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Abstract. We present an analytic description of thenode in- in the approximation of uniform density (the actual density
stability in newly-born neutron stars, using the approximatiqrofile of realistic neutron stars is nearly uniform), where all
of uniform density. Our computation is consistently accurate tesults can be obtained analyticamyWhile our analytic re-
second order in the angular velocity of the star. We obtain faults provide an independent check of the numerical results in
mulae for the growth-time of the instability due to gravitationalAndersson et al. 1998 and Lindblom et al. 1998, our main ob-
wave emission, for both current and mass multipole radiatiggctive is to present a simple set of equations, which enable one
and for the damping timescale, due to viscosity. Them = 2 to obtain a qualitative insight into the mechanism ofitheode
current-multipole radiation dominates the timescale of the imstability and to quickly check the dependence of the instability
stability. We estimate the deviation of the second order accuratevarious important factors, such as the central density of the
results from the lowest order approximation and show that tetar, the different types of viscosity in neutron stars, the differ-
uncertainty in the equation of state has only a small effect on téwet possible cooling processes etc. Additionally, we expect that
onset of the--mode instability. The viscosity coefficients andhere is a number of issues related to the spinning mechanisms
the cooling process in newly-born neutron stars are, at pres@ftpulsar such as accretion disc induced spin up, or the cre-
uncertain and our analytic formulae enable a quick check ation of millisecond pulsars due to accretion-induced collapse
such effects on the development of the instability. of a white dwarfl(Andersson et al. 1998), for which one can use
the simple relations provided here for a fast but still accurate
Key words: gravitational waves — instabilities — stars: neutroavaluation of the various evolution scenarii.
— stars: oscillations

2. The r-mode instability

1. Introduction Oscillations of stars are commonly described by the Lagrangian

The recently discovered-mode instability ((Andersson 1998)d!splaf(ie_rgerl1t VECtth' W?'Ct?] desc_rlllbf_s thgdls_placemtent of a
in rotating neutron stars, has significant implications on the rt |_ve2 ul Ze err:wen _tue Ob € OS(I:' a(ljo_n.t s avfec Or: on_d |
tational evolution of a newly-born neutron star. Thenodes e(f, ¢) 2-sphere, it can be analyzed into a sum of spheroida

are unstable due to the Chandrasekhar-Friedman-Schutz (CF. toroidal qomponents (or polar a_md axial components, in a
mechanism[(Chandrasekhar 1970, Friedman & Schutz 19'fI rent termmglogy). In a non-rotating s’gar, the usfiap apd
(see also Friedman & Morsink 1997). Two independent corﬂ; Pde_s of oscillation are pu_rely sphero_ldal, ch_aracterlzed by
putations by Andersson, Kokkotas & Schutz (1998) and Lin e indices(!, m) of the spherical harmonic functidrj™. In a

blom, Owen and Morsink (1998) find that thenode instability rotating star, modes that reduce to purely spheroidal modes in

is responsible for slowing down a rapidly rotating, newly—borH1e non-rotating .I|m|t, also acquire toroidal compon_ents. Con-
-\éqrsely,r—modes in anon-rotating star are purely toroidal modes

neutron star to rotation rates comparable to that of the initi th ishing f | tati tar. the displ i
period of the Crab pulsar(19 ms) or the recently discovered!'"! Vanishing frequency. in a rotating star, the displacemen
ctor acquires spheroidal components and the frequency in the

16 ms X-ray pulsar in the supernova remnant N157B (Marsh}iﬁ X . . .
et al. 1998) (with an estimated initial period of 6-9 ms). Thikotating frame, to first order in the rotational frequefiCgf the

is achieved by the emission of current-quadrupole gravitatior?atl?r’ becomes
waves, which reduce the angular momentum of the star. Ad- 2m
ditionally, as the initially rapidly rotating star spins down, a#r = m ) 1)

energy equivalent to roughly 1% of a solar mass is radiated

in gravitational waves, wh_ich. makes the process an interesting agter this paper was submitted, a preprint by Lindblom & Ipser

source of detectable gravitational waves (Owen et al. 1998).(1998) appeared, where the studmodes in Maclaurin spheroids and
In the present paper, we investigate thenode instabil- find the existence of more-modes than the “classicai-mode con-

ity to 2nd order accuracy in the angular velocity of the stagidered here.
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for a given (,m) mode. An inertial observer, measures a fre3.2. Definitions

uency of . . . .
q y In a slowly rotating star, the dominant correction to its structure

) is of O(22). The analysis of perturbations of the star is simplified
by introducing a new radial coordinate defined through

From (1) and[{R) it can be deduced that a counter-rotating

X . . ) r=a(l+e), (3)
(with respect to the star, as defined in the co-rotating frame)
r-mode, appears as co-rotating with the star to a distant inertidieree = ¢(a, 6) is a quantity of OQ2), representing the de-
observer. Thus, to ©X), all ~-modes with/ > 2 are generi- formation of the equilibrium structure from the non-rotating
cally unstable to the emission of gravitational radiation, due tonfiguration. In the new coordinate system, all equilibrium
the Chandrasekhar-Friedman-Schutz (CFS) mechanism (ruentities are functions afonly and the surfaces of constant
that thel = 1 r-mode is marginally unstable, to this order)are equipotential surfaces.
The instability is active for as long as its growth-time is shorter Since equilibrium neutron stars are stationary and axisym-
than the damping-time due to the viscosity of neutron-star matetric, a general oscillation can be analyzed into a sum of nor-
ter. Its effect is to slow-down, within a year, a rapidly rotatmal modes, with harmonic time-dependené&®*+~it) The
ing neutron star to slow rotation rates and this explains widysplacement vector for a givenrmode can be written as
only slowly-rotating pulsars are associated with supernova re(®aio 198P):
nants/(Andersson et al. 1998). Thus,thmode instability does . m
not allow millisecond pulsars to be formed after an accretiohl® = T+S = (0, Kimsin™" 605, —Kim) Y;
induced collapse of a white dwarf. It seems that millisecond + Z (Syp, HypOp, Hyposin™' 00,) Y2, (4)
pulsars can only be formed by the accretion-induced spin-up of v
old, cold, neutron stars.

w; = w, —mfd .

whereT and S are thetoroidal and spheroidalparts of the
displacement, respectively. Note that the toroidal part has van-
ishing a-component and is described only by the function
Ky = Kyn(a), which multiplies a toroidal angular vec-
To O(©), the star is still spherical, and one can only determingr. The spheroidal part has an non-vanishingomponent of

the angular dependence of thenode eigenfunctions and theirg(?), described by the functions,,, = S,,.(a). Thed and
lowest order-dependence (the latter is obtained by taking thg.components of the spheroidal part are described by the func-
curl of the perturbed equations of motion). For obtaining th&ns H,, = H,,(a) (also of 0§?)), multiplying spheroidal
second-order correction to the eigenfunctions and to the fegwgular vectors.

guency, one must proceed to a consisteri2{(calculation. The perturbation in the pressure is expressed in terms of
We follow the formalism for computing-modes in Newtonian spheroidal radial functiong,,,, as

stars, due to Saio 1982, that was presented in more detail in

3. The 2nd-order accurate slow rotation formalism

Andersson et al. 1998. Here we will only summarize the equip = pga » _ G, Y, (5)
tions needed for the uniform density case. v

wheredp is the Eulerian variation in the pressure (the variation
3.1. Assumptions of the pressure at a fixed point in space)s the density and

_ _ g = —p~1dP/da is the acceleration of gravity.
We make the following assumptions:

. the perturbations are adiabatic, 3.3. The propensity rule

. the star is an incompressible barotrope of uniform densi

. the rotation of the star is uniform, and

. the perturbation of the gravitational potential can be n
glected (Cowling approximation),

t?ft)r zero-temperature (barotropic) stars, it can easily be shown
from the perturbation equations, that only modes with m
&xist. Then, only thesr = I + 1, 4 = m terms contribute

in the expansions for the displacement vector and the per-

These assumptions are justified by the fact that, even for tetH]r_bation in the pressure (in the re”.‘f”““der of the text, we
peratures’ — 10°K, the thermal energy of the star is mucH‘”" drop the indexm in these qua_ntltles). The absence of
less than the Fermi energy of its interior (60 MeV). Also, lh_ 1 terms (the.sphen::alhha;]rmonldﬁ__l Iare zhero)_dm?ans

at such temperatures, the initially differentially rotating protc}- at rotation excites only higher multipole spheroidal parts.

neutron star is rotating uniformly, due to the formation of Jhis is in agreement with the “propensity” rule suggested by

solid crust (see Stergioulas 1998, for a recent review on rolgbapdrasekha_r & Ferrar _1991’ for the osgillations Of slowly
ating relativistic stars, i.e. that the rotational coupling of a

ing neutron stars). The Cowling approximation has been shol idall th heroidal . v f d
to yield sufficiently accurate results formodes in slowly ro- toroidali-term with a spheroiddl+ 1-terms Is strongly favore

tating, Newtonian stars (Saio 1982, Provost et al. 1981).  ©Ver the coupling with a spheroidat- 1-term. We find that, in
uniform density stars, the “propensity” rule completely elimi-

nates the coupling to lower-multipole terms.

A WN P
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3.4. The perturbation equations 3.5. Boundary conditions

A normal-mode solution to the perturbation equations satisfiesom the leading terms ¢f; and¢; neara = 0, one obtains the
the perturbed Euler equations, the perturbed continuity eqi@undary condition at the center of the star:
tion and the relation between the perturbations in density a&q 4 3)Sia1 + A1 = 0. (15)

pressure. We define dimensionless frequencies as . o
At the surface of the star, the Lagrangian variation of the pres-

Wy = Wy (R—d) 1/2, ©6) sure.vanis_hes (a fluid element on the surface of the unperturbed
GM configuration must also be on the surface of the perturbed con-
and figuration):
R3 \1/2 Ap=4dp+€&Vp =0, (16)
w = Q(G—M) : D o
and expand the frequency in the rotating frame as Gr1 = Siy1. 17)
By = 00w + 09, 8) To O(2), [@B) is satisfied trivially, while t@(92?) it yields the

correction to the eigenfrequency to that order.
Writing the distortion parameteras
. . 4. Eigenfunctions and eigenfrequencies
€= [Dl (a) + Dy (a)Py(cos 0) | w?, 9) o .
Eq. [Z0) for(;; implies a solution of the form
(where Px(cos 6) is the Legendre polynomial) and expandin%l1+1 ~al~l (18)
the perturbation equations consistently to second order in the

. 5 . . .
angular velocity of the star, we find that the eigenfunctiQns, SInceg is of orderO(z*), we normalize it to the dimension-

Si+1, Hi+1 and K are given by the following set of equations!ess quantity

ay!-1
G =a*(%) - (19)
dGi 1 i
a— = =0-1)G41, (10) Then, [IB) yields
(A+DV20+3/Q -1
dSi41 K, = Z()— (*) (ﬁ) ; (20)
a— === (4+1)Siy1 — hGrya 11 21 wr/ \R
whereR is the radius of the star. These are the only two eigen-
B I+1)(1+1) ~ functions needed for the remainder of the paper.
Hipr = Siea + 8log {(l +1)o2+ 6D | G, (12) To O(Q2), the frequency of ah= m r-mode is
2
and =, 21
0= (21)
_U+1)v2r+3 An expression for the second order correction to the eigenfre-
Ky =1 - Cit1- (13) ) . . .
2w, w guency of a given mode can be obtained either directly from the
; boundary condition$ (17), or by constructing an integral relation
In (1), his . ' ) ,
using the perturbed Euler equations. Applying the approximate
1[(+1) o9 - integral relation given in the appendix of Saio (1982) to uniform
h = 0(2){ I {(% + 3);0 +6(1 -~ 1)D2} density stars, we obtain:
~ R R
~ w 3l
~ dD o 20427 2042
13 <3D2+ada2>}' (14) (w 0'0)/0 a”"“da l+1ao/o a”~"*Dada
3 R 21+3 dDQd (22)
Note that the perturbation in the pressure is independent of the _(1 +1)(20 +3) 90 0 “ e

displacement vector and can be found by analytically integrgfpich leads, after integration by parts, to the approximate result
ing (10), while the toroidal functioi] is given algebraically in 5

terms of the perturbation in the pressure. The spheroidal fupg-~ —— (23)
tion S;41 satisfies a differential equation that depends on the (+1)?

perturbation in the pressure and the structure of the star zamndl

can not be obtained analytically, but will not be needed for the 2 51 3

remainder of this paper. The spheroidal functiinis given Wr = l+ 1w T (1+ 1)2w ) (24)
algebraically in terms 061 andg..1. For the derivation of Eq{24), we have used the fact that
2 These equations can be derived correspondingly from said%(R) = —(5/6)w” for uniform density stars (cf. appendix

Egs. (38), (36), (50) and (48). Il of Provost et al. 1981).
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5. Dissipation time-scales 5.2.2. Current multipoles
5.1. Energy of mode The dominant current multipole moment is
The energy of the mode, measured in the rotating frame, is R
oy g 5., = 2w, / pa 3K da, (34)
1 ‘2 0
E= 5/’)‘5' av, which is
W41 5 (5, C(1+1) lia
= K|°d 25) o0J; = QR ™. 35
5 er/0a|l| a, (25) l Z\/mp (35)
which gives The contribution of he dominant multipole momendis/ dt| .,
s is an O2*'+4) and an OQ*%) term.
I+1
E = %pmm (26)
5.2.3. Growth-time
5.2. Dissipation due to gravitational waves The growth time due to the emission of gravitational waves is
The dissipation of energy due to the emission of gravitational _ _ 2E . (36)
waves can be estimated from the standard multipole formula®" dE/dt|gw
dE oit1 - o Including both the mass and current multipole contributions and
2 = > NI (6D P + (5T, (27)  keeping the frequency to Qg), we obtain
gw l
2[0+3 l 1 3
where tow = CGW(SJFZ){(JO + 02w2) U — oo — O_2w2]2l+1
I+1)(I+2)
Ny =dm - (28) [+1)2
(- D[+ DI x [<2l Nt -0~ awz]zmw4]
In (Z1) -1
l X MRAQ2+2 % (37)
oD = /5pa Y™ dV, (29)
are the mass multipole moments and To lowest order irf2, (37) reduces to
A (242 141\ -2 (38)
l tow = — .
§J" = 2,/l+71 /al(p5v + 6pv)Y " Brav (30) *® 24G (20 + 3)(1 — 1) (z + 2) MR2
are the current multipole moments, wherés the velocity of 5 3. Dissipation due to shear viscosity
the fluid andy "Z* are the “magnetic” vector harmonics (see o . ]
Thorne 1980, Lindblom et al. 1998). The dissipation of energy because of the shear viscosity of neu-
tron star matter is
5.2.1. Mass multipoles % = —2/n60“béa;bdv, (39)
The dominant mass multipole momentdi®,; ;. For incom- *
pressible stars the Lagrangian variation of the density vanish¥8ere
Ap=0.From the relation between Lagrangian and Eulerian per-  iw, 2 c
turbations of a scalar quantity, it follows that 86w = 2 Vals + Vit Sgach§ ’ (40)
§p=—€Vp. (31) (see e.g. Ipser & Lindblom 1991) angis the shear viscosity
coefficient. We obtain
The derivative of the density across the surface is a Dirac delta- R
function ate = R, thus % = —I(l+ Dw?y [/ a?|ad Ki|?da
sv 0
p = —aSi11Y}1p6(a — R) (32) -
2 2
The mass-multipole moment becomes H( =D+ 2)/0 a” | K| d“}? (41)
6D = —w’pRIT4, (33)  which yields
and, being of QQ?), it contributes tadE /dt|,, an OQ*+8)  dE I+ 131 =1)(2A+3) 5.5
term. i m N R°. (42)
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The damping time due to shear viscosity is cools through the modified URCA process and that it is trans-
parent to neutrinos. The coefficient he obtains is
tsy = 3 M (43)
sv T .
An(l = 1)@ +3)nk ¢ =6x 10 pIw 2Tg/cms. (49)
5.4. Dissipation due to bulk viscosity It has been suggested (Lai & Shapiro 1995) that for tempera-

In a neutron star, bulk viscosity can arise, because of €S larger than a few time® K the neutrino optical depth
departure from nuclear reaction equilibrium, such as befg-Still large and the bulk viscosity is thus inactive. If the star
equilibrium, during the compression and expansion of mattefols through the direct URCA reaction, the bulk viscosity will

caused by an oscillation. The energy is dissipated at a rate P€ much larger than i (49), but again only for temperatures for
which the star is transparent to neutrinos. It becomes apparent

_ / ¢|oo|2av, (44) that, depending on the cooling process and on the neutrino op-
b ’ tical depth in a newly-born neutron star, the bulk viscosity can
almost completely damp non-axisymmetric instabilities or have
only a small effect on them. A more detailed study is needed
. Ap and departure from equilibrium of other interactions (such as
b0 = —iwp—, 45) . .
interactions between quarks at lower temperatures) should also

be considered. For the time being we will Us€ (49) as an conser-

'Sth? expansion of the fluid atis the aQ|ab.at|c mdgx. The Iaswative average of the large error bars associated with the bulk
relation follows from baryon conservation in an adiabatic oscil-

Viscosity.
lation. Strictly speaking, in a uniform density sté#, = 0. But, Y

d th i densit imati vt Another dissipation mechanism that can affect the instability
we assumed the unitorm censity approximation only to mat(sethe superfluid mutual friction. Estimates by Mendell (1991)
calculations easier. For the bulk viscosity we use an approxim

: . : 8l Lindblom & Mendell (1995), suggests that mutual friction
timescale, that has been derived by Curer & Lindblom 19871 buld suppress the gravitational - radiation - driven instability

spheroidal oscillations in uniform-density stars. Since the bu If -modes, when the temperature of the star is betweaK <
viscosity arises because of the change in density, for toroi < 10°K. Itis not clear whether mutual friction will have the

EBS,C;IE‘T?”S we use the spheroidal formula, but witkeplaced same effect for-modes, and a new calculation of this effect is

dE
dt

where( is the coefficient of bulk viscosity

needed.
3(20+5) T4 M Ateach value of the temperature of the star, the critical angu-
Thv = 2r(l+1)3 (R - (46) ar velocity above which gravitations radiation has the shortest

o _ _ . time-scale, compared to the viscosity time-scales, is obtained
For the purpose of estimating the bulk viscosity ofilys taken py solving the equation
to be equalto 5, i.e. correspond to that of a stiff (nearly uniform
density),N = 0.25 polytrope. 1 1 1
—+—+—=0. (50)
Tew Tsv Tbv
6. Critical angular velocities
) - o 0 We specialize to a specific neutron star model with ra-
Below the superfluid transition temperature, whicll'is- 10°  4ius B — 12.47km and massM — 1.5M, (same as in

K, the shear viscosity is dominated by electron-electron sc&rdersson et al. 1998 and Lindblom et al. 1998). The density

tering and an approximate formula for the viscosity coefficiegt ine star i = 3.4 x 10Mgr/cm?.

IS Fig. 1, shows the critical angular velocity as a function
18 P%s of temperature (in units of the angular velocity at the mass-

n=06x10 2 g/cms, (47)  shedding limit for Newtonian, uniform density and uniformly

rotating starsQ2x ~ 0.67y/7Gp). The solid curve corresponds
(Cutler & Lindblom 1987), where the notatigns means nor- g theO(02) Eq. [37). A rapidly-rotating neutron star, born at
malization of the density t60'> gr/en andZ, normalization  temperatures10''K loses angular momentum because of the
of temperature td0°K. Above the superfluid transition tem-,._mode instability and slows-down. The minimum angular ve-
perature, the shear viscosity coefficient due to neutron-neutiggity it could reach i€2. = 414s~! (or a period of 15ms) at

Interactions I1s T ~ 1 x 1.5 x 10° K. The mass of the neutron star, or the adi-
9/4 abatic index, do not have a significant effect on the minimum

n=2x 1018% g/cm s, (48) critical angular velocity. The radius of the neutron star, however,
9 (which can range from 10km to 15km), does have a consider-

(Flowers & 1toh 1979). The bulk viscosity will be important inable effect and the radius of our model represents a mean value
hot, newly-born neutron stars, but its coefficient is not as certaifithe expected radius of a typiceb M, neutron star.

as the coefficient for shear viscosity. Sawyer (1989) estimates For low rotation rates, one can ugel(38) to construct approx-
the bulk viscosity in neutron star matter, assuming that the sharate equations for the two parts of the curve in Fig. 1. The part
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of the critical curve where the shear viscosity dominates can be 1.0 N

approximated by 0.9

“ 10km\*? (10°K\"* _ or
Q6 =581 <R> ( T ) s, (51) 0.7

T

T

o
(e}
1

while the bulk viscosity dominated part is described by S

RO\NYS /o 34 S
(bv) _ -1 0.4
(LY (Y e T

J
o
(¢

T

T

The two approximate expressions are shown as dotted curve
in Fig. 1. For a period .56 ms (the period of the fastest known g
millisecond pulsar), the lowest order critical angular velocity 0.1 R
differs from theO(?) result by~ 17%. 0.0 gk
i i ; 10 10
In a similar way, the lowest order approximations to the
dissipation timescales are T (K)

10351 6 1.4M,, 10km \ 4 Fig. 1. Crit!cal angular velocity for the onset of themode instability
) i I s, (53) as a function of temperature (for a 108, neutron star model). The

solid line corresponds to th@(92?) result using superfluice( — e™)
shear viscosity, and Sawyer’s (1989) estimate for the bulk viscosity.
R \°( T \°/14M : - i :
teo = 3.6 x 107 ( > < > < : ®> s, (54) Dotted lines are lowest order approximations, while the dashed line

tgw = —1.4 x 10° (

10km 109K M corresponds to normal matter ¢ n) shear viscosity.
and 1.0
tpy = 4.6 x 10° 09 - ]

T

5 2 9 6 0.8
W 0 LAMG ) (1KY e ,
10km 10351 M T 0.7

Our current results for the onset of thenode instability . 0.6
correspond to neutron stars with a very stiff equation of stziﬁél 05 -
The results in Andersson et al. (1998), correspond to a m r
softer equation of state (an N=1.0 polytrope) and a comparison
is shown in Fig. 2. The minimum critical temperature is roughly 0.3 i
the same for both equations of state, although it occurs at ago L
somewhat smaller temperature in the uniform density case. This

T

T

shows that the uncertainty in the equation of state does not haveo'l i )
i nlfl n |m n m in ||| : OO Lol Lol Lol Lol Lol Lo
a significant impact on the-mode instability. 10° 10° 107 10° 10° 10% 101
T (K)

7. Discussion
. . .. Fig. 2.Critical angular velocity for the onset of themode instability
Our analytical results for the onset of themode instability a5 a function of temperature (for a 118, neutron star model). The

in neutron stars agree well with numerically obtained resulisresent uniform density resulé{ = 0) is compared to the critical curve
for the same neutron star model. Using our analytic formeer the equation of state used in Andersson et al. (1998)= 1.0
lae, the uncertainty in the bulk viscosity can be easily exploredlytrope). The minimum value d®./Qx is roughly the same, and
for different present and future estimates of the bulk viscositye effect of the equation of state is mainly to shift the critical curve to
coefficient. The shear viscosity for lower temperatures is aldiferent temperatures.
uncertain, since a high shear viscosity due to the mutual friction
between superfluid vortices below the superfluid transition tem-
perature could suppress the instability. If future investigatiomanishes and thus cannot affect the emission of gravitational
provide a definite answer on the effect of mutual friction in waves, this is not true for realistic equations of state but still
superfluid, one can easily study the implication onthraode the damping times are extremely long. The 1 r-mode will
instability using the analytic formulae presented in this paperadiate through the coupling to spheroitiat 2terms, i.e. itwill

We would also like to point out that, although &n= 1 generate mass quadrupole radiation. The frequency of this mode
dipole mode does not radiate in a non-rotating star, it does emithe rotating frame isv,. = wo, while in the inertial frame the
gravitational waves through the coupling to higher order ternfsequency isw; = (3/4)=?®. According to the criterion for the
in rotating stars. According tb (43), the shear viscosity fer1  onset of the CFS-instability, the= 1 »-modes are thus stable
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to the emission of gravitational waves, in contrast tolthe2 Cutler C., Lindblom L., 1987, ApJ 314, 234
modes. Such stable oscillations, unaffected by shear viscositflatvers E., Itoh N., 1979, ApJ 230, 847

low temperatures, could be excited during a neutron star glitéfiiedman J.L., Schutz B.F., 1978, ApJ 22, 281
In analogy to thd = 1 r-modes, ari = 1 spheroidal mode, Friedman J.L., Morsink S., 1998, ApJ 502, 7145
like the f mode or thep-modes, will emit current quadrupole!PSer J.-R., Lindblom L., 1991, ApJ 373, 213

. . Lai D., Shapiro S.L., 1995, ApJ 442, 259
radiation and this case needs further study. Lindblom, L., Ipser J.R., 1998, The r-Modes of the Maclaurin
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