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ABSTRACT
A strategy is devised for a semicoherent cross-correlation search for a young neutron star in
the supernova remnant SNR 1987A, using science data from the Initial Laser Interferometer
Gravitational Wave Observatory (Initial LIGO) and/or Virgo detectors. An astrophysical model
for the gravitational wave phase is introduced which describes the star’s spin-down in terms of
its magnetic field strength B and ellipticity ε, instead of its frequency derivatives. The model
accurately tracks the gravitational wave phase from a rapidly decelerating neutron star under
the restrictive but computationally unavoidable assumption of constant braking index, an issue
which has hindered previous searches for such young objects. The theoretical sensitivity is
calculated and compared to the indirect, age-based wave strain upper limit. The age-based limit
lies above the detection threshold in the frequency band 75 � ν � 450 Hz. The semicoherent
phase metric is also calculated and used to estimate the optimal search template spacing for the
search. The range of search parameters that can be covered given our computational resources
(∼109 templates) is also estimated. For Initial LIGO sensitivity, in the frequency band between
50 and 500 Hz, in the absence of a detected signal, we should be able to set limits of B �
1011 G and ε � 10−4.

Key words: gravitational waves – stars: neutron – pulsars: general – supernovae: individual:
SNR 1987A.

1 IN T RO D U C T I O N

The Laser Interferometer Gravitational Wave Observatory (LIGO)
achieved its design sensitivity during its fifth science run (S5;
Abbott et al. 2009c). Analysis of S5 data is progressing well, with
new upper limits being placed on the strength of various classes of
burst sources (Abbott et al. 2009d; Abadie et al. 2010a; Abbott
et al. 2010a), stochastic backgrounds (Giampanis 2008; Abbott
et al. 2009a), compact binary sources (Abbott et al. 2009e; Abadie
et al. 2010c,d) and continuous-wave sources (Abbott et al. 2009b,f,
2010b; Abadie et al. 2010b). In some cases, the LIGO limits on
astrophysical parameters beat those inferred from electromagnetic
astronomy, e.g. the maximum ellipticity and internal magnetic field
strength of the Crab pulsar (Abbott et al. 2008, 2010b). Recently,
an S5 search was completed which placed upper limits on the am-
plitude of r-mode oscillations of the neutron star in the supernova
remnant Cassiopeia A (Abadie et al. 2010b).

�LIGO-P1000089-v2.
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Aspherical, isolated neutron stars constitute one promising class
of continuous-wave source candidates (Ostriker & Gunn 1969).
The origin of the semipermanent quadrupole in these objects can be
thermoelastic (Melatos 2000; Ushomirsky, Cutler & Bildsten 2000;
Nayyar & Owen 2006; Haskell 2008) or hydromagnetic (Bonazzola
& Gourgoulhon 1996; Cutler 2002; Akgün & Wasserman 2008;
Haskell 2008; Haskell et al. 2008; Mastrano 2010). Thermoelas-
tic deformations arise due to uneven electron capture rates in the
neutron star crust. A persistent 5 per cent temperature gradient
at the base of the crust produces a mass quadrupole moment of
∼1038 g cm−2 (ε ∼ 10−7; Ushomirsky et al. 2000). Hydromagnetic
deformations, on the other hand, are produced by large internal
magnetic fields, and misaligned magnetic and spin axes. For exam-
ple, a neutron star with spin frequency 300 Hz and internal toroidal
field Bt � 3.4 × 1012 G has an ellipticity ε ∼ 10−6(〈Bt〉/1015 G)
(Cutler 2002). The deformation of an ideal fluid star with an arbi-
trary magnetic field distribution and a barotropic equation of state
can be computed, with ellipticities as high as 10−5 predicted for
some configurations (Haskell et al. 2008). Additionally, some ex-
otic neutron star models (e.g. solid strange quark stars) allow for
ellipticities as large as 10−4 (Owen 2005). Accreting neutron stars
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in binary systems can form magnetic mountains, with ε ≤ 10−5

(Melatos & Payne 2005; Vigelius & Melatos 2009a). Deformations
of all kinds relax viscoelastically and resistively over time, so that
young neutron stars are expected to be generally stronger grav-
itational wave emitters. For example, thermoelastic deformations
relax on the thermal conduction time-scale (∼104 yr), after the tem-
perature gradient in the crust has switched off (Brown & Bildsten
1998; Vigelius & Melatos 2010). Magnetic mountains relax as the
accreted matter diffuses through the magnetic field on the ohmic
time-scale 105–108 yr (Vigelius & Melatos 2009b).

A coherent search for 78 known radio pulsars was performed on
S3 and S4 LIGO and GEO 600 data. Upper limits on the ellipticities
of these pulsars were obtained, the smallest being ε ≤ 7.1 × 10−7 for
PSR J2124−3358 (Abbott et al. 2007c). More recently, a coherent
search for 116 known pulsars was carried out using data from both
the LIGO and Virgo detectors, placing an upper limit of ε < 7.0 ×
10−8 for PSR J2124−3358.

The youngest isolated neutron star accessible to LIGO probably
resides in the supernova remnant SNR 1987A. The coincident de-
tection of neutrino bursts from the supernova by detectors all over
the world confirmed the core-collapse event, strongly indicating the
formation of a neutron star (Aglietta et al. 1987; Bahcall, Dar &
Piran 1987; Bionta et al. 1987; Hirata et al. 1987).1 Constraints have
been placed on the magnetic field strength, spin period and other
birth properties of the putative neutron star (Michel 1994; Ögelman
& Alpar 2004); see Section 2 for details. However, searches for a
pulsar in SNR 1987A have yielded no confirmed sightings; upper
limits on its luminosity have been placed in the radio, optical and
X-ray bands (Percival et al. 1995; Burrows et al. 2000; Manchester
2007). An unconfirmed detection of a transitory 467.5-Hz opti-
cal/infrared pulsation in SNR 1987A was reported by Middleditch
et al. (2000).

The likely existence of a young neutron star in SNR 1987A makes
it a good target for gravitational wave searches (Piran & Nakamura
1988; Nakamura 1989). A coherent matched filtering search was
carried out in 2003 with the TAMA 300 detector, searching 1.2 ×
103 h of data from its first science run over a 1-Hz band centred on
934.9 Hz, assuming a spin-down range of (2–3) × 10−10 Hz s−1. The
search yielded an upper limit on the wave strain of 5 × 10−23 (Soida
et al. 2003). An earlier matched filtering search was conducted
using 102 h of data taken in 1989 by the Garching prototype laser
interferometer. The latter search was carried out over 4-Hz bands
near 2 and 4 kHz, did not include any spin-down parameters and
yielded an upper limit of 9 × 10−21 on the wave strain (Niebauer
et al. 1993).

There are two main types of continuous-wave LIGO searches:
coherent and semicoherent. The former demands phase coherence
between the signal and search template over the entire time series.
Although sensitive, they are restricted to small observation times
and parameter ranges as they are computationally intensive. Semi-
coherent searches break the full time series into many small chunks,
analyse each chunk coherently, then sum the results incoherently,
trading off sensitivity for computational load. Santostasi, Johnson

1 An unconfirmed correlation was also reported between data taken by the
Mont Blanc and Kamioka neutrino detectors and gravitational wave detec-
tors in Maryland and Rome (Amaldi et al. 1989). These observations are
consistent with a weak neutrino pulsar operating briefly during the core-
collapse event. However, a serious flaw in the original analysis was found
by Dickson & Schutz (1995). The authors’ reanalysis led them to conclude
that the correlations were not physically significant.

& Frank (2003) discussed the detectability of gravitational waves
from SNR 1987A, estimating that a coherent search based on the
Middleditch et al. (2000) spin parameters requires 30 d of integra-
tion time and at least 1019 search templates covering just the fre-
quency and its first derivative. In reality, the task is even more daunt-
ing, because such a young object spins down so rapidly, that five or
six higher-order frequency derivatives must be searched in order to
accurately track the gravitational wave phase. A Bayesian Markov
chain Monte Carlo method was proposed as an alternative to cover
the parameter space efficiently (Umstätter et al. 2004; Umstäetter,
Meyer & Christensen 2008). As yet, though, SNR 1987A has not
been considered a feasible search target, because even Monte Carlo
methods are too arduous. In this paper, we show how to reduce the
search space dramatically by assuming an astrophysically motivated
phase model.

In this paper, we discuss how to use a cross-correlation algorithm
to search for periodic gravitational waves from a neutron star in
SNR 1987A. The search is semicoherent (Dhurandhar et al. 2008).
The signal-to-noise ratio is enhanced by cross-correlating two data
sets separated by an adjustable time lag, or two simultaneous data
sets from different interferometers, thereby nullifying short-term
timing noise (e.g. from rotational glitches). This is a modification
of the method used in searches for a cosmological stochastic back-
ground (Abbott et al. 2007a, 2009a) and for the low-mass X-ray
binary Sco X-1 (Abbott et al. 2007b). In Section 2, we review
the properties of SNR 1987A and its putative neutron star. Sec-
tion 3 briefly describes the cross-correlation algorithm and the data
format. We estimate the theoretical sensitivity of the search in Sec-
tion 4. Section 5 describes an astrophysical model, which expresses
the gravitational wave phase in terms of the initial spin, ellipticity,
magnetic field and electromagnetic braking index of the neutron
star. We calculate the semicoherent phase metric and the number of
templates required for the search in the context of the astrophysical
phase model. Given the computational resources available to us, we
derive upper limits on the gravitational wave strain, ellipticity and
magnetic field which can be placed on a neutron star in SNR 1987A
with a cross-correlation search. Finally, Section 7 summarizes the
results.

2 A YO U N G N E U T RO N STA R IN SN R 1 9 8 7 A

SNR 1987A is the remnant of a Type II core-collapse supernova
which occurred in 1987 February, 51.4 kpc away in the Large Mag-
ellanic Cloud (α = 5h35m28.s03, δ = −69◦16′11.′′79) (see reviews
by Panagia 2008 and in Immler, Weiler & McCray 2007). Its pro-
genitor was the blue supergiant Sk 1 (Panagia 1987; Gilmozzi et al.
1987; Barkat & Wheeler 1988; Woosley, Heger & Weaver 2002).
The colour of the progenitor, as well as the origin of the com-
plex three-ring nebula in the remnant, are still unexplained. De-
tailed simulations of the evolutionary history of Sk 1, performed by
Podsiadlowski, Morris & Ivanova (2007), support the theory that
two massive stars merged to form an oversized 20 M	 red super-
giant 2 × 105 yr before the supernova, which eventually shrank as
its envelope evaporated (e.g. Podsiadlowski & Joss 1989; Podsiad-
lowski, Joss & Rappaport 1990). An alternative theory suggests that
Sk 1 was instead a single 18–20 M	 red supergiant which evolved
into a blue supergiant via wind-driven mass loss (e.g. Saio, Nomoto
& Kato 1988; Woosley 1988; Sugerman et al. 2005).

There is strong evidence for the existence of a neutron star in
SNR 1987A. The progenitor mass range required to produce Type II
supernovae, 10–25 M	, which includes the above evolutionary sce-
narios, is the same range required to produce neutron star remnants
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(Woosley et al. 2002; Heger et al. 2003). The secure neutrino detec-
tions mentioned in Section 1 support this conclusion. Although there
have been no confirmed pulsar detections, numerous searches have
placed upper limits on the flux and luminosity at radio (<115 μJy at
1390 MHz, Manchester 2007), optical/near-UV (<8 × 1033 erg s−1,
Graves et al. 2005) and soft X-ray (<2.3 × 1034 erg s−1, Burrows
et al. 2000) wavelengths. Middleditch et al. (2000) reported finding
an optical pulsar in SNR 1987A with a frequency of 467.5 Hz, mod-
ulated sinusoidally with a ∼1-ks period, consistent with precession
for an ellipticity of ε ∼ 10−6. However, the pulsations were reported
to have disappeared after 1996 (Middleditch et al. 2000) and were
never confirmed independently.

There are several possible reasons why a pulsar in SNR 1987A
has not yet been detected. If its spin period is greater than 0.1 s,
it would not be bright enough to be detectable in the optical band
(Pacini & Salvati 1987; Manchester 2007). If the radio emission is
incoherent or the emission region is patchy, the pulses may have
been missed, even if the beamwidth is as wide as is typical of young
pulsars (Manchester 2007). Shternin & Yakovlev (2008) argued that,
although the neutron star’s theoretical X-ray luminosity exceeds the
observational upper limits by a factor of 20–100, the current upper
limits still allow for concealment behind an opaque shell formed by
the fall-back (Woosley & Weaver 1995). However, simulations by
Fryer, Colgate & Pinto (1999) suggest that once the fall-back ceases,
the accreted material cools, leaving no obscuring atmosphere.

Another possible reason why a pulsar has not yet been detected
is that its magnetic field is too weak. The weak-field theory is
supported by theoretical models, in which the field grows only after
the neutron star is formed and can take up to 103 yr to develop
(e.g. Blandford & Romani 1988; Reisenegger 2003). A growth
model for SNR 1987A was proposed by Michel (1994), in which
the magnetic field of a millisecond pulsar intensifies from 1010 G
at birth to ∼1012 G after several hundred years (exponential and
linear growth were considered, yielding growth times of ∼0.3–
0.7 kyr), before the pulsar has time to spin-down significantly. In an
alternative model, the neutron star is born with a strong magnetic
field, which is amplified during the first few seconds of its life by
dynamo action (e.g. Duncan & Thompson 1992; Bonanno, Urpin &
Belvedere 2005). Assuming this model, measurements of the known
spin periods of isolated radio pulsars imply a distribution of birth
magnetic field strengths between 1012 and 1013 G (Arzoumanian,
Chernoff & Cordes 2002; Faucher-Giguère & Kaspi 2006). Several
birth scenarios for the pulsar in SNR 1987A were considered by
Ögelman & Alpar (2004) in this context, who concluded that the
maximum magnetic dipole moment is <1.1 × 1026, 2.5 × 1028

and 2.5 × 1030 G cm−3 for birth periods of 2 ms, 30 ms and 0.3 s,
respectively. However, the dynamo model also accommodates a
magnetar in SNR 1987A, with magnetic dipole moment >2.4 ×
1034 G cm−3, regardless of the initial spin period (Ögelman & Alpar
2004).

Estimates of the birth spin of the pulsar in SNR 1987A are more
uncertain. Simulations of the bounce and post-bounce phases of
core collapse were performed by Ott et al. (2006) to determine
the correlation between progenitor properties and birth spin. These
authors found proto-neutron star spin periods of 4.7–140 ms, pro-
portional to the progenitor’s spin period. A Monte Carlo population
synthesis study using known velocity distributions (Arzoumanian
et al. 2002) favoured shorter millisecond periods, but a similar pop-
ulation study by Faucher-Giguère & Kaspi (2006) argued that the
birth spin periods could be as high as several hundred milliseconds.
Faint, non-pulsed X-ray emission from SNR 1987A was first ob-
served 4 months after the supernova and decreased steadily in 1989

(Dotani et al. 1987; Inoue et al. 1991), leading to the suggestion that
a neutron star could be powering a plerion that is partially obscured
by a fragmented supernova envelope. Bandiera, Pacini & Salvati
(1988) modelled the X-ray spectrum from a nebula containing a
central pulsar, with a magnetic field of 1012 G and an expansion rate
of 5 × 108 cm s−1. The authors found a fit to the SNR 1987A data
for a pulsar spin period of 18 ms.

3 TH E C RO S S - C O R R E L AT I O N A L G O R I T H M

In this section, we briefly summarize the cross-correlation method
described in Dhurandhar et al. (2008), a semicoherent search algo-
rithm designed specifically to search for continuous-wave gravita-
tional radiation. It operates on short Fourier transforms (SFTs) of
data segments of length �T = 30 min, whose duration is chosen to
minimize the Doppler effects due to Earth’s rotation. In each SFT,
the kth frequency bin corresponds to the frequency νk = k/�T for
0 ≤ k ≤ N/2 and νk = (k − N)/�T for N/2 ≤ k ≤ N − 1, where N
is the total number of frequency bins in the SFT.

The output x(t) of a detector is the sum of the instantaneous noise,
n(t), and the gravitational wave signal, h(t). The noise is assumed to
be zero mean, stationary and Gaussian. Its power is characterized
by Sn(ν), the single-sided power spectral density (i.e. the frequency-
dependent noise floor), in the following way:

〈ñ(ν)∗ñ(ν ′)〉 = 1

2
Sn(ν)δ(ν − ν ′), (1)

where ∗ denotes complex conjugation. Therefore, in the low signal
limit (|h(t)| � |n(t)|), the power in the kth frequency bin of SFT I
can be approximated by

〈|x̃k,I |2
〉 ≈ �T

2
Sn(νk), (2)

where we apply the finite time approximation to the delta function
in (1), i.e. δ�T (ν) = sin(πν�T )/(πν) ≈ �T .

In the cross-correlation algorithm, SFTs are paired according to
some criterion (e.g. time lag or interferometer combination) and
multiplied to form the raw cross-correlation variable

Yk,IJ = x̃∗
kI ,I x̃kJ ,J

(�T )2
, (3)

where I and J index the SFTs in the pair. The gravitational wave
signal is assumed to be concentrated in a single-frequency bin in
each SFT (because �T � ν/ν̇ due to sidereal or intrinsic effects),
whose index is denoted by kI or kJ . The frequency bins in the two
SFTs are not necessarily the same; they are related by the time lag
between the two SFTs in the pair and between the interferometers,
as well as the spin-down and Doppler effects. For an isolated source,
the instantaneous frequency at time t is given by

ν(t) = ν̂(t) + ν̂(t)
v · n

c
, (4)

where ν̂(t) is the instantaneous frequency in the rest frame of the
source, v is the detector velocity relative to the source, n is the
position vector pointing from the detector to the source and c is the
speed of light. The instantaneous signal frequencies in SFTs I and J,
νI and νJ , are calculated at the times corresponding to the mid-points
of the SFTs, TI and TJ . The frequency bin kJ is therefore shifted
from kI by an amount �TδνIJ , with δνIJ = νJ − νI (Dhurandhar
et al. 2008). For convenience, we now drop the subscripts kI and kJ .

In the low signal limit, YIJ is a random, complex variable. The
cross-correlation statistic comprises a weighted sum of YIJ over all
pairs IJ. YIJ has variance σ 2

IJ = S(I )
n (νI )S(J )

n (νJ )/(4�T 2), where
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S(I )
n (νI ) is the power spectral density of SFT I at frequency νI , and

S(J )
n (νJ ) is the power spectral density of SFT J at frequency νJ .
The parameters describing the amplitude and the phase of the

signal are contained within the signal cross-correlation function
G̃IJ , defined as

G̃IJ = 1

4
e−i�	IJ e−iπ�T [νI (TI )−νJ (TJ )]

[
FI+FJ+A2

+

+FI×FJ×A2
× − i(FI+FJ× − FI×FJ+)A+A×

]
, (5)

with �	IJ = 	I(TI) − 	J(TJ). 	I(TI) and νI(TI) are the phase and
frequency at time TI , whereas 	J(TJ) and νJ(TJ) are evaluated at
time TJ . Note that there is an error in equation (3.10) of Dhurandhar
et al. (2008), which omits the factor of e−iπ�T [νI (TI )−νJ (TJ )] arising
from the choice of time origin of the Fourier transforms. The phase
factors are determined by the astrophysical phase model described
in Section 5.

The terms in square brackets in (5) depend on the polarization
angle ψ , and the inclination angle ι between n and the rotation axis
of the pulsar, in the following way:

A+ = 1 + cos2 ι

2
, (6)

A× = cos ι, (7)

F+(t ; n, ψ) = a(t ; n) cos 2ψ + b(t ; n) sin 2ψ, (8)

F×(t ; n, ψ) = b(t ; n) cos 2ψ − a(t ; n) sin 2ψ, (9)

where a(t ; n) and b(t ; n) are the detector response functions for a
given sky position, and are defined in equations (12) and (13) of
Jaranowski, Królak & Schutz (1998). A geometrical definition is
also given in Prix & Whelan (2007). The gravitational wave strain
tensor is

h(t) = h0A+ cos 	(t)e+ + h0A× sin 	(t)e×, (10)

where h0 is the gravitational wave strain, and e+,× are the basis
tensors for the + and × polarizations in the transverse-traceless
gauge.

In principle, one should search over the unknowns cos ι and ψ , but
this adds to the already sizeable computational burden. Accordingly,
it is customary to average over cos ι and ψ when computing G̃IJ ,
with

〈G̃IJ 〉cos ι,ψ = 1

10
exp−i�	IJ e−iπ�T [νI (TI )−νJ (TJ )](aI aJ + bI bJ ),

(11)

where aI,J = a(TI,J ; n) and bI,J = b(TI,J ; n). Once the first-pass
search is complete, a follow-up search on any promising candidates
can then be performed, which searches explicitly over cos ι and ψ .
Preliminary Monte Carlo tests indicate that the detection statistic
resulting from (11) is approximately 10−15 per cent smaller than
if the exact cos ι and ψ values are used.

The cross-correlation detection statistic is a weighted sum of
YIJ over SFT pairs. The number of pairs which can be summed
over are limited by the available computational power. We discuss
the computational costs of running the search in Section 6.2. The
cross-correlation detection statistic is given by

ρ = 
IJ

(
uIJYIJ + u∗

IJY∗
IJ

)
, (12)

where the weights are defined by

uIJ = G̃∗
IJ

σ 2
IJ

. (13)

For each frequency and sky position that is searched, we obtain one
real value of ρ, which is a sum of the Fourier power from all the
pairs. Ignoring self-correlations (i.e. no SFT is paired with itself),
the mean of ρ is given by μρ = h2

0

∑
IJ |G̃IJ |2/σ 2

IJ . In the low signal
limit, the variance of ρ is σ 2

ρ = 2
IJ |G̃IJ |2/σ 2
IJ . In the presence

of a strong signal, and if self-correlations are included, μρ and σ 2
ρ

scale as h2
0 (Dhurandhar et al. 2008).

4 SENSITIVITY

4.1 Detection threshold

Detection candidates are selected if they exceed a threshold value,
ρ th. For a given false alarm rate Fa, this threshold is given by
(Dhurandhar et al. 2008)

ρth = 21/2σρerfc−1(2Fa/N ), (14)

where erfc is the complementary error function, and N is the number
of search templates used. In the presence of a signal, the detection
rate for events with ρ > ρ th is given by

γ = 1

2
erfc

(
ρth − μρ√

2σρ

)
. (15)

As μρ ∝ h2
0, one can calculate the lowest gravitational wave strain

that is detectable by the search to be (Dhurandhar et al. 2008)

hth(ν) = S1/2

√
2〈|G̃IJ |2〉1/4N

1/4
pairs

(
Sn(ν)

�T

)1/2

. (16)

In (16), we define S = erfc−1(2Fa) + erfc−1(2Fd), Fd is the false
dismissal rate, 〈|G̃IJ |2〉 is the mean-square of the signal cross-
correlation function defined in (5), Npairs is the number of SFT
pairs, and Sn(ν) is the single-sided power spectral density of the
interferometers (assumed to be identical).

One can estimate 〈|GIJ |2〉1/4 theoretically for the special case
where TI = TJ and G̃IJ is averaged over cos ι, ψ , and sidereal
time. In this case, the primary contribution to �	IJ is the term
[r(TI ) − r(TJ )] · n/c, where r(t) is the position of the detector at
time t in the frame of the Solar system barycentre. Under these
assumptions, equation (11) can be expressed in terms of the overlap
reduction function (Whelan 2006), which depends only on ν, α and
δ. For SNR 1987A, we have (α, δ) = (1.46375 rad, −1.20899 rad),
and hence 〈|G̃IJ |2〉−1/4 = 4.6882. Assuming Fa = Fd = 0.1, �T =
1800 s, and Npairs = 105 (approximately 1 yr of SFTs), equation (16)
gives

hth(ν) = 5.92 × 10−3

(
Sn(ν)

Hz−1

)1/2

. (17)

Fig. 1 is a graph of hth as a function of ν. The values of Sn(ν) are
based on LIGO’s S5 noise characteristics.2 The S5 run began in 2005
November and accumulated a year’s worth of triple coincidence
data. For a signal from SNR 1987A to be detectable, we must have
hth ≤ h0.

4.2 Minimum ellipticity and indirect, age-based limit

The deformation of a neutron star is parameterized by its ellipticity
ε. The gravitational wave strain at Earth emitted by a biaxial neutron

2 Available at http://www.ligo.caltech.edu/∼jzweizig/distribution/LSC_
Data
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Figure 1. Theoretical sensitivity of the cross-correlation search for SNR
1987A as a function of gravitational wave frequency (blue curve), assuming
the initial LIGO detector power spectral density, a false alarm rate of 0.1 and
a false dismissal rate of 0.1. The blue curve shows the theoretical sensitivity
for the special case where the search uses 105 pairs of time-coincident
30-min SFTs, and averages over inclination angle, polarization angle and
sidereal time (see discussion in Section 4.1). The horizontal red line shows
the indirect, age-based limit assuming ν � νb (see discussion in Section 4.2).

star is

h0 = 4π2G

c4

Iεν2

D
, (18)

where G is Newton’s gravitational constant, c is the speed of light,
I is the moment of inertia, D is the distance to the source and ν

is the gravitational wave frequency, assumed to be twice the spin
frequency (Jaranowski et al. 1998).

An upper limit on h0 can be derived from existing electromagnetic
data by assuming that all the observed spin-down comes from the
gravitational wave torque, i.e. the observed frequency derivative ν̇

satisfies ν̇ = −(32π4 Gε2Iν5)/(5c5) (Wette et al. 2008). Combining
this with (18) to eliminate ε gives

h0 ≤ 1

D

(
5 GI |ν̇|

2c3ν

)1/2

. (19)

Hence, for SNR 1987A to be detectable (i.e. hth ≤ h0), we require

hth(ν) ≤ 1.66 × 10−20

×
(

I

1038 kg m2/s

)1/2 ( |ν̇|
ν

)1/2 (
D

51.4 kpc

)−1

. (20)

Unfortunately, without having observed any pulsations from
SNR 1987A, it is impossible to determine ν or |ν̇| a priori. Instead,
we note that ν̇ can be re-expressed in terms of the characteristic age
of the source, τc = ν/(4|ν̇|), assuming that ν today is much less
than ν at birth. The factor 4 arises if one assumes that the gravita-
tional radiation dominates electromagnetic spin-down, in order to
remain consistent with (19); in reality, electromagnetic spin-down
is expected to dominate, with τc = ν/(2|ν̇|). Equation (20) then
reduces to

hth(ν) ≤ 3.39 × 10−25

(
τc

19 yr

)−1/2 (
D

51.4 kpc

)−1

. (21)

The right-hand side of (21) is graphed as a horizontal red line in
Fig. 1. The detectability condition (21) is then satisfied for spins
in the range of 75 Hz � ν � 450 Hz. Note that we have chosen
τc = 19 yr, the age of SNR 1987A in 2006 when the S5 search
began.

It is important to note here that the assumption that ν is currently
much less than at birth is likely untrue for the object in SNR 1987A,

as it is so young. Hence, the indirect, age-based limit in equation (21)
and the horizontal line in Fig. 1 are only indicative of the expected
gravitational-wave emission strength (in fact, they are upper limits).
Exact calculations of ν and ν̇ are performed in Section 5.1.

5 A N A S T RO P H Y S I C A L M O D E L FO R
THE G RAVI TATI ONA L WAV E PHASE

All continuous-wave searches to date have used the standard model
for the gravitational wave phase, described in terms of a Taylor
expansion involving spin frequency derivatives (Jaranowski et al.
1998). For a young object like SNR 1987A, which spins down
rapidly, it is not computationally feasible to search over the six
or more frequency derivatives typically needed to track the phase
accurately. In this section, we present an alternative model for the
gravitational wave phase, stated in terms of astrophysical parameters
(i.e. the magnetic field strength and the neutron star ellipticity)
instead of spin frequency derivatives. It tracks the phase exactly
using four parameters, under the restrictive assumption (justified
further below) that the braking index is constant.

The phase of a slowly evolving gravitational wave signal,

	(t) = 	(t0) + 2π

∫ t

t0

dt ν(t), (22)

can be approximated by the Taylor expansion (Jaranowski et al.
1998)

	(t) = 	(t0) + 2π

s∑
k=0

ν(k) t k+1

(k + 1)!
+ 2πn · r(t0)

c

s∑
k=0

ν(k) t
k

k!
,

(23)

where ν(k) is the kth derivative of the gravitational wave frequency
at time t0, and s is the number of spin-down parameters required
to achieve a given accuracy. The computational cost of using (23)
is substantial for rapidly decelerating objects. For a maximum al-
lowable phase error of one cycle, the maximum bin size in the kth
derivative is ν(k) is �ν(k) = (k +1)!/T k+1

lag , implying Nk ≈ ν(k)/�ν(k)

templates in that derivative and Ntotal = ∏s
k=0 Nk templates overall.

We discuss this matter further in Section 6.2.
To improve on the above situation, we recognize that ν̇ for an

isolated neutron star is the sum of gravitational-wave and electro-
magnetic torque contributions:

ν̇ = −32π4 Gε2Iν5

5c5
− 2π3R6

�B
2νn

3μ0Ic3

(
πR�

c

)n−3

(24)

= −Q′
1ν

5 − Q′
2ν

n, (25)

where R� is the neutron star radius, B is the polar magnetic field and
n is the electromagnetic braking index (theoretically equal to 3, but
could be as low as 1.8; Melatos 1997; Palomba 2005). Assuming
that the electromagnetic torque is proportional to a power of ν, then
ν must enter the torque in the combination R�ν/c (i.e. the ratio of R�

to the characteristic lever arm, the light cylinder distance, c/2πν) on
dimensional grounds. In terms of an arbitrary reference frequency,
νref , we write ν̇ = −Q1 (ν/νref )

5 − Q2 (ν/νref )
n, with Q1 = Q′

1ν
5
ref

and Q2 = Q′
2ν

n
ref . Throughout this paper, we set νref = 1 Hz for

simplicity.
There may, of course, be other torques acting on a newly born

neutron star. For example, non-linear r-mode instabilities can emit
a significant amount of gravitational radiation under certain condi-
tions (Owen et al. 1998). If there is a rapidly rotating pulsar with
B ≤ 1011 G in SNR 1987A, its instability time-scale (27 yr) would
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exceed its age, and the gravitational radiation from the instabilities
alone should be detectable by Advanced LIGO (Brink, Teukolsky
& Wasserman 2004; Bondarescu, Teukolsky & Wasserman 2009).
However, for the purposes of our search, we assume that the spin-
down is described by (25). An equally serious issue is that n may
change over the 1-yr integration period, although in (25), we as-
sume that n is constant. Young pulsars have n < 3, and it can be
argued that n approaches 3 over the spin-down time-scale (Melatos
1997). In this search, we maintain the assumption of a constant n.
However, it is possible to extend (25) to include time-dependent
n in future searches. We aim, in the first instance, to exclude the
simplest astrophysical model while recognizing that it covers only
a small fraction of the total parameter space.

When implementing the search, instead of stepping through a
grid of frequency derivatives, we search instead over ν, Q1, Q2 and
n. This reduces the number of parameters and allows one to track
the phase more accurately for a given computational cost, as errors
stemming from incorrect choices of (ν, Q1, Q2, n) grow more slowly
with observation time than errors stemming from higher-order fre-
quency derivatives. The improvement is quantified in Section 6.2.
We note that the search targets a source with a known position,
hence in our estimates we consider only a single sky position.

5.1 Historical spin-down

We can use the possible spin histories of a source like SNR 1987A
with a known age to constrain the invisible values of (ν, Q1, Q2,
n) today and hence the maximum amount of phase evolution to be
expected during a LIGO integration.

There are two ways of estimating ν and ν̇ for a source whose age is
known. In the simplest situation, where the current spin frequency
ν is much smaller than the birth frequency νb, the characteristic
age τc ≈ −ν/ [(〈n〉 − 1) ν̇] closely approximates the true age ir-
respective of νb, where 〈n〉 is the mean braking index, averaged
over the time since birth. Under these conditions, a source with
unknown ν and ν̇ lies on a line of slope −τc (〈n〉 − 1) in the ν–ν̇

plane. However, as discussed in Section 4.2, this is not necessarily
true of SNR 1987A, which was only 19 yr old at the start of the
S5 search. In order to calculate ν and ν̇ exactly without using the
characteristic age approximation, one must integrate (25) over the
lifetime of the source. Accordingly, we adopt this approach and map
out the regions in the ν-ν̇ plane which can be reached from νb by
electromagnetic-plus-gravitational-wave spin-down and physically
sensible choices of ε, B and n.

Fig. 2 shows the range of possible ν and ν̇ values at t = 19 yr
obtained by solving (25) for 10−6 ≤ ε ≤ 10−3, 1011.5 ≤ B ≤ 1013 G
and 0.1 kHz ≤ νb ≤ 1.2 kHz. For reference, we plot the search sensi-
tivity (black curve in the ν–ν̇ plane) obtained from (17). According
to (17), the search is only sensitive to combinations of ν and ν̇ above
the black line. The conservative limits set by the characteristic age
approximation are plotted as cyan lines. The lines correspond to
〈n〉 = 1.8 (top), 〈n〉 = 3 (middle) and 〈n〉 = 5 (bottom). For a given
value of 〈n〉, an object lies on the line for ν � νb, and below the
lines for ν � νb, but never above the line.

The blue, red and purple boxes contain combinations of (ν, ν̇)
that can be reached for various choices of ε, B, n and νb. The
blue box covers the region in which B ≤ 1011.5 G and n = 3, and
the gravitational wave torque (Q1) dominates, i.e. ν̇GW � ν̇EM,
where the subscripts EM and GW denote the electromagnetic and
gravitational wave components of the spin-down, respectively. The
red box covers the region in which the electromagnetic torque (Q2)
dominates, with B = 1013 G and n = 3. The purple box also shows

Figure 2. Final states (ν, ν̇) calculated from equation (25) on the ν–|ν̇| plane
for a range of ellipticities (10−6 ≤ ε ≤ 10−3), and birth spin frequencies
(0.10 kHz ≤ νb ≤ 1.2 kHz), and for a 19 yr old pulsar. The blue lines surround
the region where the Q1 term dominates (B ≤ 1011.5 G, all n), the red lines
surround the region where the Q2 term dominates (B = 1013 G, n = 3),
and the purple lines surround the region where the Q2 term dominates (B =
1013 G, n = 2.3). The black curve shows the theoretical search sensitivity
from solving equation (17). The ν � νb age limits are shown in cyan for
〈n〉 = 1.8 (top), 〈n〉 = 3 (middle) and 〈n〉 = 5 (bottom).

a region in which the Q2 term dominates, where we have chosen
B = 1013 G and n = 2.3. As a rule of thumb, ε determines the size
of the box along the ν-axis, and νb determines the size of the box
along the ν̇-axis.

Let us first investigate what happens to the blue box when we vary
the minimum and maximum ellipticity, εmin and εmax. The Q1 term
dominates in the region bounded by the blue box. The absolute value
of the RQ slope increases as εmin decreases, shrinking the range of
ν̇. The curve PQ shifts to the left as εmax increases, increasing |ν̇|,
and hence lowering ν.

Let us now see what happens when we vary the minimum and
maximum magnetic field, Bmin and Bmax. The absolute value of the
RS slope decreases as Bmin increases, stretching the box sideways
as we retreat from the gravitational-wave dominated limit. The blue
box is always bounded above by the 〈n〉 = 5 age line. It shrinks,
and flattens as the role of Q1 diminishes.

We now discuss the purple and red boxes in which Q2 dominates.
The region bounded by the purple box has B = 1013 G, and n =
2.3, whereas the red box has the same B, but n = 3. Reducing n
increases the spin-down rate by a factor of (πR�/c)n−3. Hence, for
the same ε and B, the purple box covers a smaller range of ν than
the red box. Both are considerably smaller than the blue box for the
same range of ε and νb. Again, if εmax increases, the purple and red
boxes expand downwards. In Fig. 2, we choose to plot the purple
box with n = 2.3 because it lies partially within the sensitivity
range of the search. Importantly, ν and ν̇ end up outside the search
sensitivity range for n < 2.3 or B > 1013 G, restricting the range of
astrophysical birth scenarios that our search is sensitive to.

The range of ν covered in the Q2-dominated limit is sensitive to
B. In Fig. 3, we show explicitly how varying B affects ν, ν̇. We plot
eight red boxes, for 1011 G (largest box) ≤ B ≤ 1014.5 G (smallest
box), and n = 3. As B increases, the red boxes shift to the left.
For B ≥ 5 × 1013 G, the box falls out of the sensitivity range of
the search. Also, the boxes shrink as Bmax increases. This happens
because as B increases, ν̇EM increases. For B � 1014 G, we find ν �
νb after 19 yr, and the boxes end up on the 〈n〉 = 3 line. All the red
boxes are bounded above by the 〈n〉 = 3 age line.
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Figure 3. Final states (ν, ν̇) calculated from equation (25) on the ν–|ν̇|
plane, for a range of magnetic field strengths. The eight red boxes surround
regions which have n = 3 and cover the same range of ε and νb as Fig. 2.
Their magnetic fields range from B = 1011 G (largest box) to B = 1014.5 G
(smallest box).

Figs 2 and 3 provide constraints on the detectable range of ε, B,
n, over a broad range of νb. We conclude that, in preparing to select
the search templates, it is sensible to consider the parameter range
10−5 ≥ ε, B ≤ 1013 G, 2.3 ≤ n ≤ 5. A more detailed breakdown
of the detectable and computationally feasible parameter ranges
is presented in Section 6.2. Note that even though the particular
boxes drawn as examples in Figs 2 and 3 do not cover the entire
region between the sensitivity curve and the 〈n〉 = 1.8 line, one can
potentially reach any point in that region with some combination
of n, ε and B. Also, each (ν, ν̇) pair in the figures can be reached
by an infinite set of combinations (ε, B, n and νb). However, there
are combinations of ν and ν̇ which are allowed in principle by
age-based indirect limits but which cannot be reached from νb with
realistic choices of ε, B and n.

6 TEM P LATE SPACING

The cross-correlation search for SNR 1987A is computationally
limited rather than sensitivity limited over much of the parameter
space in Figs 2 and 3. Therefore, the placement of templates is
crucial. If the template grid is too coarse, the risk of missing the
signal increases; if it is too fine, time is wasted searching redundant
templates. In order to compute the optimal spacing, we construct
a phase metric (Balasubramanian, Sathyaprakash & Dhurandhar
1996; Owen 1996) that computes the signal-to-noise ratio as a func-
tion of template spacing along each axis of the four-dimensional
parameter space (ν, ε, B, n). The coherent phase metric for the con-
ventional Taylor-expansion phase model is widely used in LIGO
in both coherent and semicoherent searches (Brady & Creighton
2000; Prix 2007; Wette et al. 2008), although its semicoherent form
has not been fully investigated. In this section, we derive the semi-
coherent phase metric for the astrophysical phase model defined by
integrating (25). We also estimate the range of detectable spin-down
values as well as magnetic field, ellipticity and braking index values
given a computationally feasible number of templates.

6.1 Semicoherent phase metric

When searching a template grid, it is extremely unlikely that one
particular set of parameters will match the true signal exactly. What
we have instead is a set of guessed parameters θ + �θ , describing
the closest match, which are offset from the true values by a small

amount, �θ . For a given set of guessed parameters, the power
spectrum of a time-coincident SFT pair is

P(θ , �θ ) = 2A√
�T

∣∣∣∣
∫ Tstart+�T

Tstart

dt ei�	(t)

∣∣∣∣
2

, (26)

where �	(t) = 	(t, θ + �θ ) − 	(t, θ ) is the mismatch between
the actual and guessed phases, T start is the time at the mid-point of
the SFT, and A is the gravitational wave amplitude.

The mismatch between (26) and the power spectrum of the SFT
pair if �θ = 0 is defined to be

m(θ , �θ ) = 1 − P(θ , �θ )

P(θ , 0)
(27)

and is related to the semicoherent phase metric sij by

m(θ , �θ ) = sij (θ)�θi�θj , (28)

where 1 ≤ i, j ≤ 4 label the various search parameters.
For the cross-correlation search, we have θ = (ν, Q1,Q2, n).

Hence, for a given mismatch m, the minimum (i.e.
most conservative) template spacings are given by
�ν(θ ) = √

m/s00(θ), �Q1(θ ) = √
m/s11(θ ), �Q2(θ ) =√

m/s22(θ ), �n(θ ) = √
m/s33(θ ). Note that it may be possible

to do better (i.e. expand the spacing) by taking advantage of the
covariances between parameters embodied in the metric through
(28); this issue deserves further study.

In order to calculate sij, we must first calculate the coherent phase
metric, defined to be

gij = 〈∂i�	∂j�	〉 − 〈∂i�	〉〈∂j�	〉, (29)

with 〈· · ·〉 = 1
Tlag

∫ Tstart+Tlag
Tstart

dt · · · and ∂i�	 = ∂�	/∂�θi eval-

uated at �θ = 0. Calculating gij analytically by integrating (25)
is non-trivial. However, a good approximation results if we inte-
grate (25) separately for the gravitational-wave and electromag-
netic torques, and combine the answers in quadrature. Details of
the calculation are shown in Appendix A. In brief, tracking the
gravitational-wave and electromagnetic spin-down separately yields
two ‘submetrics’, one comprising ν and Q1 (gravitational) and the
other comprising ν, Q2 and n (electromagnetic). Diagonal elements
of sij can be obtained by summing the two submetrics.

The semicoherent metric sij is the average of the coherent met-
ric from Tstart = 0 to Tstart = Tobs, where Tobs is the entire
observation time spanned by all SFT pairs. It is defined to be
sij = (Tobs)

−1
∫ Tobs

0 dTstart gij . From Appendix B, the diagonal el-
ements of the semicoherent metric are

s00 ≈ 10T 2
lagT

2
obs

(
5

72
K2

1 ν8Q2
1 − 1

36
K1K2nνn+3Q1Q2

+ 1

360
K2

2 n2ν2n−2Q2
2

)
, (30)

s11 ≈ K2
1 ν10

36
T 2

lagT
2

obs, (31)

s22 ≈ K2
2 ν2n

36
T 2

lagT
2

obs, (32)

s33 ≈ K2
2 log (ν)2 ν2nQ2

2

36
T 2

lagT
2

obs, (33)

with K1 = K1(ν, Q1) and K2 = K2(ν, Q2, n). For pure gravitational-
wave and electromagnetic spin-down, we have (K1, K2) = (1, 0) and
(0, 1), respectively. The full expressions for (30)–(33) are presented
in Appendix B. Note that in (30)–(33), all the frequency terms are
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normalized by νref . For clarity, we have set νref = 1 Hz and do not
display it.

In Appendix C, we estimate the phase error that accumulates
after a time T lag from mismatches in ν, Q1, Q2 and n. We find that
it scales with T lag similarly to (30)–(33) for Q1 and Q2. For ν, the
phase error scales instead as T lag, and for n, it scales as T laglog [1 +
(n − 1)Q2T lagν

n−1]. In a semicoherent search, the phase needs to
be tracked to within π/4 over the interval T lag, not Tobs, unlike in
fully coherent searches. Across the entire observation time Tobs, we
require only that the frequency of the signal be tracked to within
1/�T . This adds an overall T 2

obs dependence to (30)–(33).

6.2 Computational cost of the search

The run-time of the search code is proportional to NpairsN total, where
N total is the total number of templates required to search the param-
eter space. Trials with Npairs = 105 comprising 1 yr’s worth of SFTs
(from the two interferometers H1 and L1), and T lag = 1 h take ∼1 s
per template on a single, 1-gigaflop computational node. We can
therefore search ∼109 templates in a realistic run using 103 nodes
over 2 weeks.

We now compare the computational cost of the astrophysical
phase model (25) against the Taylor-expansion model (23). The
semicoherent metric for the latter model is not well studied; how-
ever, recent work has yielded analytic expressions for the metric
(Pletsch & Allen 2009; Pletsch 2010). Based on these expressions,
we can estimate the number of templates in the following way.

First, we consider the number of templates required to track the
phase coherently over a time T lag. For the kth frequency derivative
in the Taylor expansion model, the corresponding diagonal term of
the coherent metric scales as (gij)

(k)
coh ∝ T 2k+2

lag (Whitbeck 2006). The
number of templates required to track the kth frequency derivative

coherently is then Nk ∝
√

(gij )(k)
coh ∝ T k+1

lag . The total number of
templates required for each coherent chunk of length T lag is therefore
given by Ncoh = ∏s

k=0 Nk , i.e. Ncoh ∝ ∏s
k=0 T k+1

lag , where s is the
number of frequency derivatives required to track the gravitational
wave phase (see Section 5). Now, assume that over a time Tobs, we
sum a number of chunks incoherently, approximately proportional
to Nchunks ∝ Tobs/T lag.3 Now, using the semicoherent metric (Pletsch
& Allen 2009; Pletsch 2010), the number of templates required
for s frequency derivatives is proportional to γ sNcoh, where γ s is
a ‘refinement factor’ that scales as N

s(s+1)/2
chunks . The total number of

templates is then approximately

Ntotal ∝ N
s(s+1)/2
chunks

s∏
k=0

T k+1
lag (34)

∝
(

Tobs

Tlag

)s(s+1)/2 s∏
k=0

T k+1
lag . (35)

For the range of (νb, ε, B, n) considered in Section 5.1, for T lag =
1 h, we must track terms up to and including ν(4) in (23) in order to
keep the overall phase error below π/4. This gives Ntotal ∝ T 10

obsT
5

lag.
Under the astrophysical phase model, we estimate N total =

NνNQ1NQ2Nn from (30)–(33), where the subscripts denote the num-
ber of templates required for each individual parameter, e.g. Nν ≈
ν/�ν. As (30) yields different results for Nν in the gravitational

3 We emphasize that this is only an approximate estimate, as the cross-
correlation method sums SFT pairs separated by a time up to and including
T lag. Strictly speaking, Nchunks > Tobs/T lag.

and electromagnetic limits, we bound Nν by taking it to be the
sum of squares of the two limits, i.e. Nν = [N 2

ν,(K1,K2)=(1,0) +
N 2

ν,(K1,K2)=(0,1)]
1/2. For a given mismatch m, we obtain

Ntotal ∝ m−2nν10+3n log(ν)Q1Q
2
2

[
Q2

1 + n2Q2
2

]1/2
T 4

lagT
4

obs. (36)

Equation (36) is an approximate result, achieved by combin-
ing the two submetrics used in equations (30)–(33). It should be
regarded as a rule of thumb. If gravitational-wave spin-down dom-
inates, we have s22 = s33 = 0, τc = (4Q1ν

4)−1, and hence

Ntotal ∝ m−1ν2τ−2
c T 2

lagT
2

obs. (37)

If electromagnetic spin-down dominates, we have s11 = 0, τc =
[(n − 1) Q2ν

n−1]−1, and hence

Ntotal ∝ m−3/2n2ν3 log(ν) [(n − 1)τc]
−3 T 3

lagT
3

obs. (38)

The required template spacing therefore varies dramatically
across the astrophysical parameter range. To illustrate, let us con-
sider 0.1 kHz ≤ ν ≤ 1 kHz, 10−22 s3 ≤ Q1 ≤ 10−18 s3, 10−21 s2 ≤
Q2 ≤ 10−13 s2 and 2.3 ≤ n ≤ 3.0, and hence 8 × 10−6 ≤ ε ≤ 8 ×
10−4, 4 × 109 G ≤ B ≤ 4 × 1013 G. We assume a mismatch m of
0.2. The required resolutions in the four search parameters range
across

2.935 × 10−4 ≤ �ν/Hz ≤ 9.632 × 10−4, (39)

2.973 × 10−26 ≤ �Q1/s3 ≤ 3.685 × 10−22, (40)

3.448 × 10−20 ≤ �Q2/s2 ≤ 2.120 × 10−16, (41)

8.674 × 10−8 ≤ �n ≤ 1.166 × 104 (42)

in this search volume. The number of templates required for each
parameter is its range divided by its bin resolution. If the bin reso-
lution is larger than its range, we require only one template. Equa-
tions (39)–(42) imply a total number of templates between 2.958 ×
105 ≤ N total ≤ 4.347 × 1026 to cover the entire parameter space.
Smaller values of ν, Q1, Q2 and n require fewer templates to cover
their neighbourhood.

Unfortunately, given the computational restrictions that we face,
we cannot search the entire region of astrophysical parameters in
Fig. 2. In the following analysis, we therefore divide each axis
in parameter space into (say) 10 bins, i.e. a 10 × 10 × 10 ×
10 hypercubic grid containing 104 ‘boxes’, and calculate the lo-
calized resolution at the centroid of each box. The grid is spaced
logarithmically along ε and B to cover Q1 and Q2 in a representa-
tive fashion. Only those boxes requiring N � 109 are practical to
search.

6.3 Astrophysical upper limits

In this section, we combine the estimates of sensitivity and com-
putational cost in Sections 4 and 6.2, respectively to identify the
ranges of the astrophysical parameters B and ε that can be probed
by a realistic search. In the event of a non-detection, upper limits
on B and ε can be placed.

We solve (25) for a range of νb, ε and B, and calculate the
characteristic wave strain h0 from (18). Fig. 4 displays contours of
h0 versus B and ε for n = 3 at two frequencies corresponding to
νb = 300 and 1200 Hz. The cyan-shaded areas indicate where h0 ≥
hth. The search is sensitive to a larger range of ε and B as νb rises.
This occurs because the search sensitivity peaks at ν ≈ 150 Hz. For
small νb and large ε and B, the pulsar spins down after τc = 19 yr to
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Figure 4. Contour plots of h0 as a function of ε and B(1011 G) for SNR 1987A for values of νb = 250 (left-hand panel) and 1200 Hz (right-hand panel). We
assume n = 3 and a pulsar age of 19 yr, as the S5 run began in 2006. The cyan-shaded areas correspond to h0 ≥ hth, where hth is defined in (16).

give ν < 150 Hz. In the best-case scenario, for νb = 1200 Hz, upper
and lower limits on the magnetic field and ellipticity of B � 2.5 ×
1013 G and ε � 8 × 10−5 can be achieved.

Unfortunately, the number of search templates required to cover
the shaded region in Fig. 4 is prohibitively large, as discussed in
Section 6.2. Fig. 5 shows both sensitivity and computational cost.

Regions in which the search is sensitive (i.e. h0 ≥ hth) for given
νb and n are shaded in cyan. Overplotted as dark blue dots are the
central coordinates of our grid boxes with N ≤ 109. The panels
correspond to a range of birth frequencies, νb, and are grouped in
pairs: n = 2.335 (left-hand panel in pair) and n = 2.965 (right-hand
panel in pair). The top pair shows the sensitivity and computational

Figure 5. Log–log contour plots of h0 as a function of ε and B (104 G) for birth frequencies νb = 235 Hz (top panel) and νb = 955 Hz (bottom panel), and a
range braking indices, n. The frequency of the signal ν is obtained by solving (25), and integrating over τc = 19 yr. The cyan-shaded areas indicate the regions
in which h0 ≥ hth, where hth is defined in (16). The panels are arranged in pairs. Each pair shows n = 2.335 (left) and n = 2.965 (right). The dark blue dots
indicate parameter combinations for which one has N ≤ 109.
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Table 1. Table of νb, ε and B ranges
(approximate) which are detectable by the cross-
correlation search for SNR 1987A using LIGO
S5 data, for 2.3 ≤ n ≤ 3.0. The numbers in the
table are based on the regions in which the com-
putationally feasible (dark blue dots) and search-
sensitive (cyan-shaded) regions overlap in Fig. 5.
We assume standard values for the neutron star
mass and radius, i.e. M� = 1.4 M	, R� = 10 km
and n = 3.

νb (kHz) ε B (1011 G)

0.19–0.28 �1.6 × 10−4 �2.0
0.28–0.55 �1.0 × 10−4 �1.3
0.55–1.00 �7.9 × 10−5 �0.8

cost for νb = 235 Hz, whereas the bottom pair corresponds to νb =
955 Hz (bottom right).

Fig. 5 shows that the search sensitivity increases with νb and
ε, and decreases with B. On the other hand, the computational
efficiency of the search decreases with νb and ε, and increases
with B. Even so, there is substantial overlap between the regions
in which the search is sensitive and the regions which are com-
putationally permissible. We note that as each individual dot in
Fig. 5 represents a region in which N ≤ 109, it is not feasible to
search over all the dotted areas, as this would mean N total ≥ 109.
Therefore, when implementing the search, we will choose an ap-
propriate range of parameters such that N total � 109, using Fig. 5 as
a guide.

Table 1 summarizes the approximate range of νb, ε and B in
which the two regions in Fig. 5 overlap. If the pulsar in SNR 1987A
was born with a frequency between 0.19 and 0.28 kHz, the search
is sensitive to ε � 1.6 × 10−4 and B � 2.0 × 1011 G. This range
narrows as νb increases; for birth frequencies between 0.55 and
1.00 kHz, the search is sensitive to ε � 7.9 × 10−5 and B � 0.8 ×
1011 G. Note that these estimates, derived from the limits on Q1

and Q2, assume the standard values for the neutron star mass and
radius, M� = 1.4 M	 and R� = 10 km. It is possible that SNR 1987A
contains a low-mass neutron star with M� ≈ 0.13 M	 (Imshenik
1992), in which case the limit on the ellipticity, for νb = 1.00 kHz,
would be ε � 2.5 × 10−4.

We now comment briefly on the relevance of these limits. The
range of B listed in Table 1 is within the expected theoretical range
discussed in Section 2 (Michel 1994; Ögelman & Alpar 2004). The
range of ε listed in Table 1, however, is larger than the maximum
ellipticity sustainable by the unmagnetized neutron star crust for
many equations of state. For example, conventional neutron stars
are expected to support ε ≤ 10−6, while hybrid quark-baryon or
meson-condensate stars can support ε ≤ 10−5 (Ushomirsky et al.
2000; Owen 2005; Horowitz & Kadau 2009). However, some ex-
otic models do allow for larger ellipticities. Solid strange quark
stars are predicted to be able to sustain ε ≤ 6 × 10−4 (Owen 2005).
For low-mass neutron stars, the limit is ε ≤ 5 × 10−3 (Imshenik
1992; Horowitz 2010). We also note that these limits apply only to
elastically supported deformations; magnetically supported defor-
mations can be larger (Melatos 2007; Akgün & Wasserman 2008;
Haskell 2008). Therefore, even placing the relatively large upper
limit of ε � 10−4 on the putative neutron star in SNR 1987A will
be useful to some degree in constraining its mass and/or equation
of state.

7 C O N C L U S I O N

In this paper, we describe the steps taken to quantify the astrophys-
ical significance of a cross-correlation search for the supernova
remnant SNR 1987A in LIGO S5 data.

(i) We estimate the theoretical sensitivity of the cross-correlation
search, and compare it to the conservative, age-based, wave strain
estimate. In the frequency band 75 � ν � 450 Hz, the age-based
estimate lies above the detection threshold.

(ii) We introduce an alternative to the Taylor expansion model
of the gravitational wave phase based on a set of four astrophysical
search parameters (ν, ε, B, n). The new phase model renders a
search for a neutron star like SNR 1987A with a high spin-down
rate computationally feasible.

(iii) To estimate the optimal template spacing for the search,
we calculate the semicoherent phase metric corresponding to this
astrophysical model.

(iv) We place detection limits on ε and B for a range of birth spin
frequencies, 0.1 ≤ νb ≤ 1.2 kHz.

With the required template spacing and current computational
capabilities discussed in Section 6.2, we will be able to search up
to approximately 109 templates. In the event of a non-detection,
considering the parameter range discussed in this paper and assum-
ing the standard neutron star mass and radius, we expect to place
the following limits on the pulsar’s ellipticity and magnetic field:
ε ≤ 8 × 10−5, B ≥ 2.0 × 1011 G. The search is also expected to
be sensitive to electromagnetic braking indices 2.3 ≤ n ≤ 3.0. Its
greatest weakness remains that it assumes n to be constant through-
out the semicoherent integration. Constant n is the simplest possible
astrophysical scenario, and it certainly deserves to be considered in
its own right, in view of the overwhelming computational cost of
a variable-n search. Nevertheless, it is vital to recognize that the
constant-n hypothesis covers a small fraction of the astrophysical
parameter space.

A search using gravitational wave data is anticipated to begin
soon and would be the first application of the cross-correlation
method to a continuous-wave search.
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A P P E N D I X A : C A L C U L AT I O N O F TH E C O H E R E N T M E T R I C GIJ

This appendix details the calculation of the diagonal terms of the coherent metric, gij (29). We start by evaluating the frequency ν(t) at time
t, by assuming that ν(t) is a simple sum of separate, independent contributions from gravitational-wave and electromagnetic spin-down:

ν(t) = K1

∫
−Q1ν(t)5dt + K2

∫
−Q2ν(t)ndt (A1)
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= K1ν(
1 + 4Q1ν4t

)1/4 + K2ν[
1 + (n − 1)Q2νn−1t

]1/n−1 . (A2)

Here, K1 and K2 are constants that satisfy K1 + K2 = 1, and the search parameters ν, Q1, Q2 and n are defined at a reference time t0. Recall
that ν is normalized by νref , which we set to 1 Hz and do not write down, for simplicity. The first term in (A2) follows from the first integral
in (A1) by assuming Q2 = 0. The second term in (A2) follows from the second integral in (A1) by assuming Q1 = 0. Needless to say, the
exact solution for ν(t) follows from solving (25) self-consistently for Q1 �= 0, Q2 �= 0, but this is too difficult to solve analytically. As the
phase metric calculation is useful only in an analytic form, we adopt the approximation in (A1).

The phase at time t is given by

	(t, θ ) =
∫ t+t0

t0

dt ν(t) (A3)

= K1

[
1 + 4Q1ν

4
(
t + r.n

c

)]3/4

3Q1ν3
− K1

(
1 + 4Q1ν

4t0
)3/4

3Q1ν3

+ K2

[
1 + (n − 1)Q2ν

n−1
(
t + r.n

c

)] 2−n
1−n

(n − 2)Q2νn−2
− K2

[
1 + (n − 1)Q2ν

n−1t0
] 2−n

1−n

(n − 2)Q2νn−2
.

(A4)

We can expand each term in the regimes (Q1ν
4)−1 � t and (Q2ν

n−1)−1 � t, giving

	(t, θ ) = K1ν
(
t + r.n

c
− t0

)
− K1

2
Q1ν

5

[(
t + r.n

c

)2
− t2

0

]

+ K2ν
(
t + r.n

c
− t0

)
− K2

2
Q2ν

n

[(
t + r.n

c

)2
− t2

0

]
, (A5)

and

	(t, θ + �θ ) = K1(ν + �ν)
(
t + r.n

c
− t0

)
− K1

2
(Q1 + �Q1)(ν + �ν)5

[(
t + r.n

c

)2
− t2

0

]

+ K2(ν + �ν)
(
t + r.n

c
− t0

)
− K2

2
(Q2 + �Q2)(ν + �ν)n+�n

[(
t + r.n

c

)2
− t2

0

]
. (A6)

Subtracting (A5) from (A6) gives

�	(t) = �ν(K2 + K1)
(
t + r.n

c
− t0

)

− K1

2

[(
t + r.n

c

)2
− t2

0

] [
(ν + �ν)5(Q1 + �Q1) − ν5Q1

]

− K2

2

[(
t + r.n

c

)2
− t2

0

] [
(ν + �ν)n+�n(Q2 + �Q2) − νnQ2

]
. (A7)

We now take the derivative of (A7) with respect to �ν, �Q1, �Q2 and �n. We have

∂�ν�	(t)|�θ=0 = (K1 + K2)
(
t + r.n

c
− t0

)
− 5

2
ν4Q1

[(
t + r.n

c

)2
− t2

0

]
− K2

2
nνn−1Q2

[(
t − r.n

c

)2
− t2

0

]
, (A8)

∂�Q1�	(t)|�θ=0 = −K1

2
ν5

[(
t + r.n

c

)2
− t2

0

]
, (A9)

∂�Q2�	(t)|�θ=0 = −K2

2
νn

[(
t + r.n

c

)2
− t2

0

]
, (A10)

∂�n�	(t)|�θ=0 = −K2

2
νnQ2 ln (ν)

[(
t + r.n

c

)2
− t2

0

]
. (A11)

We construct gij by substituting (A8)–(A11) into (29). In this paper, we only require the diagonal terms of the metric. The relevant terms
(g00, g11, g22, g33) are

g00 = T 2
lag

(
K2

1

12
+ K1K2

6
+ K2

2

12

)
+ T 2

lag

(
Tlag + 2

r.n
c

+ 2Tstart

)
(

− 5

12
K2

1 ν4Q1 − 5

12
K1K2ν

4Q1 − 1

12
K1K2nνn−1Q2

− 1

12
K2

2 nνn−1Q2

)
+ T 2

lag

[
4T 2

lag + 15
( r.n

c

)2
+ 15TlagTstart + 15T 2

start

+ 15
r.n
c

(Tlag + 2Tstart)

] (
5

36
K2

1 ν8Q2
1 + 1

18
K1K2nνn+3Q1Q2 + 1

180
n2ν2n−2Q2

2

)
,

(A12)
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g11 = K2
1 ν10

180

[
4T 4

lag + 15T 2
lag

( r.n
c

)2
+ 15T 3

lagTstart + 15T 2
lagT

2
start + 15T 2

lag

r.n
c

(Tlag + 2Tstart)

]
, (A13)

g22 = K2
2 ν2n

180

[
4T 4

lag + 15T 2
lag

( r.n
c

)2
+ 15T 3

lagTstart + 15T 2
lagT

2
start + 15T 2

lag

r.n
c

(Tlag + 2Tstart)

]
, (A14)

g33 = K2
2 log (ν)2 ν2nQ2

2

180

[
4T 4

lag + 15T 2
lag

( r.n
c

)2
+ 15T 3

lagTstart + 15T 2
lagT

2
start + 15T 2

lag

r.n
c

(Tlag + 2Tstart)

]
. (A15)

APP ENDIX B: SEMICOHERENT METRIC

In this appendix, we list in full the diagonal terms of the semicoherent metric presented in (30)–(33). The relevant terms (s00, s11, s22, s33) are

s00 = T 2
lag

(
1

12
K2

1 + 1

6
K1K2 + 1

12
K2

2

)

+ T 2
lag

(
Tlag + 2

r.n
c

+ Tobs

) (
− 5

12
ν4Q1K

2
1 − 5
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K1K2ν
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12
K1K2nνn−1Q2 − 1
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+ T 2
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8T 2
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( r.n

c
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1 ν8Q2
1 − 1

36
K1K2nνn+3Q1Q2 + 1

360
K2

2 n2ν2n−2Q2
2
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,

(B1)

s11 = K2
1 ν10

360

[
8T 4

lag + 30T 2
lag

( r.n
c

)2
+ 15T 3

lag

(
2

r.n
c

+ Tobs

)
+ 30T 2

lagTobs
r.n
c

+ 10T 2
lagT

2
obs

]
, (B2)

s22 = K2
2 ν2n

360

[
8T 4

lag + 30T 2
lag

( r.n
c

)2
+ 15T 3

lag

(
2

r.n
c

+ Tobs

)
+ 30T 2

lagTobs
r.n
c

+ 10T 2
lagT

2
obs

]
, (B3)

s33 = K2
2 log (ν)2 ν2nQ2

2

360

[
8T 4

lag + 30T 2
lag

( r.n
c

)2
+ 15T 3

lag

(
2

r.n
c

+ Tobs

)
+ 30T 2

lagTobs
r.n
c

+ 10T 2
lagT

2
obs

]
. (B4)

APP ENDIX C : A NA LY TIC ACCURACY EST I MATES FOR THE ASTROPHYSI CAL PHASE MODEL

In this appendix, we motivate (30)–(33) physically by calculating the phase error in two special cases: (i) pure gravitational-wave spin-down,
and (ii) pure electromagnetic spin-down. In the gravitational wave case, (25) reduces to

dν

dt
= −Q1ν

5, (C1)

ν(t) = ν(
1 + 4Q1ν4t

)1/4 , (C2)

where we take νref = 1 Hz for simplicity and ν = ν(t = 0). The gravitational wave phase at t = T lag is then

	(Tlag) − 	(t0) =
∫ Tlag+t0

t0

dt ν(t) (C3)

=
(
1 + 4Q1ν

4Tlag

)3/4 − 1

3Q1ν3
. (C4)

There are two regimes to be considered: (i) T lag � (4Q1ν
4)−1, and (ii) T lag � (4Q1ν

4)−1. In terms of the characteristic age

τc(t) = ν(t)

4|ν̇(t)| , (C5)

the two regimes correspond to (i) Tlag � τc(t0), and (ii) Tlag � τc(t0). In the case of SNR 1987A, we have τc ≈ 19 yr (in 2006, when the S5
run began) and T lag ≈ 1 h, i.e. regime (ii).
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Given small errors �Q1 and �ν in Q1 and ν, the phase error that accumulates between the template and the signal after a time T lag is

�	 = d	

dQ1
�Q1 + d	

dν
�ν (C6)

= −1

2
ν5T 2

lag�Q1 + Tlag�ν. (C7)

Overall, therefore, the number of templates required scales as T 3
lag regardless of how rapidly the neutron star is spinning down. This scaling

matches the conventional Taylor expansion if ν and ν̇ suffice to track the signal (Ntotal ∝ T 3
lag) but is much more economical if ν̈ is needed

(Ntotal ∝ T 6
lag), which happens for ν > 1.7×10−5 Hz(τc/102 yr)−2(Tlag/1 h)−3. In the SNR 1987A search, we cover frequencies above 0.1 kHz,

so ν̈ always contributes significantly. Hence the phase model (25) is always preferable.
Now suppose the electromagnetic term dominates. Equation (25) with νref = 1 Hz reduces to

dν

dt
= −Q2ν

n, (C8)

ν(t) = ν[
1 + (n − 1) Q2νn−1t

]1/(n−1) (C9)

and the gravitational wave phase after a time T lag is

	(Tlag) =
∫ Tlag+t0

t0

dt ν(t) (C10)

=
[
1 + (n − 1) Q2ν

n−1Tlag

] 2−n
1−n − 1

(n − 2) Q2νn−2
. (C11)

For small errors �Q2, �ν and �n in Q2, ν and n, the phase error between the template at the signal after a time T lag is

�	 = d	

dQ2
�Q2 + d	

dν
�ν + d	

dn
�n (C12)

= −
(

νnT 2
lag

2

)
�Q2 + Tlag�ν

+ Tlag log
[
1 + (n − 1) Q2Tlagν

n−1
]
�n. (C13)

Hence in the electromagnetic limit, the phase error due to �ν scales in the same way as in the gravitational wave limit. The phase error
due to �Q2 scales as T 2

lag, and the phase error due to �n scales as T laglog [1 + (n − 1)Q2T lagν
n−1]. Overall, the number of templates required

scales as T 4
lag log(Tlag). This represents a saving if the second frequency derivative is important which, as shown above, is true for the range

of signal frequencies considered in this search.
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