
Set-based parameter estimation for
symmetric network motifs

Philipp Rumschinski∗, ∗∗ Dina Shona Laila ∗∗∗ Rolf Findeisen ∗

∗ Institute for Automation Engineering, Otto-von-Guericke University,
Magdeburg.

∗∗ International Max Planck Research School, Magdeburg.
∗∗∗Kingston University and Imperial College, London.

e-mail: {philipp.rumschinski,rolf.findeisen}@ovgu.de, d.laila@ic.ac.uk

Abstract: Deriving a predictive model in systems biology is a complex task. One major problem
is the typically large network size, which renders the analysis with standard methods difficult.
Symmetry, as omnipresent in nature, was used in many applications to encounter this problem.
In this work, we investigate the influence of symmetry on set-based parameter estimation.
We show that the presence of symmetry in a model can be used to significantly simplify
the parameter estimation problem. This is done by determining a symmetry-adapted basis,
corresponding to a linear representation of a finite group, in which the problem size is of smaller
dimension. We demonstrate the applicability of this approach for several common network
motifs, as e.g. the Michaelis-Menten reaction and the feedforward motif.
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1. INTRODUCTION

Finding a model that can be used not only to describe
but also to predict the behavior of a dynamical system
under various initial conditions or external disturbances
is a topic of almost every branch of science. Especially in
systems biology, there is an increasing need for predictive
models for instance to find treatments for diseases and to
gain better understanding of complex biological processes.

Unfortunately, there are several issues that complicate the
investigation of biological processes with existing standard
analysis tools from systems and control theory. To mention
a few, the quality of the available experimental data is
often inadequate due to the presence of noise in concen-
tration measurements or due to limited amount of data
points extracted from invasive or destructive procedures
[Ramsay et al., 2007]. In addition, biological systems typ-
ically exhibit a certain robustness against internal varia-
tions (e.g. random mutations), and external disturbances
(e.g. environmental changes) [van Riel and Sontag, 2006].
These obstacles have been the stumbling block in identifi-
cation process for the construction of a good quantitative
model of biological processes. Several hypotheses would
describe the measurements as it is often not possible to
prove analytically the validity of the obtained nonlinear
model. Instead, solving the converse problem, i.e. model
invalidation, seems to be more promising in this situation
and it has attracted a lot of attention in recent research
[Anderson and Papachristodoulou, 2009, Melykuti et al.,
2010]

A quite recent approach capable of giving conclusive an-
swers to the model invalidation was presented in [Borchers
et al., 2009, Rumschinski et al., 2010a]. The main idea
of this approach is to relax a corresponding feasibility

problem into a semi-definite program which can be solved
efficiently. In addition to the model invalidation problem
this relaxation provides a possibility to derive an outer-
approximation of the parameter that leads to a consistent
behavior of the model with the measurements. For this,
the model invalidation is carried out for partitions of
the parameter space, and it is then proved for parame-
ter regions that cannot lead to a consistent behavior by
a special class of infeasibility certificate. However, semi-
definite programs still have a limited maximal problem
size, which consequently poses a limit to the applicability
of the aforementioned approach.

Symmetry has been successfully utilized in some earlier
works to reduce the size of semi-definite optimization
problems [Gatermann and Parrilo, 2004, Jansson et al.,
2006]. These works did not try to circumvent the symmetry
(symmetry breaking), but to use the symmetry of the
model to reduce the problem size instead.

In this work we investigate the applicability of these
approaches for set-based parameter estimation. We focus
mainly on two arising problems. First, to examine the
problem of finding a minimal symmetry-adapted basis for
the optimization problem. This is done by determining the
canonical decomposition of the linear representation of a
group. Second, to show that knowledge about symmetries
can also be used for finding optimization directions, that
lead to good estimation results. We demonstrate the
usefulness of this investigation using some simple network
motifs.

Mathematical Notation: We denote with g(x) ∈ G a
group-action defined for the group G, with x ∈ G.
Aut and D denote the group of automorphisms under
composition of maps and the dihedral group, respectively.
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SnM ⊂ RnM×nM denotes the space of symmetric positive-
definite matrices, i.e. M ∈ SnM ⇔ M � 0, MMT = I.
A ≥ 0 denotes the set of linear constraints given by the
elements aij ≥ 0, 0 < i, j ≤ nA of A. Index sets are
denoted by IA := {1, ..., nA} with nA corresponding to
the dimension of the variable A. ⊕ denotes the direct-sum
of vector spaces.

2. PROBLEM SETUP

Given a biochemical reaction network of the form
ẋ = f(x, u, p)

y = h(x, u, p),
(1)

where x ∈ X ⊆ Rnx denotes the states (concentrations),
u ∈ Rnu the input (stimulus), p ∈ P ⊆ Rnp the system
parameters (reaction constants) and f, h are smooth poly-
nomial functions.

Assume that at certain time instances ti ∈ R≥0 input
and output measurements are taken. We denote with T =
{ti, i ∈ I ⊆ Z | a ≤ ti ≤ b} the set of all time instances
each measurement was taken and I = {1, . . . , nI} the set
of time indices. Without loss of generality we assume that
the initial condition is determined by the first measure-
ment. The collections of input and output measurements
are given respectively by

U = {Ui ⊆ Rnu , i ∈ I}, Y = {Yi ⊆ Rny , i ∈ I}, (2)

where Ui, Yi are assumed to be uncertain, but bounded
compact and convex sets, which allow a direct considera-
tion of measurement errors. We assume further that u is
constant between sampling times.

Definition 1. (Model Consistency). Given the collection U
and Y of all the measurements of inputs u(·) and output
y(·), respectively. Model (1) is said to be consistent with
the measurements, if for all ti ∈ T it holds that u(ti) ∈ Ui
and y(ti) ∈ Yi. �

Accordingly, the set of parameters P∗, that leads to a
consistent behavior of model (1) is given by

P∗ = {p ∈ P|u(ti) ∈ Ui, y(ti) ∈ Yi, ∀ti ∈ T :

ẋ = f(x, u, p), y = h(x, u, p)}. (3)

In [Borchers et al., 2009, Rumschinski et al., 2010a] a
procedure was introduced to approximate P∗ with the help
of semi-definite programming for discrete-time models. For

an approximation P̂, to ensure that

P∗ ⊆ P̂ (4)

holds, sufficient conditions were derived in [Rumschinski
et al., 2010b]. In the remainder of this paper, it is therefore
assumed that an appropriate discrete-time model of the
form

xk+1 = FT (xk, uk, p)

yk = HT (xk, uk, p)
(5)

was chosen such that (4) holds.

Furthermore, we assume that the sampling period T > 0
was chosen such that for every ti ∈ T there exists k ∈ N
such that kT = ti. Then T and T define implicitly the
time index set Z.

As it is known, the applicability of the set-based parameter
estimation to large-scale systems suffers from its consider-
ably high computational demand. In this work we present

an extension based on a decomposition of the semi-definite
program into smaller problems, which in many cases will
reduce the computational effort drastically. This extension
is based on the work of [Gatermann and Parrilo, 2004],
[Jansson et al., 2006] and [Vallentin, 2009], and aims at
building a simple algorithm to derive outer-bounds of
the parameters. We, therefore, investigate the influence of
symmetry in network motifs and the implications if such
motifs are combined to form larger networks.

For this purpose we state here a rather general definition
of symmetry and provide the more specific definition in
later sections as needed.

Definition 2. Model (1) is called symmetric if there exists
a mapping ϕ : X × U ×P → X ×U ×P such that the set
of consistent parameters P∗ is invariant under ϕ, i.e.

P∗ ≡ {p ∈ P | x ∈ X , u ∈ U , y ∈ Y :

ẋ = f(ϕ(x, u, p)), y = h(ϕ(x, u, p))}. (6)

�

3. SYMMETRY IN SET-BASED PARAMETER
ESTIMATION

In this section we first summarize the set-based parameter
estimation approach presented in [Borchers et al., 2009]
and then derive a simplified version of this problem by
exploiting symmetry of finite groups.

3.1 Set-based Parameter Estimation: Review

Suppose the experimental data U , Y and a candidate
model (5) are given. It is possible to gather all this
information within the following set of (semi-)algebraic
equations

F (P) :



xk+1 − FT (xk, uk, p) = 0
yk −HT (xk, uk, p) = 0
p ∈ P
xk ∈ X
uk ∈ U
yk ∈ Y
k ∈ Z

Checking if F (P) admits a solution or not, which we also
denote as a feasibility problem, is equivalent to checking
whether or not the model is able to reproduce the mea-
surements for the given parameter set P.

For the considered class of systems, we can address F (P) in
a relaxed form, namely as a semidefinite program (SDP ).
Several methods for reformulating F (P) in such a way are
known in literature. For instance in [Lasserre, 2001], the
problem is reformulated in terms of moments, which lead
to a SDP formulation with beneficial theoretical prop-
erties. However, this method might lead to rather large
SDP s if higher order moments are considered. Therefore,
we restrict our investigation to a quadratic formulation
following [Parrilo, 2003].

The basic idea here is to express every equation of the
vector functions xk+1 − FT (xk, uk, p) = 0 and yk −
HT (xk, uk, p) = 0 in a quadratic (second order) form

ξTQj
kξ = 0, j ∈ IF := {1, . . . , nx + ny} using a minimal

monomial basis ξ. If ξ contains monomials with order
higher than 2, we introduce additional constraints in the
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form of ξTQj
kξ = 0, j ∈ Id := {1, . . . , nd}, where

nd corresponds to the number of lower order monomials
necessary to decompose the higher order monomials into
quadratic form. For shorthand notation we define I :=
IF ∪ Id.

Problem F (P) can then subsequently be relaxed into a
convex SDP by introducing X = ξ · ξT and replacing the
resulting conditions rank(X) = 1 and tr(X) ≥ 1 with
the weaker constraint X � 0, resulting in the relaxed
formulation

SDP (P) :



min 〈C,X〉 ∈ Snξ subject to

〈Qj
kX〉 = 0, k ∈ Z, j ∈ I,

e1e
T
1X = 1,

AXe1 ≥ 0,
AXAT ≥ 0,
X � 0.

(7)

where e1 = (1, 0, . . . , 0)T ∈ Rnξ . The constraint AXe1 ≥ 0
corresponds to the bounds derived from the convex sets
X , P and the measurement data U , Y.

This leads to the following result:

Lemma 1. [Borchers et al., 2010] Given the measurement
collections U , Y. If SDP (P) is infeasible, then so is F (P),
i.e. model (5) is inconsistent with the measurements. �

Remark 2. As the relaxation process is conservative, each
feasible solution for F (P) corresponds to a feasible so-
lution for SDP (P). However, additional solutions might
be introduced, which are only feasible for SDP (P), but
not for F (P). The constraints AXAT ≥ 0 strengthen the
relaxation and reduce this problem (e.g. [Lasserre, 2001],
[Anstreicher, 2009]).

Note that SDP (P ) is formulated as an optimization
problem in contrast to F (P). This is derived from the fact
that we want to get a good outer-approximation of the
consistent parameter region as shown in the next section.

3.2 Outer-Approximation of Consistent Parameters

Given a direction v ∈ Rnξ and a corresponding cost
Cv ∈ Snξ for which 〈Cv, X〉 = vT ξ holds, the result of
(7) is a lower bound for the set of consistent parameters
that is normal to v (cf. Figure 1). Clearly, we obtain an
upper bound by optimizing 〈−Cv, X〉.

Fig. 1. Outer-approximation of consistent parameters

The estimated parameter region P̂ is then given by the hy-
perplanes through the minimum (maximum) value derived
by (7) orthogonal to vi.

This simple scheme is well suited to obtain an outer-
approximation of the consistent parameter region. How-
ever, the obtained bounds might be conservative in the

sense that the consistent parameters are not oriented along
the optimization direction.

It is hence immediately clear that the choice of direc-
tions v is critical for the achievable quality of the outer-
approximation. Without additional knowledge of the so-
lution space of SDP (P) choosing v is very difficult. We
propose in the following sections an approach for finding
a different basis in which the feasible region can be better
approximated. For further techniques of approximating
the feasible region, we refer to [Borchers et al., 2010].

3.3 Exploiting symmetry

In this section we derive a symmetry-based reduction of
SDP (P) following [Gatermann and Parrilo, 2004, Val-
lentin, 2009]. The main idea employed here is the fact
that every invariant matrix can be block-diagonalized by
an appropriate change of coordinates. We start with some
definitions and statements of representation theory.

We call a matrix X ∈ Snξ a feasible solution of (7) if it
fulfills all constraints of (7). The SDP (7) is invariant
under the group G if for every feasible X and for every
ϕ : G → Aut(Snξ) the matrix ϕ(X) is again a solution
of (7). This corresponds to an a priori restriction of the
solution space to a fixed-point subspace V. In fact, if
X is an optimal solution of (7), so is its group average
1
|G|
∑

ϕ∈G ϕ(X) as shown in [Gatermann and Parrilo,

2004]. Hence, (7) is equivalent to

SDP (P) :



min 〈C,X〉 ∈ Snξ subject to

〈Qj
kX〉 = 0, k ∈ Z, j ∈ I,

e1e
T
1X = 1,

AXe1 ≥ 0,
AXAT ≥ 0,
X � 0
X ∈ V.

(8)

The fixed-point subspace V can be determined by con-
structing the linear representation of the group G. Note
that for a finite group G only finitely many invariant
representations V1, . . . , Vh of dimensions m1, . . . ,mh exist
[Serre, 1977], where mi are divisors of the order of G,
i.e. mod (|G|/mi) = 0. A canonical decomposition of the
linear representation of G is given by

m1V1 ⊕m2V2 ⊕ · · · ⊕mhVh, (9)

with mi ∈ R and i ∈ Ih := {1, ..., h}. After deter-
mining the symmetry-adapted basis (9), by setting X =∑h

i=1miVi we can simplify (8) into

SDP (P) :



min

h∑
i=1

mi〈C, Vi〉 subject to

h∑
i=1

mi〈Q̄j
k, Vi〉 = 0, k ∈ Z, j ∈ I

e1,ie
T
1,iVi = 1, i ∈ Ih,

AiVie1 ≥ 0, i ∈ Ih,
AiViA

T
i ≥ 0, i ∈ Ih,

h∑
i=1

miVi � 0,

(10)
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where e1,i = (1, 0, . . . 0) ∈ RnVi , Q̄j
k and Ai correspond

to the orthogonal projection Qj
k ⊥ Vi and A ⊥ Vi,

respectively.

Because V is closed under matrix multiplication, we know
as a consequence of [Wedderburn, 1907] that there exists a
unitary matrix T that, by using Schur’s Lemma T−1XT ,
transforms X into block-diagonal form. Note that since T
is unitary, the inverse matrix T−1 is equal to the complex
conjugate transpose of T . This block-diagonal structure
can be exploited effectively by all commonly used interior
point algorithms for solving an SDP .

Even if X is a real symmetric matrix, the final block-
diagonal matrix might be complex as T is allowed to
be unitary. From a practical point of view, we are only
interested in finding real transformations such that T ∈
Rnξ×nξ holds, Vi has to be determined accordingly. A
suitable algorithm was presented in [Serre, 1977]. However,
if no such T is available one can use the following relation

Xi � 0⇔
[
Re(Xi) Im(Xi)

T

Im(Xi) Re(Xi)

]
� 0, (11)

to reformulate SDP in terms of real matrices for every
block Xi in T−1XT ([Klerk, 2010]). Note that this refor-
mulation doubles the size of each block Xi.

If we now choose ϕ such that ϕ(X) = T−1XT , (7) is
simplified to the block-diagonalized SDP (P) of the form

SDP (P) :



min

h∑
i=1

mi〈C, Vi〉 subject to

h∑
i=1

mi〈Q̄j
k, Vi〉 = 0, k ∈ Z, j ∈ I

e1,ie
T
1,iVi = 1, i ∈ Ih,

AiVie1 ≥ 0, i ∈ Ih,
AiViA

T
i ≥ 0, i ∈ Ih,

h∑
i=1

miϕ(Vi) � 0.

(12)

Theorem 3. (Equivalency). If (7) is invariant with respect
to ϕ : G→ Aut(Snξ), the optimal solution X∗ of (12) is
equal to the optimal solution of (7). �

Proof. The first direction is trivially given by the fact that
ϕ(X) is a solution of (7) as X is invariant and we have
X∗ ≤ ϕ(X∗), the other direction is more involved and we
refer to [Gatermann and Parrilo, 2004] for more details. �

We also have the clear implication:

Corollary 4. (Model Invalidity). Given the measurement
collections U , Y. If one of the blocks Xi is infeasible,
model (5) is inconsistent with the measurements. �

Proof. Follows from the invariance of X. �

In summary, we have shown that the parameter estimation
problem can be formulated in terms of a symmetry-
adapted basis. This has the clear advantage in which (12)
has a structure that is easier to solve and will typically
have a smaller size of problem as the sum m1 + . . . + mh

is smaller than the dimension of X.

However, in practice we have several issues to consider.
Computing the basis Vi and therefore ϕ can be difficult

as it relies typically on randomized algorithms [Vallentin,
2009]. Furthermore, the sum of squares problem investi-
gated in [Gatermann and Parrilo, 2004] is different from
the problem we are investigating. For instance, as the
states are typically concentrations, that are positive, a
symmetry based on the change of sign is not possible. Fur-
ther, if additional constraints - for instance monotonicity
constraints - are considered, it may result in breaking the
symmetry [Anstreicher, 2009]. This results in the fact that
in biochemical reaction networks symmetries concerning
the states are not as relevant.

However, despite the aforementioned problems that may
pose a limitation, we are mainly concerned with the pa-
rameter estimation. We investigate the symmetry prop-
erties only in the parameters (rather than the states) and
the influence of such symmetries to the region of consistent
parameters. Hence, the main advantage is not the reduc-
tion in size but the reduction in the volume of the outer-
approximation of the region of consistent parameters.

3.4 Symmetry-adapted Outer-approximation

In the previous section we have shown that for symmetric
systems we can address the parameter estimation in new
coordinates. As depicted in Fig. 2 this can lead to an

outer-approximation P̂ that approximates the consistent
parameters more closely.

Fig. 2. Outer-approximation of consistent parameters with
symmetry adapted basis vectors vi.

We provide next several examples of symmetric network
motifs, which show that the symmetry-adapted parameter
estimation formulation delivers tighter results than the
standard one.

4. EXAMPLES: SYMMETRY IN NETWORK MOTIFS

In this section we investigate the symmetry properties
of some simple network motifs described in [Alon, 2007].
For simplicity of presentation, we will consider for all
example systems the same computational setup and the
same group, namely the dihedral group D. Furthermore,
we assume that all states are measured.

Computational Setup: The simulation studies were con-
ducted by generating first a nominal trajectory x∗ for
each model with the nominal parameter values p∗i = 1
(i ∈ {1, 2}, i ∈ {1, 2, 3}, i ∈ {1, 2, 3, 4} depending on
the considered problem). As the initial condition of the
appearing concentrations we have chosen A0 = 0.8, B0 =
0.1, C0 = 0.1, D0 = 0.1. For the numerical integration of
the models we have used ode23s in MATLAB. For the
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measurements at every k ∈ {1, . . . , 40} and a time step-
size T = 0.5s a measurement was created by Yk = {xk ∈
R4 : ||xk − x∗(kT )|| ≤ 0.1}. As an initial parameter set
we assume for each pi the interval [0.33, 3]. The set-
based parameter estimation was implemented on a stan-
dard desktop computer, using YALMIP and a parallelized
version of the solver CSDP.

4.1 Linear Motif

Consider a simple reaction motif

A
p1



p2

B, (13)

with pi denoting the constant reaction rates. The corre-
sponding mass-action equations are given by

dA

dt
= −p1A+ p2B,

dB

dt
= p1A− p2B.

(14)

Obviously, this reaction is symmetric to the representa-
tions ϕ1 : (p1, p2)→ (p2, p1) and ϕ2 : (p1, p2)→ (−p2, p1),
which corresponds to interchanging the species A,B and
reversing the reactions, respectively. This implies that if
the dihedral group D3 is considered, we have the fol-
lowing symmetry-adapted basis corresponding to the 2-
dimensional irreducible representations of D3

V1 =

 −1

2

√
3

2

−
√

3

2
−1

2

 , V2 =

[
1 0
0 −1

]
. (15)

Results: The parameters were once estimated by means
of the axis-aligned parameter estimation and once with
the symmetry-adapted basis. The results are shown in
Fig. 3. The symmetry-adapted estimates were obtained in
roughly 17s (22s in the non-adapted basis).

Fig. 3. Outer-approximation of consistent parameters for
model (13). Dotted lines axis aligned box, full line
symmetry adapted box, dots correspond to 3000
Monte Carlo samples.

4.2 Enzyme-catalyzed Reaction

Consider the motif

A+B
p1



p2

C
p3→D +B. (16)

Here a substrate A joins an enzyme B to form the
complex C, and finally the product D is released. Note

that this motif represents the Michaelis-Menten reaction.
If we consider the conservation relation B+C = 1, we get
the following model equations

dA

dt
= p1AB − p1A+ p2B,

dB

dt
= p1A− p1AB − (p2 + p3)B.

(17)

Results: The estimates, as depicted in Fig. 4, were ob-
tained in roughly 41s (49s in the non-adapted basis). Note
that the volume decreases for the adapted case noticeably.

Fig. 4. Outer-approximation of consistent parameters for
model (16). Red lines axis aligned box, blue line sym-
metry adapted box, dots correspond to 1500 Monte
Carlo samples.

4.3 Feedforward and Feedback Motifs

As one of the most frequent network motifs, we have the
feedforward motif.

C
p3

↗
p4

↘
A

p1



p2

B

(18)

Note that this also corresponds to a feedback motif, if
the arrow orientation is changed. This motif, using mass-
action kinetics, can be described by

dA

dt
= −p1A− p3A+ p2B,

dB

dt
= p1A− p2B + p4C,

dC

dt
= p3A− p4C.

(19)

Results: The results are shown in Table 1 and Table 2.
The estimates for the symmetry-adapted basis were ob-
tained in roughly 228s (272s in the non-adapted basis).
The content (hypervolume) is 0.046 (0.065 in the non-
adapted basis).

Interestingly, the decrease in volume allows in the two
directions with the symmetry for a better approximation
of the remaining directions. Note that the increase in the
parameter values results from the fact that by transform-
ing the edges back into the axis oriented coordinates result
in a certain conservatism (cf. direction of p1 in Fig. 3).
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Table 1. Consistent parameter region using
symmetry-adapted basis.

p1 p2 p3 p4

lower Bound 0.7093 0.6857 0.8156 0.7481

upper Bound 1.3053 1.3644 1.2150 1.3066

Table 2. Consistent parameter region using the
non-adapted basis.

p1 p2 p3 p4

lower Bound 0.7642 0.7604 0.8023 0.7336

upper Bound 1.2407 1.2962 1.2322 1.3228

5. CONCLUSIONS

In this work we have proposed an extension to the set-
based parameter estimation and model invalidation ap-
proach presented in [Borchers et al., 2009, Rumschin-
ski et al., 2010a]. This method is based on the solution
of a relaxed version of a nonlinear feasibility problem,
which provides conclusive answers to the model invalida-
tion problem. Furthermore, it allows to derive an outer-
approximation of the consistent parameters. A major chal-
lenge that has to be considered when applying this ap-
proach is the computational tractability. Therefore, we
have investigated the applicability of a reduction proce-
dure proposed in [Gatermann and Parrilo, 2004] for sym-
metric sum-of-square problems.

We have shown that this concept of symmetry can also
be used to reduce the computational effort necessary
for set-based parameter estimation. This was done by
limiting the optimization problem directly to the fixed-
point subspace of the solution space corresponding to
the symmetry. Therefore, we have derived the canonical
decomposition of linear representation of a finite group
following [Gatermann and Parrilo, 2004] and [Vallentin,
2009]. We have pointed out that in systems biology, this
method may not be applied directly due to the problem
structure that is to some extent different. However, as
the examples suggest a consideration of symmetry only
in the parameters allows still to obtain a better outer-
approximation of the consistent parameters compared to
when symmetry is not considered.

A further reduction of the computational effort could be
achieved by limiting the monomial basis of the semi-
definite program to the invariant polynomial ring. This
would reduce not only the problem size, but also limit the
amount of algebraic operations necessary for solving the
optimization as shown in [Gatermann and Parrilo, 2004].
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