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The near horizon limits of M2 and D3 branes probing special holonomy cones give rise to supersymmetric
AdSy x M7 and AdSs x Ms solutions of D = 11 and type IIB supergravity, respectively, where M7
and M5 are special types of Einstein spaces. Here we will show the existence of consistent Kaluza-Klein
truncations of D = 11 and type IIB supergravity on such M7 and M5 down to matter-coupled supergravities
in D = 4, 5. We explicitly discuss some details of the particular cases when M~ and M5 are Sasaki-Einstein.
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1 Introduction

Consistent Kaluza-Klein (KK) truncations provide a very useful and powerful technique to construct
string/M-theory backgrounds. By definition, if a lower dimensional (super)gravity theory arises from con-
sistent truncation of a higher-dimensional, parent (super)gravity, any solution of the former is guaranteed
to be a solution of the latter. Well-known examples of consistent KK truncations include those associ-
ated to the maximally supersymmetric D = 10, 11 backgrounds of the form AdS; x S7, AdS; x S*
and AdSs x S°: D = 11 supergravity on S” (respectively, S*) truncates consistently to D = 4 N = 8
SO(8)-gauged supergravity [1] (respectively, D = 7 N = 2 SO(5)-gauged supergravity [2]), while type
IIB supergravity on S® is expected to truncate consistently to D = 5 N = 8 SO(6)-gauged supergravity.

The above examples should be framed into a more general picture. For all N-supersymmetric D =
10, 11 backgrounds of string/M-theory of the form AdS; x., Mp_4, where x,, denotes warped prod-
uct and Mp_4 is a Riemannian space endowed with a precise G-structure specified by supersymmetry, a
consistent KK truncation down to the /N-extended, pure gauged supergravity (that containing the graviton
multiplet only) is conjectured to exist [3]. This conjecture is in fact a theorem for the maximally supersym-
metric examples discussed above, and has been shown to also hold for less supersymmetric examples. For
instance, the most general N = 1 supersymmetric AdS5 X, Mg solution in D = 11 [4] is characterised by
an SU (2)-structure on Mg, whose intrinsic torsion constrains the form of the possible metrics and fluxes
on Mg compatible with supersymmetry. It is now known that D = 11 supergravity on Mg truncates consis-
tently to NV = 2 pure gauged supergravity [5]. Other cases where the conjecture has been verified include
the class of solutions of the form AdS5 x SFEj5 in type IIB and AdSy x SE7in D = 11, where S Eo,, 41 is
a (2n + 1)-dimensional Sasaki-Einstein space: consistent truncations of type IIB and D = 11 supergravity
on SFEs5 and S E7 existto N = 2 pure gauged supergravity in D = 5 [6] and D = 4 [3]. See [3,7] for other
classes of geometries where the conjecture has been verified.

This general result about consistent KK truncations down to lower-dimensional pure gauged supergrav-
ities is quite remarkable, in as much as consistency has been traditionally regarded as a highly unusual
feature of a KK truncation. The less supersymmetry an AdSy X, Mp_g4 string/M-theory background
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preserves, the less constrained the internal geometry on Mp_4 is. For the lower-supersymmetric cases,
the previous theorem thus provides truly remarkable examples where consistent KK truncations on wide
classes of internal geometries exist, challenging the conventional lore. At a more practical level, this trans-
lates into a wealth of higher dimensional solutions that can be constructed out of a single lower-dimensional
one: any solution of, say, minimal D = 5 N = 2 pure gauged supergravity gives rise to different type IIB
solutions depending on the SE5 space (e.g. S°, T1:!, YP4, [P etc.) used to perform the uplift.

The downside of the theorem, especially in cases of low supersymmmetry, is that pure supergravity (the
lower-dimensional theory recovered from consistent KK truncation under the assumptions of the theorem),
typically has a very simple field content: e.g. just the metric and the graviphoton in the SE truncations
mentioned above. Of course, this would not be a problem if one just wanted to embed, for example, the
D = 4 or D = 5 Reissner-Norsdtrom-AdS (RNAdS) black hole, which is a solution to minimal gauged
supergravity, into D = 11, 10 supergravity via uplift on S E7 or S E5. But one would be missing the chance
of exactly embedding into D = 10,11 supergravity other solutions involving extra matter fields, that
describe extremely interesting physics. For instance, consider an enlarged model containing the metric and
U (1) gauge vector corresponding to the bosonic sector of minimal D = 4,5 N = 2 gauged supergravity,
and also a U (1)-charged scalar. In this setting, the RNAdS black hole can develop scalar hair below certain
critical temperature, and this has been argued to holographically correspond to a superconducting phase
transition in the boundary of AdS space [8,9]. Other interesting gravitational models including matter fields
have been phenomenologically cooked up in order for them to admit solutions with potential applications
in the holographic description of other condensed matter systems, like quantum critical points displaying
non-relativistic (Schrodinger [10] or Lifshitz [11]) symmetry.

Various applications of AdS/CFT to condensed matter theory (AdS/CMT) have been very actively in-
vestigated over the last couple of years. An interesting problem is, in fact, to determine whether the gravita-
tional toy models used for AdS/CMT can be derived from consistent truncation of D = 10, 11 supergravity.
The existence of exact embeddings of those models into string/M-theory is not of mere scholastic inter-
est, since a precise holographic dictionary is only guaranteed to exist if the corresponding duality can be
suitably embedded into string theory. Unlike their lower-supersymmetric pure supergravity counterparts,
the maximal supergravities have a sufficiently rich field content to be able to potentially accommodate the
effective gravity plus matter theories used in AdS/CMT. Actually, the maximal supergravities are so rich
that they turn out too complicated and cumbersome to try and make contact with AdS/CMT models.

The obvious question arises: for the low-supersymmetry examples, can the consistent truncations to
pure supergravity discussed above be extended to include matter couplings? The answer to this question
is not obvious a priori, given the difficulty to obtain consistent truncations to pure supergravity in the first
place. Also, retaining matter couplings is inconsistent in some known cases: see e.g. [12]. Here we will
show that, associated to configurations of M2 and D3 branes probing the apex of special holonomy cones
C(M) over Riemanian seven and five-dimensional Einstein spaces )M, consistent truncations exist down
to matter-coupled supergravity in four and five spacetime dimensions. In particular, we will show how the
consistent truncations of D = 11 and type IIB supergravity on SFE; and S FE5 mentioned above can be
extended to include matter couplings. One of the massive fields that survives the truncation is the scalar
breathing mode, parametrising homogeneous deformations of the volume of M. Thus, we collectively call
these breathing mode truncations. Another noteworthy feature of the truncations we will consider is their
universality: they are valid for any member of the relevant class of Einstein spaces. For an early discussion
of breathing mode reductions see [13].
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2 M2 and D3 branes on top of special holonomy cones
and consistent truncations

As is well known, the near horizon geometry corresponding to a stack of M2 branes probing the tip of a
metric cone C'(M7) over a seven-dimensional Einstein space Mz, is AdS, x M. If C(M7) has special
holonomy, then Killing spinors can be shown to exist on My and the D = 11 AdS, x My solution is
supersymmetric. Aside from the maximally supersymmetric case, corresponding to C'(M7) = R® and
M, = S7, there are three classes of supersymmetric solutions, corresponding to the three possible types of
special holonomy that the eight-dimensional manifold C'(M7) may have: Spin(7), SU(4) and Sp(2). The
relevant C'(M7) is thus Spin(7)-holonomy, Calabi-Yau (CY), or Hyper-Kihler (HK), and the associated
M7 manifolds are weak-Go, Sasaki-Einstein (SE) and tri-Sasaki. The supersymmetry preserved by the
D =11 AdSy x M7 background in each caseis N =1, N =2and N = 3.

For D3-branes probing the apex of a metric cone C'(Ms5), and their associated near horizon geometries,
a similar type IIB story unfolds. Now, if supersymmetry is to be preserved, C'(Mj5) can only be a CY
three-fold, and M5 a SE five-dimensional manifold. The corresponding AdSs x M5 background preserves
N = 2 supersymmetry.

It can be explicitly checked that both D = 11 supergravity and type I[IB admit consistent truncations on
those classes of internal geometries down to matter-coupled gauged supergravity in D = 4 and D = 5:

1. D = 11 supergravity on any weak-G5 manifold truncates consistently to D = 4 N = 1 gauged
supergravity coupled to a chiral multiplet [14];

2. D = 11 supergravity on any SFE7 manifold truncates consistently to D = 4 N = 2 gauged super-
gravity coupled to a vector multiplet and a hypermultiplet [14];

3. D = 11 supergravity on any tri-Sasaki manifold truncates consistently to D = 4 N = 4 gauged
supergravity coupled to three vector multiplets: see [15];

4. Type IIB supergravity on any S E5 manifold truncates consistently to D = 5 N = 4 gauged super-
gravity coupled to two vector multiplets [15, 16] (see also [17]).

It is particularly interesting to note the supersymmetry preserved by truncations 3 and 4 above: from
the supersymmetry of the AdSy x M7 (with M7 tri-Sasaki) and AdSs x My (with My Sasaki-Einstein)
vacua (see above), one might have naively concluded that the gauged supergravities arising from consistent
truncations shouldbe N = 3in D = 4 and N = 2 in D = 5, rather than the correct N = 4. In fact, unlike
the situation in ungauged supergravity, the maximally (super)symmetric vacuum of a gauged supergravity
typically breaks supersymmetry. In cases 3 and 4 above, the maximally supersymmetric vacuum turns out
tobreak N =4 — N =3and N =4 — N = 2, respectively, compatible with the supersymmetry of
the corresponding D = 11 and type IIB backgrounds. The supersymmetry of the above truncations can
be pinned down by simply replacing the internal spaces by the special holonomy manifolds to which they
reduce when the fluxes are turned off (which effectively ungauges the lower-dimensional theory). M-theory
on Gy-holonomy, CY3 x S' and HK, x T2 (where T2 is the three-dimensional torus), preserves N = 1,
N =2and N = 4in D = 4, respectively. Type IIB strings on H K, x S* preserve N = 4in D = 5.
These are the supersymmetries quoted in 1—4 above.

3 Breathing-mode reductions on SE manifolds

Let us now explicitly work out the examples 2 and 4, corresponding to D = 11 and type IIB on SE7 and
S Es5 spaces. Recall that a SFs,, 1 manifold is charactersied by an SU (n)-structure specified by a real
one-form 7, a real two-form J and a complex n-form €2 subject to the differential constraints

dn =2J, dJ =0, dQY=i(n+1)nANQ, (1)
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and algebraic conditions that can be found in e.g. [14, 15]. Locally, a SE space can be regarded as a circle
fibration over a Kihler-Einstein (KE) 2n-dimensional manifold and thus admits a local metric of the form

ds*(SEypi1) = ds*(KEa,) +n®1n . )

The Kihler form and holomorphic (n,0)-form of K F»,, are related to J and (2, and 7 is seen here to
correspond to the one-form along the S* fiber, dual to the corresponding (Reeb) Killing vector.

Let us now explicitly show how D = 11 and type IIB supergravity can be consistently reduced on S E~
and S F5, respectively. For the metric, we write

ds) = dst g, 1 + €V ds*(KEan) + €Y (n+ A1) @ (n+ Ar) 3)

where (D, n) = (11,3), (10,2) for D = 11 and IIB supergravity, respectively. Accordingly, ds? or ds2 is
a pseudo-Riemannian line element on the external four- or five-dimensional spacetime. A; is a spacetime
U (1) gauge field, with two-form field strength F» = dA;, arising from the Reeb isometry of the internal SE
space and U, V are spacetime-dependent scalar deformations of the SE space: suitable linear combinations
of U and V' contain the breathing mode of the SE space, parametrising overall volume deformations of the
SE space, and a squashing mode, stretching the S* fibers with respect to the K F base while preserving the
volume of SE.

The above ansatz for the metric should be supplemented by ansatze for the fluxes. In order to do this, we
take all possible wedge products of spacetime form fields with the tensors (7, J, Q) defining the SU (n)-
structure on S Ea,, 1. For the D = 11 supergravity four-form we accordingly take

Gy = fvoly + Hs A (n+ A1) + Ho AJ +dh AJ A (n+ A1) +2hJ A J
+v3 [X(n+ A1) AQ—EDxAQ+ce] . )

Here, H3 and H, are real three and two-form field strengths, / is a real scalar, x is a complex scalar charged
under the U (1) gauge field A; descending from the eleven-dimensional metric; its covariant derivative is
given by Dy = dx — 4iA; x. Finally, f is a spacetime scalar, required by the Bianchi identity satisfied by
G4 to be given by a combination of the above scalar fields.

For the type IIB case, we supplement the D = 10, n = 2, metric (3) with the following choice for the
NSNS fields (the dilaton ® and three-form field strength H 3)) and RR field-strengths (Fs), F{(3), F(1)):

Fsy =4e V"V 2vols + 2eZ TN TN — 2 WV s Ky Né® + eV« Ko N J

+K2/\J/\é5+K1/\J/\J+(e*V*LgAQ+L2AQAé5+c.c.)

Figy=Gs+GaAe® +G1 AT+ (Ni AQ+ NoQAE° +cc.)
Hiy=Hs+HoNe® + Hi AT+ (My AQ+ MoQ A E° +c.c.)

F(l) :da, <I>=(Z5 (5)

Here, vol; and * are the volume form and Hodge dual corresponding to the five-dimensional metric ds? in
(3), Z, a, ¢, are real scalars, My, Ny complex scalars, G3, Hs, G2, Ho, Ko, K; real forms, and Lo, M,
N7, complex forms, all of them defined on the external five-dimensional spacetime. We have also ensured
the selfduality, with respect to the ten-dimensional metric (3), of the five-form Fis).

4 D=4N =2 (U(1) x R)-gauged supergravity
from M-theory on S E,

Here we will argue that (3), (4) provide a consistent truncation of D = 11 supergravity. Full details can
be found in [14]. The Bianchi identity imposed on the four-form (4), translates into Bianchi identities for
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Hs and H,. These can be then solved by suitably introducing two-form Bs and one-form B, potentials. A
straightforward counting of degrees of freedom then shows that the D = 11 ansatz (3), (4) thus incorporates
two D = 4 vectors, Ay, By, five (real) scalars U, V, h, x, and one two-form Bs, along with the four-
dimensional metric. Substituting the ansatz (3), (4) into the equations of motion of D = 11 supergravity,
one can show that all SE7 dependence drops out, leaving equations of motion for the four-dimensional
fields. This shows the consistency of the truncation.

This D = 4 field content is compatible with D = 4 N = 2 supergravity coupled to an N = 2
vector multiplet and a tensor multiplet. As discussed in [14], the latter contains (Bs, U, x, x*). This tensor
multiplet can be dualised into a hypermultiplet, by dualising B into a scalar a. Performing this dualisation,
we find that the resulting six scalars parametrise the homogeneous, symmetric moduli space

SU(1,1) SU(2,1)
U1) ~ 8U@) = U(L)

(6)

where the first factor parametrises the special-Kéhler manifold corresponding to the two (real) scalars in the
universal vector multiplet and the second factor is associated to the quaternionic-Kéhler space appropriate
to the universal hypermultiplet. Our model can be thought of as particular gauged version of the D = 4
theory arising from consistent truncation of D = 11 supergravity on CY3 x S* and can, accordingly,
be expected to preserve N = 2 supersymmetry. Indeed, the supersymmetry of our model can be made
manifest at the level of the action by rewriting the (dualised) action into the canonical form of D = 4
N = 2 gauged supergravity [18].

Finally, the curvature of the internal S E; space and the background four-form flux are responsible for a
gauging in our model. With only two vectors A;, By available, we can only have an Abelian gauging. Only
the scalars in the hypermultiplet turn out to be charged. At the level of the lagrangian, this gives rise to a
fibration over spacetime of the hypermultiplet non-linear sigma model, with fibers defining a non-compact
gauge group U (1) x R € SU(2, 1). The compact factor is related to the U (1) R-symmetry, while the non-
compact factor R reflects the symmetry of the lagrangian under shifts of the scalar a dual to the original
two-form Bs.

5 D=5N =4 (U(1) x H3)-gauged supergravity
from type IIB on SE;

Here we will argue that (3), (5) provide a consistent truncation of IIB supergravity, referring to [15] for the
details. Just as we did for the M-theory case, imposing the Bianchi identities on the D = 10 forms (5) is
useful in order to derive Bianchi identities for the five-dimensional fields and to subsequently perform a
counting of degrees of freedom. It is not difficult to show that we are now dealing with four D = 5 (real)
two-forms Lo, L3, By, Co; four vectors Ay, By, C1, Ey; and eleven scalars U, V, a, ¢, b, ¢, h, x, x*, &,
&*. The explicit expressions of the field strengths appearing in (5) in terms of these potentials can be found
in [15]. As in the D = 11 example of the previous section, direct substitution into the type IIB equations
of motion now shows that these D = 5 fields satisfy D = 5 equations of motion in their own right, with
all dependence on the internal .S E5 dropping out. This is, again, proof of the consistency of the truncation.

This D = 5 theory is moreover, locally supersymmetric. This is more clearly discussed in the ungauged
limit, obtained by setting the background fluxes to zero and untwisting and flattening S E5 into H K x S*.
In this ungauged theory, one can safely dualise the four two-forms into four vectors. The resulting dual
theory contains, besides the ) = 5 metric, eight vectors, eleven scalars, and is thus compatible with
D = 5 (ungauged) supergravity coupled to two N = 4 vector multiplets. In fact, the dualised lagrangian
can be cast into canonical N = 4 form [19]. In particular, the eleven scalars can be shown to parametrise
the moduli space
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SO(5,2)
S0(5) x SO(2)

appropriate for N = 4.

Finally, an explicit analysis shows that the four vectors of our original gauged theory are gauge fields
for the non-abelian gauge group U (1) x Hs C SO(5,2). The U(1) factor corresponds to the R-symmetry
of our model, and Hj is the three-dimensional Heisenberg group.

SO(1,1) x (7

6 Conclusions

We have shown the existence of consistent truncations of D = 11 and type IIB supergravity on super-
symmetric Einstein spaces M7 and Mj3, related to planar M2 and D3 configurations with reduced super-
symmetry. The resulting theories in D = 4 and D = 5 dimensions are gauged supergravities, including
full matter supermultiplets and containing, in particular, the breathing mode of the internal space. We have
given details of two particular examples, arising from truncations on Sasaki-Einstein spaces. In this case,
the theories we obtain fully supersymmetrise other known consistet truncations on SE spaces [13,20,21],
and reduce to the truncations to minimal supergravity of [3,6] when the matter couplings are turned off. We
have discussed these truncations at the level of the bosonic fields, but some of these have now been explic-
itly checked to be consistent also in the fermionic sector up to four-fermion terms [22, 23] (see also [24]).
We have emphasised that these truncations are universal: valid for all internal manifolds in the Einstein
class under consideration. The type IIB S E5 truncation has been particularised for SE5 = 7! in [25,26],
where an extra N = 4 vector multiplet could be kept, and for SE5 = S® in [27], where the inconsistency
of keeping simultaneously the breathing mode and other modes particular to S was shown.

The inclusion of matter couplings in these theories make them ideal playgrounds to study exact em-
beddings of AAS/CMT systems into string theory. For instance, holographic superconductors have been
embedded into type IIB [28] and D = 11 [29,30] by means of related consistent truncations. Solutions
displaying Schrodinger symmetry were first been embedded into type IIB using, among other techniques,
consistent truncations on SEs5 spaces [20]. The elusive embedding of Lifhitz-invariant backgrounds into
the higher dimensional supergravities has now been also achieved [31-34] using, among other methods,
consistent truncations.
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