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Abstract: This article deals with the stabilization of continuous fluidized bed spray granulation
with external product classification. Using Lyapunov stability theory a control law is derived
guaranteeing exponential convergence of the error particle size distribution in a norm associated
to the second moment. In contrast to other approaches popular for particle process control no
model reduction is used.
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1. INTRODUCTION

Granulation is one of the most important manufacturing
processes in food and pharmaceutical industries. It is used
to produce granules from liquid products, e.g. solutions or
suspensions.
In Fig. 1 a typical process flow sheet is shown. It consists
of a granulation chamber, two sieves to remove under and
oversized particles from the product and a mill. It has been
shown [2] that this configuration of continuous fluidized
bed spray granulation with external product classification
and material recycles shows unstable behavior for certain
ranges of the operating parameters. The instability results
in nonlinear oscillations of the particle size distribution,
which gives normally undesired time variance of product
properties. Possible solutions are a redesign, i.e. avoiding
parameter combinations connected to a region of instabil-
ity, or a stabilization via feedback.
The second approach should be preferred as it gives the
possibility to operate the process in the full range of
operating parameters. In addition to that feedback control
allows a direct adjustment of the desired product proper-
ties and rejects unforeseen disturbances.
The main difficulties regarding the control design arise
from the complicated plant model, as the dynamics
are described by a first order nonlinear partial integro-
differential equation, the population balance equation,
with sinks and sources in the domain. For continuous
crystallization comparable dynamical behavior has been
observed. Here the main approaches for control are mostly
based on model reduction, i.e. through discretization [4],
approximation of the particle size distribution with a series
expansion [5], or linearization [6].
In this contribution a completely different approach based
on Lyapunov stability theory for distributed parameter
systems as in [7], [8] is proposed not using any model
reduction.

Fig. 1. Scheme of the granulation process

2. MODEL OF A CONTINUOUS FLUIDIZED BED
SPRAY GRANULATION

The main assumptions for the model of a continuous
fluidized bed spray granulation are:

• nonporous, spherical particles,
• no agglomeration or breakage,
• ideal mixing.

The granulator consists of a granulation chamber, where
the particle population is fluidized through an air stream
and coated by injecting a suspension ṁe. The associated
particle growth has been described in [1].

G =
2ṁe

%A
=

2ṁe

%πµ2
(1)
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In the continuous configuration of the fluidized bed spray
granulation particles are continuously removed in order
to achieve a constant bed mass, which correlates to a
constant third moment of the particle number distribution
µ3 =

∫∞
0
L3ndL. The particle flux being removed from the

granulator is:

ṅout = Kn. (2)

where K is the drain which follows from the assumption
of a constant bed mass and which is derived later. The re-
moved particles are then sieved in two sieves and separated
into three classes:

(1) Fine particles, which are directly fed back to the
granulator,

ṅfines = (1− T2) (1− T1) ṅout (3)

(2) Product particles, which are removed from the whole
process,

ṅprod = T2 (1− T1) ṅout (4)

(3) Oversized particles, which are grinded in a mill and
fed back to the ganulator.

ṅoversize = T1ṅout (5)

Here the separation functions T1 and T2 (Fig. 2) for the
two screens are as follows:

T1/2 =

∫ L

0
e
−

(L−µ1/2)
2

2σ2
1/2 dL

∫∞
0
e
−

(L−µ1/2)
2

2σ2
1/2 dL

. (6)

Fig. 2. Separation functions T1 and T2

To describe the process, a population balance model for
the particle size distribution has been derived in [2]. In this
contribution a simplified modell is used neglecting external
seeding, attrition and overspray. Nevertheless, open-loop
simulation gives comparable results.

In the model fine particles are directly fed back to the
granulator, which results in a cancellation of the associated
sink and source. Hence the simplified population balance
equation consists of the following particle fluxes:

• ṅprod particle flux due to product removal,
• ṅoversize particle flux due to oversize removal,
• ṅmill particle flux due to particles fed back from mill,

Fig. 3. Distribution of milled particles nmill for µM = 0.7

and particle growth associated with the size independent
growth rate G.

∂n

∂t
= −G∂n

∂L
− ṅprod − ṅoversize + ṅmill (7)

The particle distribution fed back from the mill is assumed
to be a normal distribution, where the mean diameter µM

represents the mill grade. In the following the mill grade
µM will be used as the control input. For physical reasons
µM should not exceed a lower (0.5mm) and upper limit
(0.9mm).

ṅmill = 6
e
−

(L−µM )2

2σ2
M

√
2ππ%σM

∫ ∞
0

L3ṅoversizedL (8)

Assuming ideal mass control the drain K is calculated such
that the first time derivative of µ3 becomes zero implying
a constant bed mass.

µ̇3 =

∫ ∞
0

L3 ∂n

∂t
dL = 0 (9)

=

∫ ∞
0

L3

[
−G∂n

∂L
− ṅoversize − ṅprod + ṅmill

]
dL(10)

Because the mill is assumed to be mass conserving the
third moments of the oversize flux and mill flux are equal
resulting in:

0 =

∫ ∞
0

L3

[
−G∂n

∂L
− ṅprod

]
dL (11)

= 3G

∫ ∞
0

L2ndL−K
∫ ∞
0

L3T2(1− T1)ndL. (12)

Here the fact that the particle size distribution vanishs at
the boundary (n(0, t) = lim

L→∞
n(L, t) = 0) has been used

for integration by parts. Solving equation (12) for the drain
K gives:

K =
3G
∫∞
0
L2ndL∫∞

0
L3T2(1− T1)ndL

. (13)

For an extended model, i.e. with external seeding, attri-
tion and overspray, an extensive bifurcation study has
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been undertaken in [3]. It has been shown, that for suf-
ficiently small mill grades µM self-sustained oscillations
occur. This circumstance can be explained by the fact,
that for fine grinding the population surface excessively
increases resulting in a very small growth rate. Thus the
particle flux from oversize fraction vanishes, which gives
a slowly growing population of small particles. When this
population reaches the oversize fraction the whole process
repeats. Analogous patterns of behavior are observed for
the simplified model considered in this contribution.
Therefore for a specific mill grade, i.e. at the bifurcation
point, the stationary particle size distribution loses its
stability and an additional limit cycle occurs [3]. In the
following a control law is designed in order to stabilize the
stationary particle size distribution in the whole range of
µM .

3. CONTROLLER DESIGN

In order to design a control law the error e is defined as:

e =

∫ ∞
0

L2 (nd − n) dL. (14)

It should be mentioned, that the error is an integral
quantity of the difference between desired particle size
distribution nd and the process particle size distribution.
The choice is motivated by the fact, that the particle
growth depends on the surface area of the particle size
distribution, which is strongly connected to its second
moment. To derive a controller the following candidate
Lyapunov function is introduced:

V =
1

2
e2. (15)

The time derivative of V along the system trajectories (7)
is:

V̇ = eė = −e
∫ ∞
0

L2 ∂n

∂t
dL, (16)

=−e
[∫ ∞

0

2LGn− L2 (T1Kn+ T2(1− T1)Kn) dL

+

∫ ∞
0

L3T1KndL

∫ ∞
0

L2nmilldL

]
. (17)

Here nmill is the shape of the particle size distribution
generated by the mill depending on the mill grade µM . As
the second moment of nmill cannot be directly solved for
the mill grade µM the characteristic curve (Fig. 3) has been
inverted pointwise (Fig. 3). In the following the second
moment of nmill will therefore be used as a virtual control
uvirt.

uvirt =

∫ ∞
0

L2nmill(µM )dL (18)

Using (17) the negative definiteness of the time derivative
of the candidate Lyapunov function V can be guaranteed
choosing the following virtual control law.

uvirt =
1∫∞

0
L3T1KndL

[
ce−

∫ ∞
0

2LGn

−L2 (T1Kn+ T2(1− T1)Kn) dL
]

(19)

In addition to stability the control law (19) even guaran-
tees exponential convergence of V .

V̇ = −ce2 = −2cV (20)

The resulting control scheme (Fig. 3) therefore con-
sists of the control law (19) using the virtual control
uvirt and an inversion of the characteristic curve from∫∞
0
L2nmill(µM )dL to µM .

4. SIMULATION

For the numerical simulation the population balance has
been spatially discretized using a finite volume method
with an upwind scheme. The spatial mesh contains 160
equidistant points in the domain of 0 < L < 4mm.

Parameters
ρ 1.610−3 g

mm3

ṁe
100
3.6

g
s

minit 100kg
µ1 1.4mm
σ1 0.055mm
µ2 1mm
σ2 0.065mm
µM 0.9mm
σM 0.1mm
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To test the proposed control law the process is started
in the region of stability (for example µM = 0.9). Then
the particle size distribution is shifted into the region of
instability by continuously increasing the desired second
moment µ2,d or decreasing the mill grade µM in open-
loop operation. As can be seen in Fig. 4 the process be-
comes unstable in open-loop operation showing increasing
oscillations, which would finally reach the associated limit
cycle [3]. Applying the proposed control law the process is
stabilized and oscillations occurring during the shifting are
damped. The particle size distribution and all its moments
µ0, µ1, µ2 (Fig. 5) are stabilized with reasonable control
effort.
For an implementation on the real plant either the appro-
priate moments from equation (19) have to be measured
or calculated from the measured particle size distribution.
A particle size distribution measurement can be achieved
by for example by spatial filter velocimetry measurement,
focused beam reflectance measurement or in-process video
microscopy. Depending on the measurement principle an
transformation from chord length distribution to particle
size distribution might by necessary, which is uncritical
as in fluidized bed spray granulation typically spherical
particles are produced.

5. CONCLUSION AND FUTURE WORK

A controller for continuous fluidized bed spray granulation
with external product classification has been derived. It
has been shown to give exponential convergence in a
norm associated to the second moment. Simulation results
indicate that although having convergence in a norm the
whole particle size distribution and its moments µ0 and
µ1 are stabilized. So far the proposed control law assures
convergence only in an idealized setting, i.e. no parameter
and no model uncertainty. Thus further investigations will
be made on robustification and adaption.
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Fig. 4. Open loop system response
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Fig. 5. Open loop (blue) and closed loop (green) system response
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