see Sec. VI), and, as noted in the Introduction, is particu-
larly important in the d ¼ 3, r ¼ 2 case [3]. There it is
customary to leave the sign of the Einstein-Hilbert term
arbitary. Here, however, we have fixed the sign, keeping in
mind that we can always flip the overall sign of the action
in order to choose which modes have positive energy and
which negative.

We have two main reasons for using only Weyl tensors
in the higher-order terms. Both stem from the fact that the
Weyl tensor vanishes identically on (A)dS spaces. First,
this ensures the uniqueness of the (A)dS vacuum. Second,
for perturbations around such a background, the higher-
order terms do not contribute to the trace of the equations
of motion. This comes about as follows.

The full nonlinear equations of motion that follow from
(2) are

E�� ¼ � 1ffiffiffiffiffiffiffi�g
p �L

�g�� ¼ G�� þ
Xr�1

i¼1

aiK
i
�� ¼ 0: (3)

Here G�� is the cosmological Einstein tensor (see the

Appendix ), and Ki
�� are the contributions from the

higher-order terms. Suppressing indices on the Weyl ten-
sor, these contributions have the generic form

Ki
�� ¼ 2

�C

�g�� h
iCþ C

�
�hi

�g�� �
1

2
g��

�
C: (4)

ThusKi
�� consists of a part that is linear in the Weyl tensor,

and part that is quadratic. For an (A)dS space, both parts
are zero. So, on these backgrounds, just the Einstein-
Hilbert contribution of (3) survives. This uniquely fixes
the background curvature to be �.

For linear perturbations around (A)dS solutions, the part
of Ki

�� that is quadratic in the Weyl tensor vanishes. The

linearized higher-order contributions to EL
�� come then

only from the first term on the right-hand side of (4), which
evaluates to

ðKi
��ÞL ¼ �r� �r� �hiCL

����: (5)

The linear Weyl tensor CL is, just like its nonlinear variant,
traceless. Upon taking the trace of the linear equations of
motion, it follows that the linear Ricci scalar vanishes on
shell

�g ��EL
�� ¼

�
1� d

2

�
RL ¼ 0: (6)

As in Einstein gravity, this allows us to impose the
transverse-traceless gauge [13], i.e., Eqs. (1b) and (1c),
for the linear graviton fluctuations h��. Hence the scalar

mode h, which would otherwise be a ghost, does not
propagate.
In the remainder of this section we will show that the

linear equations of motion take the form (1a), and give
explicit values of the Lagrange parameters ai for the rank
r ¼ 3. The linearized equations of motion can be written
entirely in terms of GL

�� and RL by using the identities

�r� �r� �hiCL
���� ¼ ½ �hþ 2ðd� 2Þ��i �r� �r�CL

����; (7a)

�r� �r�CL
���� ¼ 1

2

d� 3

d� 1
½ �g��ð �h� ðd� 1Þ�Þ

� �r�
�r��RL þ d� 3

d� 2
½ �h� d��GL

��:

(7b)

The former follows from commuting covariant derivatives,
while the latter is a consequence of the Bianchi identities.
Furthermore, in the transverse-traceless gauge the linear
Einstein tensor takes on the form

GL
�� ¼ � 1

2
ð �h� 2�Þh��: (8)

And, as RL ¼ 0 on shell, the linear equation of motion EL
��

is a polynomial in �h that acts on h��. We may always

choose the parameters ai such that it factorizes into the
form (1a). Indeed, for r ¼ 3, the linear equation of motion
becomes

EL
�� ¼ � 1

2�
ð �h� 2�ÞYr�1

i¼1

ð �h� 2��m2
i Þh�� ¼ 0; (9)

where the parameter � is given by

� ¼ Yr�1

i¼1

½m2
i � ðd� 2Þ��; (10)

and the squared masses by

m2
1 ¼ �d�

2
� a1 þ

ffiffiffi
b

p
2a2

; (11a)

m2
2 ¼ �d�

2
� a1 �

ffiffiffi
b

p
2a2

; (11b)

b ¼ ½a1 þ ð3d� 4Þ�a2�2 � 4
d� 2

d� 3
a2: (11c)

Inverting the above equations for a0 and a1 gives finally
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a1 ¼ � 1

�

d� 2

d� 3
ðm2

1 þm2
2 þ d�Þ; (12a)

a2 ¼ þ 1

�

d� 2

d� 3
: (12b)

The factors of d� 3 in the denominator indicate that the
nonlinear Lagrangian (2) is only valid for d � 4. This
makes sense, as the Weyl tensor vanishes identically in
three dimensions and lower. Similar explicit values for the
parameters ai of higher-rank theories can be computed
along the same lines. While these explicit values are
needed for the nonlinear action, they are not needed for
its quadratic perturbation. As we will see in the next
section, the latter can be written concisely in closed form
using the mass parameters mi instead of the parameters ai.
Furthermore, the quadratic Lagrangian will also be valid in
three dimensions.

III. QUADRATIC ACTION

Before we set out to calculate the conserved charges
and energies of our higher-rank theory, it is convenient
to rewrite linear equations of motion a bit. We start by
rearranging the quadratic perturbation of the nonlinear
Lagrangian (2). It is given by

L 2 ¼ � 1

2
h��GL

�� � 1

2
�r� �r�h��

�Xr�1

i¼1

ai �h
i�1

�
CL
����:

(13)

We have dropped a total derivative in the Einstein part, and
expanded one of the linear Weyl tensors in terms of the
graviton fluctuations h��. There are more contributions to

this expansion than �r� �r�h��, but they drop out because of
the contraction with the other Weyl tensor.

Like the linear equations of motion, the quadratic
Lagrangian can be written entirely in terms of GL

�� and

RL by using the identities (7). The resulting expression can
be simplified further to

L 2 ¼ � 1

2�
G��

L

�Yr�1

i¼1

2S þm2
i

�
� h��: (14)

Here � is given as in (10), and we have introduced the
Schouten operator S. It is defined such that when it acts on
the graviton fluctuations h��, it gives the linear cosmologi-

cal Schouten tensor

S � h�� � SL��: (15)

The cosmological Schouten tensor S�� is in turn defined

such that for vanishing� it reduces to the normal Schouten
tensor, and that it is zero on (A)dS backgrounds, i.e. �S�� ¼
0. See also the Appendix . Surprisingly, the quadratic
action (14) is also valid in three dimensions, whereas the
nonlinear action (2) was not. For d ¼ 3, r ¼ 2, and � ¼ 0
it coincides with the quadratic action given in [14].

Before deriving equations of motion from (14), we first
list some useful properties of the Schouten operator and
the Einstein operator G. The latter is defined in a similar
fashion as the Schouten operator

G � h�� � GL
��: (16)

For arbitrary symmetric tensors A�� and B��, we have

B��S � A�� ¼ A��

�
S � B�� þ 1

2

d� 2

d� 1
ð �r�

�r�B

� �g��
�r� �r�B��Þ

�
; (17a)

B��G � A�� ¼ A��G � B��; (17b)

�r�G � A�� ¼ 0; (17c)

½G;S�A�� ¼ 1

2

d� 2

d� 1
�r�

�r� �g
��G � A��: (17d)

In the first two lines we have dropped a total derivative
while integrating by parts. Note that for B�� ¼ G � A��

the last term of (17a) vanishes, and the middle term is the
same as the commutator (17d). Thanks to this subtle inter-
play between the Schouten and Einstein operators, the
linear equation of motion reads

EL
�� ¼ � �L2

�h�� ¼ 1

�
G �

�Yr�1

i¼1

2S þm2
i

�
� h��: (18)

Upon taking the trace of these equations, we should re-
cover (6), that is, RL ¼ 0. To see how this comes about, we
need three additional properties of the Schouten and
Einstein operators

�g��G � A�� ¼ �ðd� 1Þ �g��S � A��; (19a)

�g��S � A�� ¼ 1

2

d� 2

d� 1
½ �r� �r�A�� � �hA� ðd� 1Þ�A�;

(19b)

�r�S � A�� ¼ �r� �g
��S � A��; (19c)

from which it follows that

�g ��G � S � A�� ¼ �d� 2

2
� �g��G � A��: (20)

A short calculation shows that we indeed recover (6)

�g ��EL
�� ¼ 1

�
�g��

�Yr�1

i¼1

m2
i � ðd� 2Þ�

�
G � h��

¼
�
1� d

2

�
RL ¼ 0: (21)

As the linear Ricci scalar vanishes on shell, we may go to
the transverse-traceless gauge (1b) and (1c). In this gauge
the Schouten and Einstein operators become equal [com-
pare Eq. (8)],
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S � h�� ¼ G � h�� ¼ � 1

2
ð �h� 2�Þh��: (22)

The complete linear equations of motion (18) can then be
written as

ð�1Þr
2�

Yr�1

n¼0

ð �h� 2��m2
nÞh�� ¼ 0; (23a)

�r�h�� ¼ 0; (23b)

�g��h�� ¼ 0; (23c)

with m0 ¼ 0.

IV. CONFORMAL INVARIANCE

The overall factor 1
� in the quadratic Lagrangian (14)

comes from demanding that the Ricci scalar in the non-
linear action (2) has the usual normalization. The advan-
tage of this normalization is that we recover Einstein
gravity upon decoupling the massive gravitons by sending
their the masses to infinity. We will see later in Secs. Vand
VI that the conserved charges and graviton energies also
reduce to their two-derivative ‘‘Einstein’’ values in this
limit.

However, an obvious drawback of the overall factor 1
� is

that it has poles at the mass values

m2
i ¼ ðd� 2Þ�: (24)

One easy way to get rid of the poles is to simply replace the
overall factor 1

� by some other factor 1
�0 that has the same

mass dimension, but no explicit dependence onmi and thus
no poles. We can then freely let the masses take the values
(24), with the drawback that we do not recover Einstein
gravity upon decoupling the massive gravitons. Another
possible drawback could be that for the mass values (24)
the trace of the linear equations of motion (21) vanishes
identically, and does not eliminate the scalar mode of the
graviton.

Luckily, the latter does not happen. Instead, for the
values (24) the linear theory develops a conformal invari-
ance. To see how this happens, consider the linear confor-
mal transformation

�!h�� ¼ �g��!: (25)

We would like to know the variation of the equations of
motion (18) under this transformation. To this end we first
compute the variation of a single Schouten operator,

�!ðS � h��Þ ¼ S � ð �g��!Þ

¼ �d� 2

2
ð��g�� þ �r�

�r�Þ!: (26)

Next, we notice the identities

G � ð �r�
�r�!Þ ¼ S � ð �r�

�r�!Þ ¼ 0: (27)

Thus for the repeated composition of the Schouten opera-
tor only the first term on the right-hand side of (26) is

important. The variation of the equations of motion (18)
then becomes

�!E
L
�� ¼ 1

�

�Yr�1

i¼1

m2
i � ðd� 2Þ�

�
�!ðG � h��Þ: (28)

This is zero for the mass values (24) and the redefinition of
� mentioned above. This makes it possible to choose the
conformal gauge ! ¼ h

d , such that the scalar mode van-

ishes everywhere.
The extra conformal gauge symmetry is somewhat remi-

niscent of the ‘‘partiallymassless’’ modes that occur in two-
derivative Fierz-Pauli theory [15,16]. At the critical value of
the Higuchi-bound Fierz-Pauli theory also develops an ex-
tra gauge symmetry [17], although not a conformal one. The
extra gauge symmetry for the higher-derivative theories
considered here can be thought of as a generalization of
the two-derivative partially massless case.

V. CONSERVED CHARGES

We now derive the conserved charges of our theory.
They can be calculated via the Abbott-Deser method
[18], which is an extension of the Arnowitt-Deser-Misner
energy [19,20] to backgrounds with constant curvature. In
this method the linearized equations of motion EL

�� are

treated as an effective energy-momentum tensor. This al-
lows us to compute conserved charges Q� as follows:

Q�ð ��Þ ¼
Z
�
dd�1x

ffiffiffiffiffiffiffi� �g
p

E��
L

���: (29)

Here ��� is a Killing vector of the background, and � is a

spatial (d� 1) dimensional hypersurface. For instance, the
global mass of a solution is then given byQ0 for a timelike
Killing vector. The trick for calculating the conserved
charges is to show that the integrand can be written as a
divergence of a two-form F��

E��
L

��� ¼ �r�F
��: (30)

The integral in (29) then reduces to a surface integral at
spatial infinity,

Q�ð ��Þ ¼
Z
@�

dS�F
��; (31)

where @� is the (d� 2) dimensional boundary of �. For
Einstein-Hilbert gravity, whose linear equation of motion
is simply G � h�� ¼ 0, the two-form is

FEH
�� ¼ ��� �r½�h��� þ ��½� �r��h� ��½� �r�h���

þ h�½�
�r�� ��� þ 1

2
h �r�

��� � F �� � h��: (32)

Here we have introduced the two-form operator F ��. From

the definition above, we have the following property. When
it acts on a symmetric tensor, it gives a two-form whose
divergence is the contraction of the Einstein operator with
a Killing vector
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�r �F �� � A�� ¼ ���G � A��: (33)

In our case the linear equation of motion is (18). Its general
structure is the same as that of Einstein gravity, namely, a
symmetric tensor hit by the Einstein operator. Hence the
corresponding two-form simply reads

F�� ¼ 1

�
F �� �

�Yr�1

i¼1

2S þm2
i

�
� h��: (34)

Like [21,22] we restrict to solutions that are asymptotically
(A)dS. That is, at spatial infinity the vacuum Einstein
equations are satisfied

GL
��j@� ¼ 0; RLj@� ¼ 0; SL��j@� ¼ 0: (35)

The last equation follows from the fact that the linear
Schouten tensor can be decomposed as SL�� ¼ GL

�� þ 1
2 �

d�2
d�1

�g��R
L. So the terms with Schouten operators in (34)

are zero in the asymptotic region, and all that remains is the
product of the squared masses m2

i . Suppressing the depen-
dency on the Killing vector, we obtain

Q� ¼ Q�
EH

�

Yr�1

i¼1

m2
i : (36)

Thus the conserved charges are equal to those of two-
derivative Einstein-Hilbert gravity, up to a renormalization
factor. In the limit when all extra graviton modes become
infinitely heavy and decouple, the renormalization factor
goes to one by (10). Furthermore, the conserved charges
vanish when one of the graviton masses is zero, which is
what happens at the critical point in four-derivative critical
gravity [5,12].

VI. GRAVITON ENERGIES

In this section we will derive the energies associated

with the different graviton modes hðnÞ��. These modes are
annihilated by a single factor of the product in the complete
equation of motion (23a),

ð �h� 2��m2
nÞhðnÞ�� ¼ 0: (37)

In [4,5,23] the graviton energies were computed by first
deriving the Hamiltonian from an effective action. The
Hamiltonian was then evaluated on shell for the different
graviton modes in order to give the energy. The disadvant-
age of this approach is that one has to make an Arnowitt-
Deser-Misner-like split of the indices and variables, and use
the Ostrogradsky method to deal with the higher derivatives.

Here we will follow a different route, as outlined in [24],
that circumvents these inconveniences. First we compute
the energy-momentum tensor by varying the quadratic
action (14) with respect to the background metric

T�� ¼ 2
�L2

� �g�� : (38)

The energy is then obtained by integrating this energy-
momentum tensor T�� over a Cauchy surface,

E ¼
Z
�
dd�1xT��n

� ���: (39)

Here n� is the unit normal to� and ��� is a timelike Killing
vector.
For Einstein-Hilbert gravity, the on shell energy-

momentum tensor is

TEH
�� ¼ �h��

�GL
��

� �g�� ¼ �h��
�G
� �g�� � h��: (40)

For deducing the energy-momentum tensor of our theory
we need one last identity involving the Schouten and
Einstein operators. First note from (19) that when the
Schouten and Einstein operators act on a transverse and
traceless tensor, the resulting tensor is also transverse
and traceless. Furthermore, by Eq. (22), their action on
transverse-traceless tensors gives the same result. This
implies that for arbitrary transverse-traceless symmetric
tensors A�� and B��, we have

B��� �gðS � A��Þ ¼ B��ð� �gGÞ � A�� þ ð� �gA��ÞG � B��:

(41)

Because we will evaluate the energy-momentum tensor on
shell, h�� is transverse and traceless by (23). Thus we are

allowed to use the above identities in deriving the energy-
momentum tensor. Lastly, from Eqs. (22) with (37), we
have on shell

S � hðnÞ�� ¼ G � hðnÞ�� ¼ � 1

2
m2

nh
ðnÞ
��: (42)

Combining the above equations, the energy-momentum
tensor becomes

TðnÞ
�� ¼ 1

�

�Yr�1

i¼1

ðm2
i �m2

nÞ �m2
n

Xr�1

i¼1

Yr�1

j¼1
j�i

ðm2
j �m2

nÞ
�
TEH
��:

(43)

The superscript (n) indicates that it is evaluated on shell for

the mode hðnÞ��. When mn ¼ 0, only the first product con-
tributes to the energy-momentum tensor. For nonzero
masses mi, the first product vanishes and only one term
in the sum is nonzero. This gives the following energies for
the massless and massive gravitons:

Eð0Þ ¼ þ EEH

�

Yr�1

j¼1

m2
j (44a)

EðiÞ ¼ � EEH

�
m2

i

Yr�1

j¼1
j�i

ðm2
j �m2

i Þ: (44b)

The energy of the massless graviton hð0Þ�� has the same
overall factor as the conserved chargeQ� (36). So it seems

that the massive gravitons hðiÞ�� do not contribute to the
conserved charge. This is to be expected, as the massive
gravitons fall off too fast towards spatial infinity to con-
tribute to the surface integral (31) in the asymptotic region.
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For four-derivative theories (r ¼ 2), the above energies

reduce to Eð0Þ ¼ �Eð1Þ, which matches with the energies
found in [4,5]. So, for rank two, the only way to obtain
energies with the same sign is to set the mass m1 to zero.
Both energies are then zero, and the conserved charge also
vanishes, rendering the theory trivial.

In the six-derivative case, r ¼ 3, this zero-energy prob-
lem does not occur. The graviton energies (44) then,
namely, read

Eð0Þ ¼ EEH

�
m2

1m
2
2; (45a)

Eð1Þ ¼ EEH

�
m2

1ðm2
1 �m2

2Þ; (45b)

Eð2Þ ¼ EEH

�
m2

2ðm2
2 �m2

1Þ: (45c)

These energies are plotted in Fig. 1. There are two distinct
points where they have same sign: either whenm2

1 ¼ m2
2 or

when m2
1 ¼ 0 _m2

2 ¼ 0. In the last critical point the con-
served is zero, whereas it can be positive in the first.

For yet higher-rank theories there are even more critical
points. However, it will never be possible to have the same
sign for all energies without degeneracies in the masses. If
we, namely, arrange the masses by size,

m2
1 < . . .<m2

i < . . .<m2
r�1; (46)

the sign of the energies (44) alternates

sgn ðEðiÞÞ ¼ �sgnðEðiþ1ÞÞ: (47)

Thus the situation with all masses different (46) leads to
ghosts; to avoid this we need at least some degeneracy of
the masses.

But whenever there is a mass mn with multiplicity

�n > 1, a so-called log mode hðn;pÞ�� appears [8]. These
log modes are annihilated not by a single factor, but by
multiple factors of the product in the equations of motion

ð �h� 2��m2
nÞphðn;pÞ�� ¼ 0: (48)

The label p can take the values p ¼ 2; . . . ; �n, as p ¼ 1

simply gives the nonlogarithmic graviton mode hðnÞ��. From
the four-derivative case the log modes are expected to be
ghosts [9], and, if possible, need to be truncated out in
order to restore unitarity.

VII. CONCLUSIONS

In this paper we have studied gravities of arbitrary rank,
meaning they propagate any number of gravitons on (A)dS
backgrounds. Besides giving a quadratic and a nonlinear
action, we have calculated the conserved charges and the
graviton energies. From the energies we deduce that there
will be ghosts unless the masses have critical values. At
these critical points some of the gravitons have degenerate
mass. But as mass degeneracies lead to logarithmic gravi-
ton modes, the untruncated theory will never be unitary. By
truncating the log modes by imposing appropriate bound-
ary conditions one could obtain a unitary subsector of the
theory. We leave the exact form of both the higher-rank log
modes and boundary conditions to future study.
When the rank is two, there is only one critical point, and

all the energies vanish [4,5,12]. One can interpret the
triviality of this theory as being to due to the proposed
equivalence of Einstein gravity and conformal gravity
[25,26]. We have shown that for higher-rank theories
there are critical points where the conserved charges and
graviton energies do not vanish. But in the fully degenerate
case where all the graviton masses are zero, the theory
will always be empty. Like the proposed equivalence
of Einstein and conformal gravity, this ‘‘emptiness’’ of
higher-rank theories could in principle be used to construct
a chain of equivalence relations between gravity theories of
different rank.
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APPENDIX A: CONVENTIONS

We use the ‘‘mostly plus’’ metric signature
ð�;þ; . . . ;þÞ. The conventions for the Riemann tensor
are the default of the XACT software package [27], which
in turn follows Wald’s conventions [13]

½r�;r��T� ¼ R�
���T�; R�� ¼ R�

���: (A1)

Barred objects are background quantities (i.e., �g denotes
the background metric). AdS and dS backgrounds are
chosen as follows:

FIG. 1 (color online). Graviton energies for r ¼ 3 in polar

coordinates. Here 	 ¼ tan�1ðm2
2

m2
1

Þ is the angle in the ðm2
1; m

2
2Þ

plane. The masses are given by m2
1 ¼ 2 cos	 and m2

2 ¼ 2 sin	.
There are three points where all energies are non-negative: m2

1 ¼
m2

2, m
2
1 ¼ 0, or m2

2 ¼ 0.
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�R���� ¼ �ð �g�� �g�� � �g�� �g��Þ; (A2a)

�R�� ¼ ðd� 1Þ��g��; (A2b)

�R ¼ dðd� 1Þ�: (A2c)

Perturbations around these backgrounds are defined as

g�� ¼ �g�� þ gL�� ¼ �g�� þ h��: (A3)

The superscript L indicates linear perturbations. Thus the
linear perturbation of the metric is given by h��.

The cosmological Einstein tensor is the usual Einstein
tensor plus a term proportional to the cosmological con-
stant, such that it vanishes on the above backgrounds

G�
�� ¼ R�� � 1

2
g��½R� ðd� 2Þðd� 1Þ��; (A4a)

�G�
�� ¼ 0: (A4b)

The cosmological Schouten tensor is defined similarly

S��� ¼ R�� � 1

2
g��

�
R

d� 1
þ ðd� 2Þ�

�
; (A5a)

�S��� ¼ 0: (A5b)

The Schouten tensor is usually given with an additional
overall factor 1

d�2 . However, for our purposes the above

definition is more convenient. In the main text the super-
scripts � are dropped from the cosmological Einstein and
Schouten tensors. Thus by G�� and S�� we always mean

their cosmological versions.
For completeness, we give the linear perturbations of the

cosmological Einstein and Schouten tensors

GL
�� ¼ RL

�� � ðd� 1Þ�h�� � 1

2
�g��R

L; (A6a)

SL�� ¼ RL
�� � ðd� 1Þ�h�� � 1

2ðd� 1Þ �g��R
L; (A6b)

with

RL
�� ¼ �r�

�rð�h
�
�Þ �

1

2
�hh�� � 1

2
�r�

�r�h; (A7a)

RL ¼ �r�
�r�h

�� � �hh� ðd� 1Þ�h: (A7b)

[1] K. S. Stelle, Phys. Rev. D 16, 953 (1977).
[2] K. S. Stelle, Gen. Relativ. Gravit. 9, 353 (1978).
[3] E. A. Bergshoeff, O. Hohm, and P. K. Townsend, Phys.

Rev. Lett. 102, 201301 (2009).
[4] Y. Liu and Y.-w. Sun, J. High Energy Phys. 04 (2009) 106.
[5] H. Lu and C.N. Pope, Phys. Rev. Lett. 106, 181302 (2011).
[6] D. Grumiller and N. Johansson, J. High Energy Phys. 07

(2008) 134.
[7] Y. Liu and Y.-W. Sun, J. High Energy Phys. 05 (2009) 039.
[8] E. A. Bergshoeff, O. Hohm, J. Rosseel, and P.K.

Townsend, Phys. Rev. D 83, 104038 (2011).
[9] M. Porrati and M.M. Roberts, Phys. Rev. D 84, 024013

(2011).
[10] E. A. Bergshoeff, S. de Haan, W. Merbis, M. Porrati, and J.

Rosseel, J. High Energy Phys. 04 (2012), 134.
[11] K. Hinterbichler, Rev. Mod. Phys. 84, 671 (2012).
[12] S. Deser, H. Liu, H. Lu, C. Pope, T. C. Sisman, and B.

Tekin, Phys. Rev. D 83, 061502 (2011).
[13] R.M. Wald, General Relativity (The University of

Chicago Press, Chicago, 1984).
[14] E. Bergshoeff, O. Hohm, and P. Townsend, J. Phys. Conf.

Ser. 229, 012005 (2010).

[15] S. Deser and A. Waldron, Phys. Rev. Lett. 87, 031601
(2001).

[16] S. Deser and A. Waldron, Nucl. Phys. B607, 577
(2001).

[17] S. Deser and R. I. Nepomechie, Ann. Phys. (N.Y.) 154,
396 (1984).

[18] L. Abbott and S. Deser, Nucl. Phys. B195, 76 (1982).
[19] R. L. Arnowitt, S. Deser, and C.W. Misner, Gravitation:

An Introduction To Current Research, edited by Louis
Witten (Wiley, New York, 1962), Chap. 7, pp 227.

[20] T. Regge and C. Teitelboim, Ann. Phys. (N.Y.) 88, 286
(1974).

[21] S. Deser and B. Tekin, Phys. Rev. Lett. 89, 101101 (2002).
[22] S. Deser and B. Tekin, Phys. Rev. D 67, 084009 (2003).
[23] W. Li, W. Song, and A. Strominger, J. High Energy Phys.

04 (2008) 082.
[24] V. Iyer and R.M. Wald, Phys. Rev. D 50, 846 (1994).
[25] J. Maldacena, arXiv:1105.5632.
[26] H. Lu, Y. Pang, and C. Pope, Phys. Rev. D 84, 064001

(2011).
[27] J.M. Martin-Garcia, XACT: Efficient tensor computer

algebra for MATHEMATICA.

POLYCRITICAL GRAVITIES PHYSICAL REVIEW D 85, 124040 (2012)

124040-7

http://dx.doi.org/10.1103/PhysRevD.16.953
http://dx.doi.org/10.1007/BF00760427
http://dx.doi.org/10.1103/PhysRevLett.102.201301
http://dx.doi.org/10.1103/PhysRevLett.102.201301
http://dx.doi.org/10.1088/1126-6708/2009/04/106
http://dx.doi.org/10.1103/PhysRevLett.106.181302
http://dx.doi.org/10.1088/1126-6708/2008/07/134
http://dx.doi.org/10.1088/1126-6708/2008/07/134
http://dx.doi.org/10.1088/1126-6708/2009/05/039
http://dx.doi.org/10.1103/PhysRevD.83.104038
http://dx.doi.org/10.1103/PhysRevD.84.024013
http://dx.doi.org/10.1103/PhysRevD.84.024013
http://dx.doi.org/10.1007/JHEP04(2012)134
http://dx.doi.org/10.1103/RevModPhys.84.671
http://dx.doi.org/10.1103/PhysRevD.83.061502
http://dx.doi.org/10.1088/1742-6596/229/1/012005
http://dx.doi.org/10.1088/1742-6596/229/1/012005
http://dx.doi.org/10.1103/PhysRevLett.87.031601
http://dx.doi.org/10.1103/PhysRevLett.87.031601
http://dx.doi.org/10.1016/S0550-3213(01)00212-7
http://dx.doi.org/10.1016/S0550-3213(01)00212-7
http://dx.doi.org/10.1016/0003-4916(84)90156-8
http://dx.doi.org/10.1016/0003-4916(84)90156-8
http://dx.doi.org/10.1016/0550-3213(82)90049-9
http://dx.doi.org/10.1016/0003-4916(74)90404-7
http://dx.doi.org/10.1016/0003-4916(74)90404-7
http://dx.doi.org/10.1103/PhysRevLett.89.101101
http://dx.doi.org/10.1103/PhysRevD.67.084009
http://dx.doi.org/10.1088/1126-6708/2008/04/082
http://dx.doi.org/10.1088/1126-6708/2008/04/082
http://dx.doi.org/10.1103/PhysRevD.50.846
http://arXiv.org/abs/1105.5632
http://dx.doi.org/10.1103/PhysRevD.84.064001
http://dx.doi.org/10.1103/PhysRevD.84.064001

