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0.1 Abstract

Heat transport and thermal conductivities are of pivotal importance in many scientific
and technological applications, e.g., in thermoelectric compounds. These materials could
play a key role to establish an ecologic and sustainable energy economy, given that they
allow to recover otherwise wasted heat and transform it into useful voltage. The search for
a thermoelectric material that is efficient enough to enable an economically viable, large
scale deployment of such thermoelectric “waste heat recovery” devices is, however, still
ongoing. Over the last decade, the development of

ab initio theories of heat transport have enabled critical insights in this field. Nonethe-
less, a first-principles assessment of heat transport remains computationally expensive,
thus preventing a systematic ab initio high-throughput search for efficient thermoelectric
materials across compositional and structural space. To overcome this hurdle, many
semi-empirical approximations have been proposed and employed in literature. In this
work, the validity and applicability of these techniques are specifically scrutinized using
magnesium silicide (Mg2Si) as an example. After critically reviewing the performance
of first-principle techniques for the computation of the thermodynamic equilibrium and
non-equilibrium (heat transport) of this material, we compare these ab initio results to
simpler, semi-empirical approaches. Subsequently, we investigate to which extent these ap-
proaches are transferable, i.e., if they can be applied to doped Mg2Si as well. These studies
reveal that the typically used semi-empirical approaches for heat transport modeling are
indeed capable to predict qualitative trends, e.g., that the thermal conductivity decreases
by doping. However, no reliable quantitative predictions are possible. Eventually, we
present a technique that allows to overcome this limitation: In contrast to all the previous
approximations, this approach is parameter-free, since all required ingredients are extracted
from quasi-harmonic first-principles calculations. We demonstrate the potential in a proof-
of-concept study and discuss which computational bottlenecks in the implementation need
to be overcome to make this technique generally applicable.
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0.2 Zusammenfassung

0.2 Zusammenfassung

Wärmetransport und die thermische Leifähigkeit sind von zentraler Bedeutung in sowohl
wissenschaftlichen als auch technischen Anwednungen, als Beispiel hierbei seien thermoelek-
trische Materialien genannt. Solche Materialen könnten in der Zukunft eine entscheidende
Rolle in einer ökologischen und nachhaltigen Energiewirtschaft spielen, da sie es ermöglichen,
Elektrizität aus Abärme zu gewinnen. Bisher wurde jedoch kein thermoelektrisches Ma-
terial gefunden, das solch eine Stromgewinnung aus Abwärme wirtschaftlich intressant
macht. Über die letzten zehn Jahre haben Fortschritte im Bereich der ab-initio Theorie des
Wärmetransports tiefe Einsichten in das Feld gewḧart. Nichtsdestotrotz bleiben ab-initio
Rechnungen zur Bestimmung des Wärmetransports extrem rechenintesiv, weshalb solche
Rechnung auf grossen Skalen nicht möglich sind. Um dennoch aussagen über möglichst
viele Materialen treffen zu können wurden mehrere semi-empirische Methoden entwickelt.
In dieser Arbeit wurde am Beispiel Mg2Si die Güte und Anwendbarkeit solcher Methoden
untersucht. Nach einer kritischen Auseinandersetzung mit existierenden ab initio Techniken
zur Bestimmung des thermischen Gleich- und nicht Gleichgewichts von Mg2Si vergleichen
wir die Resultate der ab-initio Rechnungen mit simpleren, semi-empirischen Modellen.
Anschliessend untersuchen wir, wie und ob diese Methoden auch auf gedoptes Mg2Si
angewendet werden können. Dabei stellt sich heraus, dass die gängigen semi-empirischen
Modelle zum Wärmetransport durchaus in der Lage sind qualitativ richtige Trends, zum
Beispiel das Senken der thermischen Leitfähigkeit durch Doping, wiederzugeben. Allerdings
sind dabei keine verlässlichen vorhersagen möglich. Schlussendlich präsentieren wir eine
Technik mit der es möglich ist diese Einschänkungen zu überkommen. Anders als alle Meth-
oden, die davor besprochen werden, ist unser Ansatz frei von jeglichen zu bestimmenden
Parametern, da alle benötigten Daten aus quasi-harmonischen ab-initio-Rechnungen gewon-
nen werden können. Das Potential dieser Methode wird in einer proof-of-concept-Studie
demonstriert. Desweiteren diskutieren wir, welche rechentechnischen Limitationen bei der
Implementation überwunden werden müssen.
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1 Introduction

Heat transport and thermal conductivities are of pivotal importance in many scientific
and technological applications: On the one hand, boosting heat transport at the nanoscale
is a critical issue in th CPU design todate, since local “hot spots” can critically affect
the lifetime of semiconducting devices. On the other hand, suppressing heat transport
is also a critial issues in the design of so called “thermal barrier coatings” for airplane
turbines [1]. These coatings, which feature a minute thermal conductivity already, protect
the underlying alloys from the high temperatures generated during combustion. This allows
to increase the operational temperature and thus also the fuel efficiency of the turbine.
Last but not least, tailoring the thermal conductivity is also crucial for the development of
thermoelectric materials, which in principle allow to recover otherwise wasted heat and
transform it into useful voltage. The efficiency of this transformation can be characterized
by the thermoelectric figure of merit

ZT =
σS2T

κelectron + κphonon
, (1.1)

with T being the temperature, σ the electrical conductivity, S the Seebeck coefficient,
and κelectron and κphonon the contributions to the thermal conductivity of electrons and
phonons, respectively. So far, the use of thermoelectric materials to convert waste heat
into electricity is limited to very few applications: For example, space probes such as the
Voyager I and II make use of thermoelectric elements to produce electricity. Increasing ZT
and thus the efficiency would allow their application also in other fields, e.g., to harvest
wast heat in automotive thermoelectric generators [2] or in industrial plants. For this
reason, thermoelectric materials are regarded as a promising technology to establish an
ecologic and sustainable energy economy.

One possible strategy to increase ZT is to introduce defects and/or dopants into the
material [44], which in turn lowers the lattice thermal conductivity κphonon. Over the last
decade, the development of ab initio theories that allow to compute of κphonon from first
principles have enabled critical insights in this field: Most of these techniques rely on the
linearized Boltzmann transport equation, which can be solved either directly [37, 26] or in the
single mode relaxation time approximation [26]. Other techniques rely on ab initiomolecular
dynamics simulations to sample the nuclear motion; the thermal conductivity can then for
instance be determined via the Green-Kubo formalism [29]. All of this techniques come,
however, at a considerable computational cost: Effectively, this prevents a systematic ab
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1 Introduction

initio high-throughput search for efficient thermoelectric materials across compositional and
structural space, especially for the more complex material classes. Often, this computational
hurdle is circumvented by applying a semi-empirical approximation [41, 40] in the modeling
of the heat transport. A variety of such approximations exists, but their accuracy is still
topic of scientific debate.

In this thesis, the validity and applicability of these semi-empirical approximations is
scrutinized using magnesium silicide (Mg2Si) as an example: First, a concise introduc-
tion to the fundamental physical concepts used in this thesis is given in Sec. 2. This
includes an introduction to electronic-structure theory and to the theoretical foundation
of heat transport calculations. In Sec. 3, the properties of magnesium silicide (Mg2Si)
are investigated and critically discussed with respect to the employed approximations. In
particular, these calculations are used to illustrate the practical aspects of the employed
computational techniques. Particular focus is laid on the harmonic and anharmonic vibra-
tional properties that determine heat transport. To better frame the discussion, Mg2Si is
systematically compared with silicon (diamond structure) and CuCl (zincblend structure),
two materials known for their particularly harmonic/anharmonic character. Eventually,
these first-principle calculations for Mg2Si are systematically compared against the outcome
of computations that make us of simpler, semi-empirical approximations and parameters
to model heat transport. This lays the founding for Sec. 4, in which the influence of doping
on the (vibrational transport) properties of Mg2Si are discussed in detail. Last but not
least, the outlook in Sec. 5 introduces and discusses a technique that allows to overcome
the limitations of the previously discussed approximations. The potential of this technique
is demonstrated in a proof-of-concept study.
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2 Theory

The fundamental equation describing the quantum mechanical behavior of Nel elec-
trons (r = r1, · · · , rNel) and N nuclei (R = R1 · · ·RN ) in any non-relativistic material is
the Schrödinger Equation

H(r,R)Ψ(r,R) = EΨ(r,R). (2.1)

Here, Ψ(r,R) is the many-body wavefunction of the combined electronic-nuclear systems,
E(r,R) is its energy, and H(r,R) is the Hamiltonian that describes the interaction of the
nuclei and the electrons [3]:

H(r,R) = Tel + Tnuc + Vel−nuc(r,R) + Vel−el(r) + Vnuc−nuc(r,R) . (2.2)

Tel and Tnuc are the kinetic energies of the electrons and the nuclei. With me and MI

being the respective masses, they can be expressed in real space as

Tel = −1

2

∑
i

∇2
rI

me
and Tnuc = −1

2

∑
I

∇2
RI

MI
. (2.3)

The potentials Vel−nuc(r,R), Vel−el(r), and Vnuc−nuc(R) describe the electrostatic electron-
nuclei, electron-electron, and nuclei-nuclei interaction and are given in realspace by

Vel−nuc(r,R) = −
∑
i,I

ZI
|ri −RI |

(2.4)

Vel−el(r) =
1

2

∑
i,j

1

|ri − rj |
(2.5)

Vnuc−nuc(R) =
1

2

∑
I,J

ZIZJ
|RI −RJ |

. (2.6)

Here, ri denotes the position of the ith electron and RI the one of the Ith nucleus with
charge ZI . The function Ψ(r,R) that solves Eq. (2.1) fully characterizes the combined
electronic-nuclear systems. Its numerical solution is, however, a formidable problem due to
the inherent coupling of fast (electron) and slow (nuclei) degrees of freedom. Despite some
notable exceptions [48, 49, 52, 53], it is safe to assume that the dynamics of the electrons and
the nuclei occurs on different timescales, given that the nuclear mass is much larger than the
one of the electrons (MI � me). This so called Born-Oppenheimer approximation [3] implies
that the electrons adapt to every movement of the nucleus instaneously, which allows to treat
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2 Theory

the electronic Ψel(r, {R}) and the nuclear system Ψnuc(R) consecutively by approximating
the full state in a product ansatz Ψ(r,R) = Ψel(r, {R})Ψnuc(R). The chosen notation {}
highlights that the nuclei enter the electronic wavefunction Ψel(r, {R}) only parametrically.
Accordingly, one gets one electronic Schrödinger equation

(Tel + Vel−nuc(r, {R}) + Vel−el(r))︸ ︷︷ ︸
Hel

Ψel(r, {R}) = Eel({R})Ψel(r, {R}) . (2.7)

In turn, the energy of the electronic system Eel({R}) determines the potential for the
nuclear Schrödinger equation:

(Tnuc + Vnuc−nuc(R) + Eel({R}))︸ ︷︷ ︸
Hnuc

Ψnuc(R) = EnucΨnuc(R) . (2.8)

Numerical approaches to solve these equations are discussed in the following sections (elec-
trons: Sec. 2.1; nuclei: Sec. 2.2)

2.1 Density-functional Theory

In spite of the fact that the Born-Oppenheimer approximation discussed above reduces the
complexity of the problem immensely, solving the electronic Schödinger equation (2.7) still
constitutes a formidable problem, given that the solution depends on the 3Nel electronic
degrees of freedom. Various so called wavefunction-based algorithms and techniques have
been developed over the last decades to tackle this problem [4]; discussing them would
however go beyond the scope of this thesis. Rather, we will focus on the ab initio technique
used in the later sections of this work, i.e., density-functional theory (DFT), for the
formulation of which Walther Kohn was awarded the Nobel prize in 1998. In this formalism,
the electronic ground state of a system is fully described by the respective electronic density

n(r) = Nel

w
|Ψ(r, r2, ..., rNel)|

2dr2...drNel , (2.9)

which only depends on three cartesian coordinates. Formally, this massively reduces the
complexity of the problem.

The essence of DFT is captured in the two Hohenberg-Kohn theorems [5]:

Theorem 1 (First HK-Theorem) For any system of interacting particles in an external
potential exists a bijection between the density and the external potential.

Theorem 2 (Second HK-Theorem) A functional Eel[n] of the density exists, the den-
sity which minimizes this functional is the ground state density, and the minimum of this
functional is the ground state energy.
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2.1 Density-functional Theory

The functional Eel[n] can be written as:

Eel[n] = Eext[n] + F [n] . (2.10)

Here, F [n] is the functional that contains all interactions between the electrons as well as
their kinetic energy and Eext[n] is the interaction energy with an external potential. In
our specific case, it is given by Vel−nuc of Eq. (2.6)

Eext[n] =
w
vext(r)n(r)dr = −

∑
I

w ZI n(r)

|r−RI |
dr . (2.11)

Although formally exact, DFT is not particularly useful in this formulation, given that no
closed analytical expression for F [n] has been found so far. Furthermore, also approximative
formulations of F [n] have not yet been able to reach a satisfactory accuracy [8]. As discussed
in the next section, these problems can be partially circumvented in the Kohn-Sham
formalism [7]. This, however, requires to drop the fomally appealing description in terms of
an electron density and to reintroduce individual electronic states.

2.1.1 Kohn-Sham Formalism

The crucial point in the Kohn-Sham formalism [7] is the introduction of a supple-
mentary, non-interacting electronic system that can be described by single-particle
states ψ̃1(r), · · · , ψ̃Nel(r). Such a system exhibits the electronic density

ñ(r) =

Nel∑
i

w
|ψ̃i(r)|2dr ; (2.12)

the total energy functional in Eq. (2.10) simplifies to

Ẽel[ñ] = Eext[ñ] + T̃s[ñ] . (2.13)

This only includes the external potential Eext[ñ], already defined in Eq. (2.11), and the
kinetic energy of the non-interacting electronic system T̃s discussed in more detail below.
The variational minimum of this functional is the ground state energy of the non-interacting
system and the corresponding density is the one of the ground state. The variational
differential is given by:

δ
(
Ẽel[ñ]− µ

[w
ñ(r)d3r −Ne

])
= 0 (2.14)

A Lagrange parameter µ was introduced to keep the number of particles fixed. This yields
the following equation:

δTs[ñ]

δn
+ vext = 0 . (2.15)
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2 Theory

Solving this equation would require to find an expression for the functional deriva-
tive δTs[ñ]/δn, first. However, this can be circumvented by reintroducing the single-particle
representation, given that for this particular system the kinetic energy is determined by
the operator

T̃s = −1

2

Nel∑
i

∇2
i . (2.16)

The associated Schrödinger equation

(−1

2
∇2 + vext(r))ψ̃i(r) = εiψ̃i(r) (2.17)

can be solved at a reasonable computational cost, given that the individual electron can be
treated independently.

To find a mapping between the system of interacting electrons and the non-interacting
system discussed above, the total energy functional Eel[n] for the interacting system (2.10)
is rewritten as:

Eel[n] = Eext[n] + T̃s[n] + EH [n] +
(
F [n]− T̃s[n]− EH [n]

)
︸ ︷︷ ︸

Exc[n]

. (2.18)

Beside the external potential Eext[n] already defined in Eq. (2.11), this expression includes
the electrostatic Hartree energy EH [n] describing the electronic mean-field repulsion

EH [n] =
1

2

w n(r)n(r̂)

|r− r̂|
drdr̂ (2.19)

and the kinetic energy T̃s of a non-interacting electronic system that is required 1 to ex-
hibit the exact same density as the interacting systems that is sought after:

n(r)
!

= ñ(r) =

Nel∑
i

w
|ψ̃i(r)|2dr . (2.20)

Eventually, the exchange-correlation (XC) energy Exc[n] subsumes all many-body ef-
fects, i.e., the non-classical kinetic energy and the non-classical electron-electron interaction.
Minimizing this functional with respect to the density yields the following expression:

δT̃s[n]

δn
+ vext + vH + vxc︸ ︷︷ ︸

veff (r)

= 0 , (2.21)

which takes the exact same form as the respective equation for a non-interacting sys-
tem (2.15). By this means, we have found a mapping between the equation governing
an interacting system in an external potential vext and the one of a non-interacting sys-
tem in a different potential veff . Accordingly, also non-interacting problem can be

1A detailed discussion of this so called v-representability requirement and its validity can be found in
Ref. [6].
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2.1 Density-functional Theory

solved by finding the solution of single-particle, non-interacting Schrödinger equation

(−1

2
∇2 + veff (r))︸ ︷︷ ︸

hKS

ψi(r) = εiψi(r). (2.22)

This equation is called the Kohn-Sham (KS) equation [7]. Again, it can be solved to
determine the ground state density n(r) within reasonable computational effort. In
contrast to Eq. (2.17), however, the density itself enters veff (r), so that a self-consistent
field approach is typically used in practical calculations: Starting from an (educated)
initial guess for the density n(0)(r), the electronic energy (see below) is minimized in i

iterations by refining the density n(i)(r) until self-consistence is numerically achieved up to
a user-defined parameter ε, e.g.,

r
|n(i)(r)−n(i+1)(r)|dr < ε. Please note that the electronic

energy of the interacting systems is

Eel[n] =

occ∑
i

εi − EH [n]−
w
vxc[n]n(r)dr3 + Exc[n] . (2.23)

For the ground state density, this yields the potential energy surface for the nuclei:

Etot = Eel[n] + Enuc . (2.24)

2.1.2 Approximative Exchange-Correlation Functionals

In principle, the previously introduced Kohn-Sham formalism provides a practical route to
calculate the (exact) electronic ground state. However, a closed analytical form for the
thereto required XC functional Exc[n] is not known, so that approximative XC functionals
have to be used in practical calculations instead. Different flavours with different levels of
accuracy and computational cost exist: Here, we limit ourselves to introduce the concepts
behind the approximations used for the calculations in this thesis; the influence of the
approximations on the actual computational results are discussed for the practical example
of Mg2Si of interest in this work in Sec. 3

The Local Density Approximation (LDA): In this very common approximation, the XC
energy density εxc[n] at each point in space r is approximated by the value of the respective
XC energy density εLDAxc [n] that a homogeneous electron gas (jellium model) would exhibit
at that density n(r):

Exc =
w
n(r)εLDAexc (n(r))dr . (2.25)

The Generalized Gradient Approximation (GGA): In the spirit of a Taylor expansion,
GGA XC functionals do not only take into account the local value of the density n(r),

13



2 Theory

but also its gradient ∇rn(r). Formally, this is achieved by introducing an enhancement
factor Fxc[n(r),∇rn(r)]:

Exc =
w
n(r)εLDAxc (n(r))Fxc(n(r),∇rn(r))dr . (2.26)

Due to the fact that some freedom exists in the definition of Fxc(n(r),∇rn(r)), many
different flavours of GGAs exist: Some, like the PBE functional [9] and its adaption for
solid materials (PBEsol [10]) are formulated to fulfill fundamental properties that the
exact XC functional is known to fulfill. Others, like BLYP are specifically constructed to
reproduce experimental data.

Hybrid XC Functionals: Both LDA and GGAs suffer from a spurious self-interaction
that results into the erroneous tendency of electrons to delocalize [11]. In part, this can be
corrected for [12] by replacing a fraction of the GGA exchange with the exact (Hartee-Fock)
exchange

EHFx = −1

2

Nel∑
i,j

w ψ∗i (r)ψj(r)ψ∗j (r̂)ψi(r̂)

r− r̂
drdr̂ . (2.27)

Popular examples for such a functionals are the PBE0 functional [12]

EPBE0
xc =

1

4
EHFx +

3

4
EPBEx + EPBEc (2.28)

or HSE-type functionals [13], in which the bare Coulomb interaction in Eq. (2.27) is
additionally screened.

2.1.3 Practical Numerical Solution and Implementation

In this section, we shortly summarize some practical aspects that need to be considered
when performing KS calculations.

Solving the KS Equations: To efficiently implement Eq. (2.22) in computer code and
exploit fast linear algebra libraries, the eigenfunctions ψi of the KS Hamiltonian are
approximated in a truncated expansion in terms of basis functions ζ:

ψi =
∑
j

cijζj(r). (2.29)

Accordingly, Eq. (2.22) becomes a generalized eigenvalue problem:∑
i

hlicij = εj
∑
i

olicij (2.30)
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2.1 Density-functional Theory

Figure 2.1: Sketch showing how a formally infinite crystal is modeled using periodic
boundary conditions starting from a unit cell that contains basis atoms.
This unit cell is infinitely repeated in space using the lattice vectors (see
text).

With the matrix elements of the kohn-sham hamiltonian hks

hli =
w
ζl(r)hksζi(r)dr (2.31)

and the overlap integral
oli =

w
ζl(r)ζi(r)dr. (2.32)

This approximation, i.e., the convergence of the results of interest with respect to the
number of basis functions included, needs to be explicitly investigated to ensure the validity
of the results (see Sec. 7).

In this particular work, the all-electron, full potential code FHI-aims [33] was used 2, which
utilizes atom-centered, numeric orbitals

ζj(r) =
unl(r−Rat)

r
Ylm(Φ,Θ) (2.33)

as basis set. Here Ylm(Φ,Θ) are spherical harmonics and unl(r − Rat) are numerically
defined radial functions with Rat being the coordinates of the nucleus to which this specific
atomic orbital belongs.

Periodic Boundary Conditions: Obviously, performing DFT calculations for macroscopic
materials in a naive approach would be excruciatingly computationally expensive due
to the massive number of electron Nel that needs to be accounted for. For crystalline
materials with translational periodicity, this can be circumvented by applying periodic
coundary conditions: As sketched in Fig. 2.1, a crystal is thereby described by a finite
number of atoms in the primitive unit cell, which is spanned up by the lattice vectors
A = [A1,A2,A3]. This unit cell is infinitely repeated as described by the translation vector
T(n) = A · n with n = [n1, n2, n3], ni ∈ Z.

2All-electron means that all electrons are treated on the same level. Conversely, pseudo-potential codes
only treat the core electrons approximately by effectively including them in a pesudo-potential.
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2 Theory

Such a description in terms of periodic boundary conditions imposes restrictions on
the wave functions, too. Bloch’s theorem states that in this case the wave functions

ψi(r,k) = eik·rui(r) (2.34)

can be written as the product of a lattice-periodic function

ui(r) = ui(r + T(n)) (2.35)

and a wavevector k-dependent plane wave. In the case of periodic calculations in FHI-aims,
this is exploited by using a Bloch-like basis set

χj(r,k) =
∑
n

eik·T(n)ζj(r−Rat + T(n)) (2.36)

in the expansion in Eq. (2.29). Accordingly, both the KS states and KS Hamiltonian
become k-dependent. By this means, one thus formally maps the KS equation for an infinite
number of electrons onto the KS equation for the finite number of electrons contained in
a unit cell. In turn, however, this problem has to be solved for a formally infinite set of
k-vectors. Obviously, only finite k-grid are used in practical calculations. Convergence of
the quantities of interest with respect to this numerical parameter needs to be explicitly
checked.

2.2 Nuclear Motion

As discussed above, DFT can be used to compute the properties (density, eigenvalues, etc.)
and the total energy Etot of the electronic system. The latter determines the potential-
energy surface (PES) on which the nuclei move in the Born-Oppenheimer approximation,
see Eq. (2.24). Mapping out such a PES for realistic systems, is, however, a formidable
problem, given that the dimensionality of the PES scales with the number of degrees of
freedom and each single geometric configuration requires an individual self-consistent ab
initio calculation. Various techniques have thus been developed to efficiently determine
properties associated with the nuclei, e.g., optimization algorithms to find the minimum
PES (0K equilibirum configuration of the nuclei) or techniques to assess the nuclear
dynamics (see Sec. 2.2.1 and 2.2.2). To work efficiently, however, these algorithms require
not only the energy of the PES in that particular configurations, but also its derivatives.
First order derivatives, i.e., the forces

FI = −dEtot
dRI

= −∂Etot
∂RI

−
∑
i

∂Etot
∂χi

∂χi
∂RI

−
∑
ij

∂Etot
∂cij︸ ︷︷ ︸
=0

∂cij
∂RI

. (2.37)
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can be expressed analytically within standard DFT: As highlighted by the notation ∂/∂RI

for the partial derivatives, the first term describes the direct dependence of the total
energy on the nuclear degrees of freedom. The second term, the so called Pulay term [14],
captures the dependence of the total energy on the basis set chosen for the expansion
in Eq. (2.33). The last term vanishes, since the ground state total energy constitutes
a variational minimum with respect to the expansion coefficients cij . For higher order
derivatives of the total energy, e.g., the Hessian,

d2Etot
dRIdRJ

= − d

dRJ
FI (2.38)

= − ∂FI

∂RJ
−
∑
i

∂FI

∂χi

∂χi
∂RJ

−
∑
ij

∂FI

∂cij︸︷︷︸
6=0

∂cij
∂RJ

,

the problem gets more complex, since the forces are not variational with respect to the
expansion coefficients cij . Accordingly, a calculation of the Hessian does not only require the
analytical derivatives appearing in the first two terms, but also the response of the expansion
coefficients to a nuclear displacement ∂cij/∂RJ . Formally, the (2n+ 1) theorem [15], i.e., a
generalization of Hellman-Feynman theorem [16], shows that knowledge of the n-th order
response (i.e. the n-th order total derivative) of the electronic structure with respect to a
perturbation is required to determine the respective (2n+ 1)-th total derivatives of the
total energy [15]. These response quantities are, however, not directly accessible within
DFT: They can be either computed by application of first order perturbation theory [21]
or by evaluating the Hessian numerically with finite differences:

d2Etot
dRIdRJ

≈ −FI(δRJ)

δRJ
(2.39)

The latter technique has been used in this work; the practical details are discussed in
Sec. 2.2.2.

2.2.1 Molecular Dynamics

Molecular dynamics (MD) techniques are the most accurate approach to assess the nuclear
dynamics. In this technique, the Schrödinger equation for the nuclei (2.8) is solved
numerically in the classical limit 3. For this purpose, the classical equations of motion

FI(t) = MIR̈I(t) (2.40)

are stepwise integrated t→ t+∆t for a finite timestep ∆t starting from a chosen initial
condition for the positions RI(t0) and the velocities ṘI(t0). Most prominently, the Velocity

3Due to the large mass of nuclei, quantum-mechanical effects can indeed be often neglected in their
dynamics. See Sec. 3.2.2 for a more in-depth discussion of this approximation for the practical example
of Mg2Si.
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Figure 2.2: Left: Sketch showing a potential energy surface (red) that is approximated
in the harmonic approximation (red) around the equilibrium position.
Right: Sketch of a supercell, the red arrows mark two periodic images
that are connected to the respective primitive atom in the supercell via
lattice vectors (see text)

Verlet algorithm [17] is used for this purpose:

RI(t+∆t) = RI(t) + ṘI(t)∆t+
FI(t)

2MI
∆t2 (2.41)

ṘI(t+∆t) = ṘI(t) +
FI(t) + FI(t+∆t)

2MI
∆t (2.42)

Please note that these equations can be augmented by so called thermostats [17] to sample
different thermodynamic ensembles. Given that the forces FI(t) acting on the nuclei can
be computed within DFT following Eq. (2.37), this technique can be directly coupled to
DFT calculations to perform so called ab initio MD simulations. For long time scales t and
large systems, however, such an approach can rapidly become computationally expensive,
given that it requires t/∆t force evaluations. In the following sections, we will thus discuss
approximative techniques that allow to estimate properties stemming from the nuclear
dynamics.

2.2.2 The Harmonic Approximation

The harmonic approximation is the most well known and most used technique to describe
and interpret the nuclear motion, especially in solid state theory. To start, the PES is
approximated by a truncated, second order Taylor expansion around its minimum, i.e., the
0K equilibrium positions Req shown in Fig. (2.2).

Ehatot ≈ Etot +

�
�
�

��
∑
I,α

FαI u
α
I +

1

2

∑
I,J,α,β

ΦαβIJ u
α
I u

β
J . (2.43)

Here, the uαI = Rα
I −Rα,eq

I are the displacements of the atoms around their equilibrium
positions. Please note that the static term Etot is the total energy in equilibrium, the linear
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2.2 Nuclear Motion

term vanishes due to the fact that the forces FαI vanish in equilibrium, but the Hessian (or
harmonic force constants)

ΦαβIJ =
∂2Etot

∂RαI ∂R
β
J

(2.44)

introduced in Eq. (2.43) above do not (see Fig. 2.2). The ansatz

uαI =
A√
MI

εαI (q, s)ei(q·RI−ωt) , (2.45)

the physical interpretation of which is discussed below, separates and solves the equation
of motion in this approximate potential. In this context, it is useful to express the index of
the I-th atom using periodic boundary conditions as I → nĨ, where Ĩ denotes the Ĩ-th
atom in the primitive unit cell and n denotes that this is its n-th periodic image shifted by
a lattice translation vector T(n) (see Sec. 2.1.3). In this notation, the equations of motion
become an eigenvalue problem

D(q)ε(q) = ω2(q)ε(q) with Dαβ

ĨJ̃
(q) =

∑
n

Φαβ
(0Ĩ)(nJ̃)

MĨMJ̃

e
iq·(R(nJ̃)−R(0Ĩ)) . (2.46)

Here, D(q) is the dynamical matrix, i.e., the Fourier transform of the mass-scaled force
constants Φ with respect to the distance of periodic replicas. In practice the sum can be
truncated after a sufficient high value for n, so that we obtain a so called supercell containing
n images of the unit cell. This supercell is now repeated periodically (see Fig. (2.2)). This
means for example that the shortest vector connecting 2 atoms at opposite side of the
supercell is typically directed to the last periodic image of the supercell. For a system
with N atoms in the unit cell, we thus get 3N eigenvalues and -vectors at each reciprocal
space point q. Accordingly, the solution of the equations of motion is a superposition of
harmonic oscillations

RI(t) = Req
I + Re

(∑
q,s

As(q)√
MI

εI,s(q)ei(q·RI−ωs(q)t)

)
(2.47)

with the amplitudes As(q) and the wavevector q. Please note that the amplitudes As(q)

and the respective occupation numbers ns(q) = A2
s(q) are not time-dependent and fully

determined by the initial conditions, so that the individual oscillations are completely
independent and decoupled. Accordingly, the motion is completely characterized by the
eigenvectors and eigenfrequencies, i.e., the dispersion ωs(q), which describes how the
frequency of the phonon mode depends on its wavevector. Please note that also the
derivative, i.e., the phonon group velocity

vs(q) =
∂ωs(q)

∂q
=

1

2ω
〈εs(q)| ∂D(q)

∂q
|εs(q)〉 (2.48)

can be calculated directly from the dynamical matrix.
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Given that Eq. (2.47) is the analytic solution for the nuclear dynamics in the harmonic
potential, also the thermodynamic partition function of the system

Z =
∏
q,s

e
− ~ωs(q)

kBT

1− e−
~ωs(q)
kBT

(2.49)

can be calculated. From this expression quantities such as the free energy [25]

F ha = −kBT ln(Z) =
1

2

∑
q,s

~ωs(q) + kBT
∑
qs

ln(1− e−
~ωs(q)
kBT ) (2.50)

and the specific heat CV

CV =
1

V

(
∂Eha

∂T

)
V

=
1

V

∑
q,s

~ωs(q)
∂neqs (q)

∂T
=

1

V

∑
q,s

cs(q) (2.51)

can be calculated with Eha being the harmonic energy

Eha =
∑
q,s

~ωs(q)

(
1

2
+ neqs (q)

)
. (2.52)

It is important to note that phonons, since they are bosonic quasi particles, obey the
Bose-Einstein distribution

neqs (q) =
1

e
~ωs(q)
kBT − 1

. (2.53)

At low temperatures, this causes the typical T 3 behavior of the specific heat (see Fig. (3.7)).
At elevated temperatures, CV then approaches the classical, constant Dulong-Petit value 3Nkb [35].

Most efficiently, equations such as (2.50) and (2.51) are numerically evaluated by introducing
the phonon density of states

g(ω) =
1

Ω

∑
s

w

BZ
δ(ω − ωs(q))dq , (2.54)

in which Ω denotes the volume of the Brillouin Zone. The thermodynamic expectation
value Π for any operator π(ωs(q)) that only implicitly depends on the wavevector q can
then be immediately evaluated using

Π =
1

Ω

∑
s

w

BZ
πs(q)dq =

w
π(ω)g(ω)dω . (2.55)

Despite its usefullness, the harmonic approximation has severe limits. Due to the fact
that the real PES is approximated close to the 0K equilibrium positions (see Fig.( 2.2)),
anharmonic effects become notable at higher temperatures, when large displacements from
equilibrium occur. For instance, the temperature-dependence of phonon frequencies and
their finite linewidth in spectra cannot be computed from the harmonic approximation
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2.2 Nuclear Motion

alone. Besides this quantitative anharmonic corrections, there are, however, physical
phenomena that cannot even be understood qualitatively in a harmonic picture: Most
importantly, the lattice expansion is zero and the vibrational thermal conductivity is
infinite in this approximation. In the next two sections, we discuss these properties
in more detail and explain how they can be assessed by accounting for anharmonic
effects.

2.2.3 Anharmonic Effects: Lattice Expansion

In the static limit of immobile nuclei, the equilibrium volume V0 and the respective
lattice constants are defined via the minimum of the total energy of the system V0 =

minV Etot(V ). At finite temperatures, however, the respective thermodynamic potential has
to be minimized, e.g., the Helmholtz free energy F (T, V ) in the case of a canonical ensemble.
Naturally, this introduces a temperature dependence in the equilibrium volume V0(T ) =

minV F (T, V ). By neglecting the electronic contributions4, the Helmholtz free energy can
be expressed in the harmonic approximation as F (T, V ) ≈ Etot(V ) + F ha(T ) using the
definition of F ha(T ) given in Eq. (2.50). However, F ha(T ) does not depend on the volume,
so that no lattice expansion (or contraction) occurs in this approximation. To assess and
understand temperature dependent volumes and lattice constants, anharmonic effects have
thus to be accounted for.

In the most intuitive approach, anharmonic effects are effectively introduced by explicitly
accounting for the volume dependence of the force constants ΦαβIJ → ΦαβIJ (V ). In this
so called quasi-harmonic approximation [20], both the total energy Etot(V ) and the
phonon calculations ΦαβIJ (V ) are performed for a set of different volumes. The temperature
dependent volume V0(T ) and/or lattice constants are then determined by minimizing the
resulting Helmholtz free energy

F (T, V ) ≈ Etot(V ) + F qha(T, V ) with F qha(T, V ) = F ha(T, ΦαβIJ (V )), (2.56)

as shown in Fig. 2.3. The obtained equilibrium volumes V0(T ) then allow to compute the
volume expansion coefficient

α(T ) =
1

3V0(T )

(
∂V0(T )

∂T

)
V

(2.57)

Beside some notable exceptions (see Ref. [20] and Sec. 3.2.3), α(T ) is typically posi-
tive (lattice expansion): Larger volumes imply larger nearest neighbour distances and
thus a smaller interaction (smaller force constants ΦαβIJ ). In turn, this leads to lower
eigenfrequencies ωs(q) and thus to lower Helmholtz free energies due to entropic contribu-
tions.

4In solids with finite band gaps as the semiconductors of interest in this work, electronic contributions to
the free energy are generally negligible [35].
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Figure 2.3: Birch-Murnaghan Equations in the quasi-harmonic approximation for
Mg2Si at different temperatures: The blue squares mark the volumes
which minimize the free energy and the red points mark actual calcula-
tions.

An alternative approach to assess temperature dependent volumes and lattice constants
starts from the definition of the volume expansion coefficient as thermodynamic derivative
of the pressure at constant volume

α(T ) =
1

3B0

(
∂P

∂T

)
V0(T )

= − 1

3B0

(
∂2F (T, V )

∂T∂V

)
V0(T )

, (2.58)

whereby B0 is the bulk modulus. In praxis, this equation is approximated by taking the
derivative at the equilibrium volume in the static limit V0(T )→ V0 (see Sec. 3.2.3 for a
critical discussion of this approximation)

α(T ) ≈ − 1

3B0

(
∂2F (T, V )

∂T∂V

)
V0

. (2.59)

This allows to use the Helmholtz free energy defined as F (T, V0) ≈ Etot(V0) + F ha(T ),
which yields [35]

α =
1

3B0

∑
q,s

(
−∂~ωs(q)

∂V

)
∂neqs (q)

∂T
=

1

3B0

∑
q,s

~ωs(q)γs(q)

V

∂neqs (q)

∂T
=
γCV
3B0

(2.60)

In the last steps, we have introduced the dimensionless, mode-specific Grüneisen parameter

γs(q) = − V

ωs(q)

∂ωs(q)

∂V
, (2.61)
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and the overall Grüneisen parameter

γ =

∑
q,s γs(q)cs(q)∑

q,s cs(q)
(2.62)

using the definition of the mode-specific heat capacity cq,s given in Eq. (2.51). Two different
approaches exist to evaluate the Grüneisen parameters:

Finite Differences: In the spirit of the quasi-harmonic approximation, these anharmonic
effects can be effectively accounted for by explicitly investigating the volume depen-
dence of the dynamical matrix. The Grüneisen parameters can then be determined via

γs(q) = − 1

2ω2
s(q)

∂ω2
s(q)

∂V
= − 1

2ω2
s(q)

〈εs(q)| ∂D(q)

∂V
|εs(q)〉 , (2.63)

whereby the required derivative of the dynamical matrix is typically computed using a
finite difference approach:

∂D(q)

∂V
≈ D(q, V0 + δV )−D(q, V0 − δV )

2δV
. (2.64)

Explicit Anharmonicity: Alternatively, anharmonic effects can be incorporated by extend-
ing the Taylor expansion in Eq. (2.43) to an additional order:

Eanhtot = Etot +
1

2

∑
IJ,αβ

ΦαβIJ u
α
I u

β
J +

1

6

∑
IJK,αβγ

ΨαβγIJKu
α
I u

β
Ju

γ
K (2.65)

using the third order force constants

ΨαβγIJK =
∂3E

∂RαI ∂R
β
J∂R

γ
K

. (2.66)

These third order force constants are also not directly accessible within DFT: They can be
either computed by application of first order perturbation theory [3] or again via finite
differences:

ΨαβγIJK =
∂3E

∂RαI ∂R
β
J∂R

γ
K

=
∂2F

∂RβJ∂R
γ
K

=
∂ΦIJ
∂RγK

≈
ΦαβIJ (δRγK)− ΦIJ

δRγK
(2.67)

The latter technique has been used in this work; the practical details are discussed in
Sec. 3.2.4.

Please note that it is no longer possible to solve the equations of motion in the third
order potential – neither analytically nor numerically via molecular dynamics 5. To
circumvent these problems, anharmonic effects stemming from the third order force con-
stants are typically evaluated perturbatively by calculating expectation values stemming

5The asymmetry in the third order term makes such algorithms unstable.
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from the potential Eq. (2.65) using the analytically know solutions of the harmonic ap-
proximation: For instance, the eigenfrequencies in harmonic approximation are given by

ω2
s(q) =

∑
IJ,αβ

ε∗αI,s(q)εβJ,s(q)
√
MIMJ

ΦαβIJ e
iq·(RJ−RI) (2.68)

By replacing the harmonic force constants ΦαβIJ with the respective perturbed expression in-
cluding third order contributions Φ̂αβIJ = ΦαβIJ +

∑
γ,K Ψ

αβγ
IJKu

γ
K one gets

ω2
s(q) →

∑
IJ,αβ

ε∗αI ε
β
J√

MIMJ
Φ̂αβIJ e

iq·(rJ−rI) (2.69)

= ω2
s(q) +

∑
IJ,αβ

ε∗αI,s(q)εβJ,s(q)
√
MIMJ

∑
γ,K

ΨαβγIJKu
γ
K

 eiq·(RJ−RI) . (2.70)

This expression and also its derivatives can be evaluated numerically.

Exemplarily, we discuss this approach for the Grüneisen tensors, i.e., the dimensionless
derivative of the eigenfrequencies

γµνs (q) = − 1

ωs(q)

∂ωs(q)

∂εµν
= − 1

2ω2
s(q)

∂ω2
s(q)

∂εµν
(2.71)

with respect to a strain εµν that acts on real space coordinates as

Rα(ε) =
∑
β

(δαβ + εαβ)Rβ(0) . (2.72)

The strain derivative can then be written as [32]:

∂Φ̂αβIJ
∂εµν

=
∑
γ,K

ΨαβγIJKδµγR
ν
K . (2.73)

Using the formalism introduced above, one gets the Grüneisen tensors to first order:

γµνs (q) = − 1

2ω2
s(q)

∑
IJK,αβγ

ε∗αI,s(q)εβJ,s(q)
√
MIMJ

ΨαβγIJKδµγR
ν
Ke

iq·(RJ−RI) . (2.74)

Please note that this Grüneisen tensors are a generalization of the Grüneisen parameters

γs(q) =
tr(γµνs (q))

3
(2.75)

introduced in Eq. (2.61), whereby “tr” denotes the trace.
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2.2.4 Anharmonic Effects: Lattice Thermal Conductivity

The thermal conductivity tensor καβ , which describes the capability of a material to conduct
heat, is another prominent example of a physical quantity that can only be understood if
anharmonic effects are taken into account. Formally, the thermal cconductivity is defined
through Fourier’s law

Jα = −καβ∇βT , (2.76)

in which it serves as proportionality constant between the cartesian components of the
applied temperature gradient ∇T and the heat flux J, which naturally develops to con-
trast ∇T and to re-establish equilibrium. Generally, the thermal conductivity consists of
three different contributions

κ = κphonon + κelectron + κphoton . (2.77)

In this work, we limit ourselves to dicuss the lattice or phonon thermal conductivity κphonon,
since it is the dominant [35] contribution for the system of interests in this work (semicon-
ductors and insulators at non-incandescent temperatures).

The fact that such heat transport effecrs cannot be assessed in a purely harmonic approxi-
mation already becomes obvious from the respective microscopic expression for the heat
flux formulated in the phonon picture [36]

J = (2π)3
∑
s

w
~ωs(q)ns(q, t)vs(q)dq ≈ 1

V0

∑
q,s

~ωs(q)ns(q, t)vs(q) . (2.78)

Here V0 denotes the volume of the unit cell. In this expression, each of the modes with
occupation number ns(q) contribute to the heat flux, since they travel with the group
velocity vs(q) and carry the energy ~ωs(q). In the harmonic approximation, however,
all quantities that enter Eq. (2.78) stay constant over time: Even the occupation num-
bers ns(q, t) = neqs (q) are fully determined by the initial conditions (see Sec. 2.2.2), since
all modes are decoupled. Accordingly, the heat flux J in equilibrium is exactly zero in the
harmonic approximation at all times, since the contributions with opposite wavevectors
cancel out due to the fact that

ωs(q) = ωs(−q) and ns(q, t) = ns(−q, t) but vs(q) = −vs(−q) . (2.79)

Therefore, Eq. (2.76) is not fulfilled in the harmonic approximation.

To assess thermal conductivities, it is thus necessary to take anharmonic effects explicitly
into account. This can be achieved by explicitly investigationg the dynamics on the
anharmonic potential energy surface in molecular dynamics approaches [29] or perturba-
tively [26]. In this work, only the latter approach is used; for the sake of conciseness,
we will thus limit the discussion in this thesis to this technique. Also, we restrict the
derivation to the cubic isotropic case which allows us to write κ = κxx = κyy = κzz. A
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more general and detailed derivation can for instance be found in Ref. [36] and references
therein.

To account for anharmonic effects, we first introduce the non-equilibrium occupation
numbers ns(q) by introducing a mode specific deviation ξs(q):

ns(q) =
1

e
~ωs(q)
kBT

−ξs(q) − 1

≈ neqs (q) +

(
∂ns(q)

∂ξs(q)

)
ξs(q)=0

ξs(q) = neqs (q) + [neqs (q)(neqs (q) + 1)] ξs(q)

= neqs (q) +
kBT

2

~ωs(q)

∂neqs (q)

∂T
ξs(q) . (2.80)

When performing the Taylor expansion around equilibrium in the second step, we inherently
assume that the deviations from equilibrium are small compared to the actual occupation
numbers in equilibrium. Accordingly, the non-equilibrium occupation numbers ns(q) must
fulfill the linearized Boltzmann equation

vs(q) · ∇T ∂n
eq
s (q)

∂T
=

(
∂ns(q)

∂t

)
scatt

(2.81)

in the steady state. Here, the left hand side (drift term) describes the evolution of the
non-equilibrium population due to a temperature gradient in the absence of phonon-phonon
interaction. Conversely, the right hand side counterbalance this drift due to scattering
processes. To describe them, the single mode relaxation time approximation is commonly
employed: This implies that explicit correlations between the non-equilibrium occupation
numbers of the different modes can be neglected, so that the scattering of one specific
mode (s′,q′) can be determined by assuming all other modes to follow the respective
equilibrium distribution: ns(q) = neqs (q) for all (s,q) 6= (s′,q′). In this approach, the right
hand side of Eq. (2.81) can be approximated as(

∂ns(q)

∂t

)
scatt

≈ −ξs(q)

τs(q)

kBT
2

~ωs(q)

∂neqs (q)

∂T
(2.82)

whereby the mode specific relaxation times τs(q) have been introduced. Combining
Eq. (2.81) and Eq. (2.82) yields an expression for ξs(q) and thus for the ns(q) defined in
Eq. (2.80) that can be inserted into Eq. (2.78):

J = − 1

V0kBT 2

∑
sq

~ωs(q)
∂neqs (q)

∂T
τs(q)vs(q)(vs(q) · ∇T ) . (2.83)

For the isotropic case, a comparison with Fourier’s law (2.78) yields:

κ =
1

3V0

∑
q,s

vs(q)2cs(q)τs(q) . (2.84)

Most of the quantities (vs(q), cs(q)) entering κ as defined in Eq. (2.84) can be readily
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computed in the harmonic approximation. The lifetime τs(q), however, is infinite in this
approximation, due the absence of scattering ns(q) = neqs (q) discussed before. Formally,
the thermal conductivity is thus also infinite in this approximation.

If anharmonic effects are taken into account, the lifetimes can be determined via

τs(q) =
1

2Γs(q)
(2.85)

from the imaginary part of the self energy Γs(q). If only the third order force con-
stants ΨαβγIJK (introduced in Sec. 2.2.3 before) are taken into account, this self energy is
given by:

Γs(q) =
18π

~2
∑

q′s′,q′′s′′

|Ψs,s′,s′′(q,q′,q′′)|2[(neqs′ (q′) + neqs′′(q
′′) + 1)δ(ω − ωs′(q′)− ωs′′(q′′))

+(neqs′ (q′)− neqs′′(q
′′))(δ(ω + ωs′(q

′)− ωs′′(q′′))− δ(ω − ωs′′(q′) + ωs′′(q
′′)))].(2.86)

The Ψ(qs,q′s′,q′′s′′) are the Fourier transformed third order force constants ΨαβγIJK :

Ψs,s′,s′′(q,q
′,q′′) =

1

3!
√
N0

∑
IJK,αβγ

εαI,s(q)εβJ,s′(q
′)εγK,s′′(q

′′)

×

√
~

2MIωs(q)

√
~

2MJωs′(q′)

√
~

2MKωs′′(q′′, s′′)

× ΨαβγIJKe
iq·RIeiq

′·RJ eiq
′′·RK∆(q + q′ + q′′) (2.87)

Here, the factor ∆(q + q′+ q′′) ensures momentum conservation and is thus 1 if q + q′+ q′′

corresponds to a reciprocal lattice vector and 0 otherwise. Please note that the expres-
sions (2.85)-(2.87) can be derived directly in a quite lengthy process from the third order
Hamiltonian, as detailed in Ref. [38] for instance.

The described approach has so far been used successfully in a series of studies [27, 26].
However, it also suffers from some limitations:

• It has been shown that the single relaxation time approximation can fail [28], e.g., in
systems with very long lifetimes, e.g., graphene [23]. In this case, the linearized
Bolzmann transport equation (2.81) needs to be solved numerically or directly [37]

• So far, efforts to systematically and accurately assess the anharmonicity beyond the
third order force constants from first principles have remained elusive: On the one
hand, perturbational approaches based on density-functional perturbation theory [21]
would require the second order response in the density [22] for computing higher-
order force constants. On the other hand, finite difference approaches would become
excruciatingly expensive due to the combinatorial explosion of elements included
in higher-order force constants. Accordingly, very anharmonic systems cannot be
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2 Theory

treated in this approach but require ab initio molecular dynamics simulations that
systematically probe the complete anharmonic phase space. The thermal conductivity
can the be determined from the Green-Kubo relations [29, 30]. Please note that
higher-order force constants can be extracted from such ab initio molecular dynamics
trajectories as well [19]. For this purpose, machine-learning techniques have been
recently proven to be useful [31].

Eventually, it is important to note that even in the best case the computational cost of
first-principles calculations in the single relaxation time approximation is quite involved,
in particular for systems with low symmetry and/or many atoms in the unit cell. Most
importantly, this is the case whenever defects, impurities, or disorder are present and
need to modeled in a supercell approach (see Sec. 3.2.1). For such systems, this has
so far prevented systematic first-principles, high-throughput studies across the periodic
table. In various studies, this has been circumvented by developing and using various
semi-empirical approximations to estimate the lifetime. Some representative approaches
are shortly summarized below; their validity and usability is discussed in more detail in
Sec. 3.3.

Constant Relaxation Time Approximation: In this most simple approximation, the
lifetime is assumed to be a constant that is independent from q and s, so that one gets

κ =
1

3V0

∑
q,s

vs(q)2cs(q)τs(q)→ τ

3V0

∑
q,s

vs(q)2cs(q) (2.88)

The sum and integral can be fully evaluated within reasonable computational cost in the
harmonic approximation. The lifetime τ is then typically estimated or fitted to known
experimental or theoretical results (see Sec. 3.3).

Slack’s Method: Following the reasoning of the constant relaxation time approximation,
Slack [39] proposed an analytic expression for the phonon lifetimes

1

τs(q)
= pω2

s(q)
T

ΘD
e−

Θ
T (2.89)

for temperatures close to Debye temperature ΘD. in Slack’s original work [39], p is an empir-
ical parameter that needs to be estimated. Madsen et al. [40] improved this approach by de-
terming p from different other models, e.g., by using Grüneisen paramters.

Constant Mean Free Path Approximation: Formally, this approximation is conceptually
very similar to the constant relaxation time approximation. In this case, however, the
mean free path

Λs(q) = τs(q)|vs(q)| !
= Λ (2.90)
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2.2 Nuclear Motion

is assumed to be a constant parameter Λ. In turn, this yields the following expression for
the thermal conductivity

κ =
Λ

3V0

∑
q,s

vs(q)cs(q). (2.91)

For instance, Galli et al. [41] have used this approach in a reduced form

κ =
1

3V0
CV vΛ (2.92)

by assuming that a single effective group velocity v (Debye model) can be used to model
thermal conductivities.
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3 Properties of Pristine Magnesium Silicide

Mg2Si is a semiconducting material that crystallizes in an antifluorite structure (Space group
225/Fm3̄m). In recent years, it has been regarded as a promising material for thermoelectric
applications due to its relatively cheap price, high melting temperature (∼ 1400 K), and
its non-toxic composition. In its pristine form, its figure of merit ZT has been measured
to be between 0.2 and 1.1 [45] depending on the manufacturing process. As discussed in
Sec. 1, doping is regarded as a promising route to increase ZT and thus the thermoelectric
efficiency even further.

Although Mg2Si is certainly not the most promising candidate for a high-efficiency ther-
moelectric, it is the ideal test case for first-principles calculations in this field. On the
one hand, it has only three atoms in the unit cell, which makes it preferable to other,
more complex thermoelectric materials such as clathrathes (46 atom in a unit cell at
least) for computational reasons. On the other hand, it does not contain any heavy
elements, which allows to neglect computationally tricky effects such as the spin-orbit
coupling, which makes it preferable to classic thermoelectric materials such as Bi2Te3 and
Pb2Te3.

3.1 Basic Properties of Magnesium Silicide

In a first step, we investigated the geometric and lattice properties of Mg2Si, i.e., the
lattice constant a0, the bulk modulus B0, and its derivative B′0 in the anti-fluorite struc-
ture (fcc). For this purpose, five individual DFT calculations were performed for lattice
constants a(i=1···5)

0 in the range ±3% around the experimental lattice constant 6.34 Å [42].
The resulting total energies Etot(ai0) were fitted with the Birch-Murnaghan equation of
state [50, 51] to determine a0, B0, and B′0. As detailed in the appendix 7, these calculations
were performed for different numerical settings to investigate the convergence of these prop-
erties of interest with respect to these parameters. This revealed that using an electronic
(12× 12× 12) k-grid, FHI-aims’ “tight” integration grids, and a Si tier 1 and Mg tier 2 basis
set yields not only qualitatively correct, but even quantitatively sound results, e.g., lattice
constants a0 are converged up to ±0.01 Å. Accordingly, these exact settings were used also
for all other calculations presented in this thesis.

Furthermore, the dependence of a0, B0, and B′0 on the chosen XC-functional was investi-
gated by performing calculations in the local (LDA) and semi-local (GGA: PBE, PBEsol)
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3 Properties of Pristine Magnesium Silicide

Functional a0 (Å) B0 (eV/Å) B′0
LDA 6.27 0.36 4.10
PBE 6.37 0.34 3.87
PBEsol 6.33 0.35 3.91
PBE0 6.33 0.36 3.83
Exp. 6.34a,b 0.37b –

Figure 3.1 & Table 3.1: Left: Primitive unit cell of pristine Mg2Si (Mg brown,
Si green). Right: Lattice constant a0, bulk modulus B0,
and its derivative B′0 of Mg2Si as determined by a Birch-
Murnaghan fit to DFT data computed for different XC
functionals.
a Ref. [42] b Ref. [43]

Egap (eV) this work from literature
LDA PBE PBEsol PBE0 Exp. [46] LDA [47]

Γ ↔ Γ 1.98 1.82 1.87 3.14 2.2 1.55
Γ ↔ X 0.14 0.23 0.13 1.16 -

Table 3.2: Values for the direct (Γ ↔ Γ ) and indirect (Γ ↔ X)Electronic bandgap
of Mg2Si calculated with LDA, PBE, PBEsol, and PBE0.

approximation and comparing the outcome to more involved calculations using a hybrid
functional (PBE0). As shown in Tab. 3.1, LDA exhibits its typical “overbinding” (too
small lattice constants, large B0 and B′0), whereas PBE “underbinds” and thus exhibits the
opposite trend. PBEsol lies in between LDA and PBE; it also yields the closest result with
respect to the PBE0 calculation and experiment [42]. Generally, however, these geometric
properties are not particularly sensitive on the chosen XC-functional.

In Fig. (3.2) the electronic band structure for LDA, PBE, PBEsol, and PBE0 is shown.
While all band structures look qualitatively similar it is obvious that the band gap for
LDA, PBE, and PBEsol is much smaller than the band gap with PBE0 (see Tab. 3.2).
A more detailed investigation of the electronic structure in terms of a partial density of
states (PDOS) 1 reveals that both the valence band and the conduction band are highly
hybridized indicating a partially covalent character of the bonding instead of purely ionic
character (see Fig. 3.3).

1In partial density of states the contribution of the individual atoms to the full density of states is
disentangled by preforming a Mulliken population analysis, i.e., by projecting it onto individual atomic
orbitals.
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3.1 Basic Properties of Magnesium Silicide

Figure 3.2: Electronic band structure of Mg2Si close to the Fermi level as computed
with DFT between high-symmetry points [33] at the respective equi-
librium geometries (see Tab. 3.1) for the LDA, PBE, PBEsol (all left),
and for the PBE0 XC-functional (right). The different band structures
were aligned in such a way that the valence band maximum (VBM)
corresponds to the absolute zero.
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Figure 3.3: Partial density of states of Mg2Si calculated using PBEsol.
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3 Properties of Pristine Magnesium Silicide

Figure 3.4: Phonon Bandstructure of Mg2Si in the first (111), second (222), and
fourth (444) cubic supercell calculated with PBEsol and light integration
grids

3.2 Vibrational Properties of Magnesium Silicide

3.2.1 Methodology

As discussed in detail in Sec. 2.2.2, an assessment of the vibrational properties in the har-
monic and/or quasi-harmonic approximation requires to compute the force constants ΦαβIJ , i.e.,
the Hessian of the potential energy surface. In this work, a finite difference approach as
proposed by Parlinski, Li, and Kawazoe [24] and implemented in the phonopy package [25]
was used for this purpose. This requires to compute the forces FI(∆RJ) acting on the
individual atoms I under a small displacement ∆RJ of atom J from equilibrium. In a
second step, the Hessian is computed using the forward difference

ΦαβIJ =
∂E

∂RαI ∂R
β
J

=
∂FαI

∂RβJ
≈
FαI (δRβJ)

δRβJ
. (3.1)

In a naive approach, determining the 3N × 3N force constants for a system with N atoms
in the unit cell would thus require the forces for 3N individual displaced geometries.
In phonopy [25], this amount is significantly reduced by exploiting symmetry, e.g., only
2 (and not 288) force evaluations are required in the case of Mg2Si in a 96-atom super-
cell.

It this context it is important to stress that it is necessary to perform these force evaluations
in supercells to assess the Hessian in the extended system for displacements nĨ: As discussed
in Sec. 2.2.2, Ĩ is the index for the atoms in the unit cell and n denotes the specific periodic
image of this atom. The extended Hessian Φαβ

(0Ĩ)(nJ̃)
can then be used to determine the
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3.2 Vibrational Properties of Magnesium Silicide

wavevector q dependence of the frequencies via the dynamical matrix (also see Sec. 2.2.2):

Dαβ

ĨJ̃
(q) =

∑
n

Φαβ
(0Ĩ)(nJ̃)

MĨMJ̃

e
iq·(R(nJ̃)−R(0Ĩ)) . (3.2)

Formally, only a finite number of frequencies ωs(qi) with wavevectors qi that are commen-
surate with the supercell can be assessed exactly in a finite supercell. Given that the forces
and the force constants decay with the distance, the Fourier transformation in Eq. (3.2)
can be truncated and the full spectrum ωs(q) can be obtained nonetheless by Fourier
interpolation [24]. Still, the convergence of the quantities of interest with respect to the
chosen supercell size has to be carefully inspected in practice. For Mg2Si, this has been done
by performing calculations in the conventional cubic (1× 1× 1), (2× 2× 2), and (4× 4× 4)
supercell containing 12 (4), 96 (32), and 768 (256) atoms (Mg2Si unit cells), respectively.
The respective phonon band structures are shown in Fig. 3.4: In comparison with the fully
supercell converged (4 × 4 × 4) band structure, the (1 × 1 × 1) band structure exhibits
both qualitative and quantitative differences, e.g. over- and underestimated dispersion
in the low frequency spectrum, and large deviations at the high-symmetry points Λ and
L. Conversely, the (2 × 2 × 2) band structure is essentially indistinguishable from the
(4 × 4 × 4) band structure at low frequencies (< 8 THz); for the high-frequency region,
all qualitative features are well reproduced and only small quantitative deviances with a
maximal value < 0.5 THz (≈ 2 meV) are observed. Therefore, all calculations presented in
this and the next section were performed in a (2× 2× 2) supercell, since this obviously is
a good compromise between computational cost and accuracy.

Please note that the exact same conceptual approach was also used to determine the third
order force constants ΨαβγIJK via

ΨαβγIJK =
∂3E

∂RαI ∂R
β
J∂R

γ
K

=
∂2FαI

∂RβJ∂R
γ
K

=
∂ΦαβIJ
∂RγK

≈
ΦαβIJ (δRγK)− ΦαβIJ

δRγK
. (3.3)

Obviously, these calculations are always at least one order of magnitude more expensive
than the corresponding Hessian calculations, given that 3N ×3N ×3N elements need to be
determined. In this work, the phono3py package [26] was used to perform these calculations.
Again, this package makes extensive use of symmetry to reduce the computational effort.
For instance, “only” 258 (and not more than 80000) force evaluations are required for Mg2Si
in a 96-atom supercell.

In this context, it is important to note that for the practical harmonic (Hessian) calculations
the phonopy-FHI-aims 2 interface between phonopy and FHI-aims was employed. However,
no interface between phono3py and FHI-aims existed at the beginning of this thesis.
Developing such an interface that can read, write, and convert both the input and output
formats of phono3py and FHI-aims was an integral part of this thesis’ work that enabled

2The phonopy-FHI-aims interface was originally developed by Jörg Meyer et al. during his time at the
Theory Department of the Fritz-Haber-Institute of the Max-Planck-Society.
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3 Properties of Pristine Magnesium Silicide

Figure 3.5: Phonon band structure ωs(q) (left) and phonon density of
states g(ω) (right) of Mg2Si computed at the respective equilibrium
volumes (see Tab. I) for the LDA, PBE, and PBEsol XC-functionals. The
density of states g(ω) was computed using an extended (60 × 60 × 60)
q-grid and a Gaussian smearing of 0.1 THz.

the calculations discussed below.

3.2.2 Vibrational Properties of Mg2Si in the Harmonic Approximation

The plots in Fig. (3.5) show the converged phonon band structure ωs(q) and density of
states g(ω) of Mg2Si at the equilibrium volume in the static limit (lattice constant a0 given
in Tab. I). To qualitatively classify the vibrational properties of Mg2Si, we compare its
phonon band structure to the ones of Si and CuCl (see Fig. 3.6), two materials known
for their strong harmonicity/anharmonicity. For Mg2Si, the highest observed (optical)
frequencies are in the order of magnitude of 11 THz and thus lower than the ones in
Si (15 THz) and slightly larger than CuCl (7.5 THz). Qualitatively, the phonon band
structure of Mg2Si looks more similar to the one of Si than the one of CuCl: For both
Mg2Si and Si, highly dispersive modes are observed across the whole range. In contrast to
CuCl, no gap is observed between the acoustic and optical modes.

With respect to the chosen XC functional, the same trends discussed for the lattice
constants in Sec. 3.1 are observed (see Fig. 3.5). LDA tends to “overbind” so that also
the frequencies are generally higher (stiff bonding), whereas PBE tends to underbind and
thus yields generally lower frequencies. As in the case of the lattice constant, PBEsol
places itself between PBE and LDA. Most prominently, this trend is observed for the
high frequency optical phonons between 8 and 10 THz in the also shown density of states.
Again, however, the vibrational properties of Mg2Si are not particularly sensitive on the
chosen XC functional.

Additionally, Fig. 3.7 shows the thermodynamic potentials (internal energy U , entropy S,
and free energy F = U − TS) and the respective specific heat cV of Mg2Si, which were
computed from the harmonic force constants using the techniques detailed and discussed
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3.2 Vibrational Properties of Magnesium Silicide

Figure 3.6: Phonon band structure ωs(q) of Si in the diamond structure (left) and
CuCl (right) computed using the PBEsol functional. The computational
settings used for these two systems are summarized in Appendix 7.

Figure 3.7: Thermodynamic potentials (internal energy U , entropy S, and free en-
ergy F = U−TS) of Mg2Si (left) and the respective specific heat cV (right)
computed in the harmonic approximation (DFT-PBEsol). An ex-
tended (60 × 60 × 60) q-point grid was used to determine U , S, F ,
and cV .
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3 Properties of Pristine Magnesium Silicide

Figure 3.8: Temperature dependent equilibrium volume V0(T ) (left) and thermal
expansion coefficient α(T ) (right) of Mg2Si computed using the quasi-
harmonic approximation and the LDA, PBE, and PBEsol XC-functionals.

in Sec. 2.2.2. Due to the use of the Bose-Einstein distribution (2.53) for the occupation
number of the phonons, quantum-mechanical effects in the nuclear dynamics are inherently
accounted for. Accordingly, we observe the typical quantum-mechanical T 3 dependence
of the specific heat cV at low temperatures. The classical Dulong-Petit limit (constant
cV ) is only reached at temperatures above 400 K. This is consistent with the calculated
and measured values for the Debye temperature (434 K as detailed in Sec. 3.3 and 417 K
measured at 300K [42], respectively).

3.2.3 Vibrational Properties of Mg2Si in the Quasi-Harmonic Approximation

As a first step in the investigation of anharmonic effects, the temperature dependent
volume V0(T ) of Mg2Si was computed using the quasi harmonic approximation discussed in
Sec. 2.2.2. Along the lines of the Birch-Murnaghan fits discussed in Sec. 3.1 to determine
the equilibrium volume in the static limit, both total energy and phonon calculations were
performed for five different volumes V i=1..5

0 . The respective free energies F (V 0
i , T ) were

computed using Eq. (2.56) for temperatures between 0 and 800 K and then fitted using the
Birch-Murnaghan equation of state to determine the temperature dependent volume V0(T ).
The thermal expansion α(T ) defined in Eq. (2.59) was eventually computed using a central
finite difference:

α(T ) =
1

3V0(T )

∂V0(T )

∂T
≈ 1

3V0(T )

V0(T + δT )− V0(T − δT )

2δT
. (3.4)

A step size of ∆T = 5K was chosen to ensure the stability of the finite difference;
with respect to the computational parameters for the DFT and phonon calculations, the
converged settings discussed in the previous sections were used.

The plots in Fig. (3.8) show both the temperature dependent equilibrium volume V0(T )

and the thermal expansion α(T ) of Mg2Si computed with different XC-functionals. Again,
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3.2 Vibrational Properties of Magnesium Silicide

Figure 3.9: Thermal expansion coefficient α(T ) computed in the quasi-harmonic
approximation using DFT-PBEsol for Si, CuCl, and Mg2Si. The chosen
computational settings for Si and CuCl can be found in Appendix 7.

we find only a week dependence of these properties of Mg2Si on the chosen XC functional.
Again, PBE exhibits the highest lattice expansion and LDA the lowest due to their
“under/overbinding” discussed before. To a very large extent, this dependence has its roots
in the too large/too small volume found already in the static limit (see Sec. 3.1), as can
be seen from the fact that the temperature dependent equilibrium volumes V0(T ) differ
essentially by a constant offset. Accordingly, the lattice expansion α(T ) for the different
functionals are almost indistinguishable.

To better classify Mg2Si, it is again useful to compare its thermal expansion coefficient α(T )

with the one of Si and CuCl, two materials known for their strong harmonicity/anharmonic-
ity. As shown in Fig. 3.9, Mg2Si exhibits a strong lattice expansion, given that its room tem-
perature value of α(300K) = 1.55 1/K is almost the same as the one of CuCl (1.57·10−5 1/K)
and thus 6.6 times larger than the one of silicon (2.37 · 10−6 1/K). Also, it is important
to note that the thermal expansion of Mg2Si is always positive (α(T ) > 0). Conversely,
a negative lattice expansion is observed at low temperatures in the case of silicon and
CuCl (see Fig. 3.9). This effect is typical for zinc blende and diamond structures; a detailed
discussion [20] would however go beyond the scope of this work.

Interestingly, the harmonic properties of Mg2Si discussed in the previous section suggested
that Mg2Si should behave qualitatively similar to Si. The quasi-harmonic calculations in
this section, however, suggest that the anharmonic effects probed by these approach are in
the same order of magnitude as the ones found in CuCl. This –as well as the roots of the
strong lattice expansion in Mg2Si– can be understood in detail by investigating its total
overall Grüneisen parameter γ(T ) defined in Eq. (2.62). In the following, three different
approaches where used to compute γ(T ) and the associated thermal expansion α(T ) to
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3 Properties of Pristine Magnesium Silicide

disentangle the different contributions to this effect:

(QH): Using the relation given in Eq. (2.60) for the lattice expansion α(T ), we can compute
the overall Grüneisen parameter γ(T ) using

γ(T ) =
3α(T )B0(V0(T ))

CV (T )
(3.5)

directly from the outcome of the quasi-harmonic calculations discussed before. Given
that the quantities entering this expression were computed by explicitly investigat-
ing different volumes V i

0 , the dependence on the volume is inherently taken into
account, e.g., by using the temperature dependent bulk modulus B0(V0(T )).

(FD): In this approach, the overall Grüneisen parameter γ(T ) is computed from the mode-
specific Grüneisen parameters γs(q) using Eq. (2.62). The required mode-specific
Grüneisen parameters γs(q) are calculated from the volume derivative of the dynam-
ical matrix D(q) as detailed in Eq. (2.63). The latter derivative is performed using a
centered finite difference approaches, see Eq. (2.64), which requires three individual
phonon calculations for the volumes V, V + δV, V − δV (δV = 0.01V ). From the
thereby determined overall Grüneisen parameter γ(T ), the lattice expansion α(T ) is
then computed using Eq. (2.60). It is important to note that all quantities in this
approach are calculated at (or ∆V around) the equilibrium volume in the static limit.
Accordingly, the temperature dependence of the bulk modulus B0 is not accounted
for.

(3rd): Conceptually, this approach is almost identical to the finite difference one (FD). The
only difference is that in this case themode-specific Grüneisen parameters γs(q) are not
determined via finite differences, but from third order harmonic force constants ΨαβγIJK

using the perturbative expressions given in Eq. (2.74) and (2.75). Thereby, the
third order harmonic force constants ΨαβγIJK are computed using the finite difference
approach implemented in phono3py [26] and discussed for Eq. (3.3).

The plots in Fig. (3.10) show both the thermal expansion coefficients α(T ) and the overall
Grüneisenparameter γ(T ) for Mg2Si, diamond Silicon, and zincblend CuCl as computed by
the three techniques (QH, FD, and 3rd) introduced above. As can be seen in Fig. (3.10),
the three techniques generally yield results that agree with each other qualitatively. On a
quantitative level, however, interesting differences arise that allow for direct insights on
the degree anharmonicity. For this reason, for instance, the computed thermal expansion
coefficient α(T ) and the overall Grüneisen parameter γ(T ) are in good agreement for all
three approaches in the case of Si, which is known to be particularly harmonic. For the more
anharmonic Mg2Si, the overall Grüneisenparameter γ(T ) is in good agreement for all three
approaches, but the thermal expansion coefficients α(T ) computed in the quasi-harmonic
approximation (QH) deviates from the ones computed with FD and 3rd. The reason for
this deviation can be traced back to the fact that only the QH approach accounts for a
temperature/volume dependent bulk modulus B0(V (T )) in Eq. (3.5), whereas the FD and
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Figure 3.10: Thermal expansion coefficient α(T ) (left) and overall Grüneisen pa-
rameter γ(T ) (right) of Mg2Si, diamond Silicon, and zincblend CuCl
calculated with DFT-PBEsol from three different approaches (QH, FD,
and 3rd; see text)

.

3rd approaches rely on the bulk modulus B0 in the static limit. Even more prominently,
this behaviour is observed for CuCl: In this case, it is not only the thermal expansion
coefficient α(T ) that differs between the methods due to the different treatment of the bulk
modulus, but also the overall Grüneisenparameter γ(T ) differs: These results suggest that
for this particular material, which is known for its anharmonicity, a perturbational, first
order treatment in terms of finite differences close to equilibrium (FD) or third order force
constants (3rd) is generally inappropriate, given that these approaches differ significantly
from the quasi-harmonic approach (QH), in which also higher orders of anharmonicity are
effectively incorporated.

It is important to note that the lattice expansion also introduces a temperature depen-
dence in the phonon frequencies, given that these ωs(q, V (T )) implicitly depend on the
volume V (T ) in the quasi-harmonic approximation. Exemplarily, this is shown in Fig. 3.11
for Mg2Si: Upon lattice expansion, the bonding and the interactions between the atoms
decrease. Therefore, also the harmonic force constants and phonon frequencies are lowered.
Given that the latter enter the entropic term in the harmonic free energy in Eq. (2.50),
this is the reason that lattice expansion takes place at all when increasing the temperature.
Still, the changes with temperature observed for Mg2Si in Fig. 3.11 are rather minute,
purely quantitative and not qualitative. In particular, the most siginificant changes occur
in the high-frequency portion of the spectrum (ω > 6 THz). Given that the phonon modes
in this range are not particularly important for the thermal conductivity (see next section),
lattice expansion has been neglected in these latter chapters.

3.2.4 Lattice Thermal Conductivity of Magnesium Silicide

As discussed in detail in Sec. 2.2.4 and 3.2.2, the lattice thermal conductivity κ can
be computed in first order approximation by perturbatively treating the anharmonicity
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Figure 3.11: Phonon band structure of Mg2Si for the lattice constant (6.33 Å) in the
static limit (red: 0K equilibrium) and at the lattice constant (6.36 Å)
predicted by the quasi-harmonic approximation at 300K (blue: 300K
equilibrium). All calculations were performed using the PBEsol XC-
functional.

using third order force constants ΨαβγIJK , as defined in Eq. (2.66). For this purpose, the
phono3py [26] code package was interfaced with the DFT code FHI-aims [33], as discussed
in Sec. 3.2.1. By these means, the third order force constants ΨαβγIJK are determined via a
finite difference approach using Eq. (3.3): Again, a (2× 2× 2) cubic supercell was used
for computing these third order force constants ΨαβγIJK in the case of Mg2Si, given that the
calculations and analysis presented in Sec. 3.2.1 showed that qualitative and quantitative
results can be obtained by these means. Subsequently, a (18× 18× 18) q-grid was used to
compute the Fourier transformed third order force constants Ψs,s′,s′′(q,q′,q′′) defined in
Eq. (2.87) and then the lifetimes τs(q) using Eq (2.85) and (2.86). Consistently, the exact
same supercell and q-grid was used to in the respective harmonic calculations (see Sec. 3.2.2)
to compute the phonon frequencies ωs(q), group velocities vs(q) using Eq. (2.48), and the
mode-specific specific heats cs(q) defined in Eq. (2.51). Eventually, all these ingredients are
combined to compute the diagonal entries of the thermal conductivity tensor using the
expression

κ =
1

V0

∑
q,s

cs(q)v2
s(q)τs(q) . (3.6)

already discussed in Sec. 2.2.4. Please note that due to the cubic symmetry of Mg2Si, Si, and
CuCl, all diagonal entries of the thermal conductivity tensor κ = κxx = κyy = κzz are equal.
To asses which modes contribute the most to the thermal conductivity and to qualitatively
discuss the differences between different XC-functionals and/or materials, it is also useful
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Figure 3.12: Computed lattice thermal conductivity κ: The left plot shows how the
lattice thermal conductivity κ depends on the chosen XC-functional.
The also shown experimental data (green squares) was taken from
Ref. [54]. The right plot shows a comparison of the lattice thermal
conductivities κ of Mg2Si, Si, and CuCl, which were all computed with
DFT-PBEsol.

to introduce the normalized density of the thermal conductivity

κdos(ω) =
∑
s

w [
cs(q)τs(q)|vs(q)|2

]
δ(ω − ωs(q))dq , (3.7)

which quantifies the contributions to the thermal conductivity stemming from a specific
frequency ω. In all cases, the converged computational settings (k-points, basis set,
integration grids) discussed in the previous sections were used in the underlying DFT
calculations.

Fig. 3.12 (left) shows the lattice thermal conductivities κ of Mg2Si computed by these means
using the LDA, PBE, and PBEsol XC-functionals. The agreement with the also shown
experimental values [54] is satisfactory in all cases, given that also this property of Mg2Si
appears not to be particularly sensitive on the chosen XC functional, in line with the findings
in the previous sections. To put this result into perspective, it is again useful to compare the
computed thermal conductivity of Mg2Si with the ones computed for silicon and CuCl (see
Appendix 7 for the chosen computational settings). As also shown in Fig. 3.12 (right), the
thermal conductivity of Mg2Si lies between the one of the very anharmonic CuCl and the
very harmonic Silicon: For instance, at 300K the thermal conductivity of Mg2Si has as
value of 11.125 (W/mK), whereas the one of Si is 122.53 (W/mK) and the one of CuCl is
1.828 (W/mK) (calculated with PBEsol).

The discussion of an integrated quantity such as κ is not particularly useful to disentangle
the different contributions. For this reason, Fig. 3.13 (upper left) also shows the normalized
density of the thermal conductivity κdos(ω) computed for Mg2Si at 300K using different
XC-functionals. Clearly, the dominant contribution (93%) to the thermal conductivity
of Mg2Si stems from the frequency range between approx. 1 and 8 THz. The respective
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Figure 3.13: Thermal conductivity (left), density of the thermal conductivity (right)
at 300K, phonon band structure (left below) and phonon density of states
(right below) of Mg2Si for LDA, PBE and PBEsol the orange are mark
frequencies with the highest contribution to the thermal conductivity.
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Figure 3.14: Phonon band structure and phonon density of states of Si (above).
Phonon band structure and phonon density of states of CuCl (below)

band structure plot also shown in Fig. 3.13 (lower left) reveals that this is the region in
which highly dispersive modes with large group velocities, especially acoustic modes, occur.
Interestingly, modes in the range between 1 and 3 THz have a significant contribution
of 26% to the thermal conductivity, in spite of the fact that the vibrational density of
states (also shown in Fig. 3.13, lower right) in this range is actually almost negligible (only
3% of the total density of states). A more detailed discussion of the physical mechanisms
driving this behaviour can be found later in this chapter, given that this requires to
decompose and understand the contributions to thermal conductivity in more detail. For
instance, this becomes clear from the fact that LDA has much larger contributions in the 1
to 3 THz frequency range than PBE and PBEsol,in spite of the fact that the respective
band structures are virtually indistinguishable in this range. Still, all three functionals yield
the same qualitative and almost the same quantitative results for the portion of κdos(ω)

that contributes most to the thermal conductivity.

Furthermore, the normalized density of the thermal conductivity κdos(ω) is compared for
three different systems (Mg2Si, Si, CuCl) in Fig. 3.13 (upper right). Interestingly, this
reveals that Mg2Si behaves qualitatively different than both Si and CuCl: While most of
the thermal conductivity of Mg2Si stems from a wide range of modes between 1 and 8 THz,
most of the thermal conductivity of Si and especially CuCl stems from lower frequency
modes, i.e., from modes between 1 and 6 THz for Si and from modes below 4 THz in
for CuCl. In part, this can be rationalized from the fact that by definition modes that
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exhibit a vanishing dispersion vs(q) = ∂ωs(q)/∂q ≈ 0 cannot contribute to the thermal
conductivity by definition, see Eq. (3.6). In part, this is the reason that the high-frequency
optical modes with high density of states, i.e., the peak at 9 THz for Mg2Si and the peak at
14 THz for Si, have negligible contributions to κ. Similarly, this is in part the reason that
the low frequency acoustic modes with high group velocities vs(q) contribute much more
to κ than the respective density of states would suggest. However, this kind of analysis
is not sufficient to qualitatively and quantitatively explain all the features of κdos(ω), as
will become even clearer in the next section. For instance, the high-frequency modes of
CuCl in the range between 5 and 8 THz exhibit a notable dispersion vs(q), but have no
significant contribututions to κ.

3.3 Approximative Treatment of the Anharmonicity

As discussed in Sec. (3.2.1), the computational effort required to determine the third
order force constants is significant, in particular for systems with low degrees of symme-
try, e.g., when an impurity atom breaks the symmetry. For this reason, the cost of a
computational high-throughput screening of the lattice thermal conductivity is in many
cases prohibitive. Various approximations (see Sec. 3.3) have been proposed to estimate the
lattice thermal conductivity so that such studies can be performed nonetheless. However,
the validity and accuracy of these approximations is still topic of scientific debate, as
already substantiated by the fact that so many conceptually different approximations
have been proposed. For this reason, these approximations are investigated for Mg2Si, Si,
and CuCl in this section and compared to the results of a full lattice thermal conductiv-
ity calculation. This allows to analysis and discuss the applicability and limits of these
approximations.

Constant Mean free Path Approximation: In the constant mean free path approxima-
tion (CMFP) as defined in Eq. (2.91) the mean free path (product of group velocity and
lifetime) is assumed to be a mode-independent parameter Λ that can be estimated. In
our case, we have chosen Λ in such a way that the respective thermal conductivity in the
single mode relaxation time approximation (SMRTA) is reproduced exactly. To analyze
if this is a meaningful approximation, we compare the respective density of the thermal
conductivity between the SMRTA and the CMFP, as shown in Fig. 3.16. This allows to
understand if the correct physical contributions to the conductivity are reproduced by the
approximation.

In all cases shown in Fig. (3.16), the CMFP overestimates contributions in the high-
frequency range and underestimates the contributions in the low-frequency range. In some
cases, the locations of peaks is correctly reproduced. Their relative height is however
generally incorrect. In spite of its quite wide-spread application [41], this thus not appear
to be a valid and trustworthy physical model. To asses how the CMFP method performs at
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Figure 3.15: Density of the thermal conductivity of Si (left), CuCl, and Mg2Si (below)
in the single mode relaxation time approximation (SMRTA) and the
constant mean free path approximation (CMFP) at 300K. In the latter
case, the parametric mean free path Λ was chosen in such a way that
the SMRTA thermal conductivity is reproduced exactly.
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Figure 3.16: Density of the thermal conductivity of Si (left), CuCl, and Mg2Si (below)
in the single mode relaxation time approximation (SMRTA) and the
constant mean free path approximation (CMFP) at 500K. In the latter
case, the parametric mean free path Λ was chosen in such a way that
the SMRTA thermal conductivity is reproduced exactly.
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Figure 3.17: Density of the thermal conductivity of Si (left), CuCl, and Mg2Si (below)
in the smrta (single mode relaxation time approximation) and CMRT
(constant mean relaxation time approximation) at 300K.

different temperatures, Λ was now chosen to reproduce exactly the results of the SMRTA at
a temperature of 500K. As can be seen the qualitative results in both the SMRTA method
and the CMFP method remain largely the same.

Constant Relaxation Time Approximation: The constant mean relaxation time approx-
imation (CMRT) is conceptually similar to the CMFP approximation discussed above,
see Sec. 2.2.4. In this case, however, a constant relaxation time τ is assumed, which in
turn leads to a quadratic dependence of the thermal conductivity density on the group
velocities. Again, the parameter τ needs to be estimated. In this work, it was again chosen
in such a way that the respective thermal conductivity in the single mode relaxation time
approximation (SMRTA) is reproduced exactly. As shown in Fig. 3.17, similar trends as in
the case of the CMFP approximation are observed: Again, high-frequency contributions are
generally overestimated, whereas low-frequency contributions are underestimated. In part,
this erroneous trend is even more severe than in the CMFP case, given that group velocities
now enter quadratically: This is for instance the case for CuCl, for which the contributions
from high frequency phonons are even more overestimated, while the contributions from
low frequency phonons are even more underestimated.
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Figure 3.18: Density of the thermal conductivity of Si (left), CuCl, and Mg2Si (below)
in the smrta (single mode relaxation time approximation) and Slack’s
approximated lifetime at 640K (Si), 310K (CuCl), and 430K (Mg2Si).

Slack’s Lifetime In the last discussed approximation, the expressions for the thermal
conductivity κ and κDOS(ω) given in Eq. (3.6) and (3.7) are fully evaluated. However, the
lifetime τs(q) is approximated by an analytic, frequency-dependent expression given in
Eq. (2.89). This approximation was proposed by Slack and Galginaitis in 1964 [39] on the
basis of empirical findings for temperatures close to the Debye temperature of the material
using a simple Debye model. For the more complex phonon band structures of interest in
this work, the Debye temperature ΘD(∞) is determined using the second moment of the
density of states g(ω) [40]:

ΘD(∞) = 2π
~
kb

√r∞
0 ω2g(ω)dω
r∞
0 g(ω)dω

. (3.8)

Still an empirical parameter p, which needs to be estimated, is required; again, it was chosen
in this work in such a way that the respective thermal conductivity in the single mode
relaxation time approximation (SMRTA) is reproduced exactly. As shown in Fig. 3.18, this
approximation performs considerably better than the CMFP and the CRT approximations
due to the fact that in this case the lifetimes are not frequency-independent, but scale
with ω−2s (q). Inherently, this captures the fact that contribution to κ stemming from
low frequency modes is much stronger than the one of high frequency modes, and thus
improves on the CMFP and the CRT. Although this approximations yields much more
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Figure 3.19: The plot shows the comparison of how Slack’s approximation performs at
different temperatures for CuCl (p estimated at 310K), Si (p estimated
at 640K), and Mg2Si (p estimated at 430K)

reasonable results for κDOS(ω), the agreement with a full SMRTA calculation is far from
perfect: The very low-frequency region is generally overestimated due to the divergence of
the ω−2s (q) term close to zero. In turn, contributions from highly-dispersive optical modes
are underestimated, e.g., in Si for frequencies around 12 THz and even more severely for
Mg2Si for frequencies around 6 THz. Since Slack’s approximation also depends on the
temperature it allows for an estimate away from the temperature at which the parameter
p was estimated. As observed in Fig. 3.19 Slack’s model yields good resuls near the
temperatures at which the parameter p was estimated. However the thermal conductivity
can be massively overestimated if it is too far away from the temperature p was estimated
at. In case of Si for example the thermal conductivity at 300K is overestimated by c.a. a
factor of 3.
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4.1 Methodology & Chosen Impurities

As discussed in Sec. 3, Mg2Si has recently attracted scientific interest due to its promising
thermoelectric properties. In this context, also extenstive research on doped Mg2Si was
published:
On the Si site [56, 57, 58]
On the Mg site [55]

Inspired by this mostly experimental studies, we compiled a list of possible substitutional
dopants that covers the impurities discussed in literature (see Fig. 4.1) and to extent the list
to cover a large portion of chemical space in a systematic fashion. For the substitution of
Si, we have investigated impurities in row 4, 5, and 6 and group 12-16; for the substitution
of Mg, row 3, 4, and 5 and group 1 and 2 were investigated (see Fig. 4.1). With respect to
impurity concentrations, we have limited ourselves to 3.13% doping for Si substitution and
1.56% doping for Mg substitution. This corresponds to substituting exactly one atom in a
96-atom, 2× 2× 2 conventional cubic Mg2Si supercell (32 fcc unit cells). In these supercells
sizes, the harmonic and anharmonic properties are correctly reproduced, as discussed in
Sec. 3.2.1.

For each of these compositions, equilibrium lattice constants a0, bulk moduli B0, and its
derivatives B′0 were determined by fitting to the Birch-Murnaghan equation using the exact
same procedure already discussed in Sec 3.1. By calculating the effective stress in the
thereby determined equilibrium structure, we were able to check that the cubic symmetry
is indeed retained upon relaxation. Eventually, phonon calculations were performed in
this doped (2× 2× 2) cell. The same numerical settings used for Mg2Si were employed in
these calculations as well (same k-point density in the respective Brillouin zones, “tight”
integration grids, the basis sets used for Mg and Si before, and a “tier 1” basis set for the
dopants.)

To qualitatively analyse the effect of dopants on the vibrational properties, the phonon
densities of states g(ω) defined in Eq. (2.54) were computed. In addition, also the anal-
ogously defined averaged group velocities v̄(ω) and mode heat capacities c̄(ω) were ana-
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Figure 4.1: Chosen Dopands:

lyzed:

v̄(ω) =
∑
s

r ω
0 |v(q, s)|δ(ω − ω(q, s))dq

r ω
0 δ(ω − ω(q, s))dq

(4.1)

c̄(ω) =
∑
s

r ω
0 cq,sδ(ω − ω(q, s))dq
r ω
0 δ(ω − ω(q, s))dq

. (4.2)

4.2 Effect of Substitutional Doping on Silicon Sites

In Tab. 4.1, the volume V0, bulkmodulus B0, and pressure derivative of the bulkmodulus
B′0 are listed for a representative selection of the investigated dopants on substitutional Si
sites. Generally, the effect of doping on the Si sites has almost negligible effects on these
quantities: In comparison to pristine Mg2Si, the volume slightly expands, whereas the
bulk modulus retains its value. The pressure derivative of the bulk modulus B′0 decreases
quite significantly. However, also this decrease is essentially independent of the chosen
dopant.

The computed vibrational density of states for different dopants is compared in Fig. 4.2
to the one of pristine Mg2Si. At first sight, the effects of doping appear to be minute;
still, some important qualitative trends can be observed: Generally, the intensity of the
high-frequency peak at 9 THz is reduced by doping. This is consistent with the slightly
larger volume observed upon doping (see Tab. 4.1), which is expected to lower the optical
frequencies (see Fig. 3.11 and its discussion). Additionally, a low-frequency peak becomes
visible for heavier dopants such as Ag, Sn, Au, or Bi at around 2 THz. This peak is
associated to an optical, localized mode of the defect; its frequency is thus essentially
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Figure 4.2: Mg2Si: Phonon density of states for substitutional doping on the Si site
with Ga, Ge, Ag, Sn, Au and Bi dopants in comparison with pristine
Mg2Si.

55



4 Properties of Doped Magnesium Silicide

Substitution on the Si Site Substitution on the Mg Site
V0 (Å3) B0 (eV/Å3) B′0 V0 (Å3) B0 (eV/Å3) B′0

Pristine Pristine
Mg2Si 2028 0.35 3.91 Mg2Si 2028 0.35 3.91
Ga 2032 0.35 3.51 Na 2035 0.34 3.51
Ge 2029 0.35 3.51 K 2049 0.34 3.51
Ag 2033 0.34 3.51 Ca 2056 0.34 3.51
Sn 2041 0.35 3.51 Rb 2056 0.34 3.51
Au 2031 0.35 3.51 Sr 2050 0.34 3.51
Hg 2037 0.35 3.51 - - - -
Bi 2042 0.34 3.51 - - - -

Table 4.1: Doped Mg2Si: Equilibrium volume V0, the bulk modulus B0, and its deriva-
tive B′0 as determined by Birch-Murnaghan fits to DFT data computed
with the PBEsol XC-functionals. For substitution on the Si site, only
a representative selection of dopants is listed, whereas all investigated
substitutional dopants for the Mg site are given.

inversely proportional to the mass of the dopant. As can be examplarily seen from phonon
band structure of Ag doped Mg2Si shown in Fig. 4.3, this optical modes crosses the original
acoustic phonon modes of the pristine Mg2Si crystal.

Although the impact of the dopants on the density of state is almost negligible, its influence
on the thermal conductivity is not, as will be detailed quantitatively in the next section.
This can already be expected from the fact that the group velocities are quite strongly
altered by the dopants: As shown in Fig. 4.4, the averaged group velocity v̄(ω) generally
decreases over the whole range of frequencies and in particular in the range between
3 and 8 THz that contributes significantly to the thermal conductivity of Mg2Si (see
Sec. 3.2.4). Again, this can be rationalized by inspecting the respective phonon band
structures: As shown exemplarily for Ag doped Mg2Si in Fig. 4.3, the backfolding of the
Brillouin zone in this extended unit cell and the occurring break of symmetry due to the
dopant induces a quite dense, almost dispersionless phonon band structure in this frequency
range and thus the reduction in v̄(ω). For frequencies below 3 THz, which significantly
contribute to thermal conductivity as well, the reduction in v̄(ω) is purely caused by the
localized optical mode of the defect. This mode significantly disrupts the dispersion and
reduces the group velocities of the original acoustic phonon modes of the pristine Mg2Si
crystal.

Conversely, the averaged mode heat capacities c̄(ω) also shown in Fig. 4.4 are hardly affected
by doping: In the classical limit of Dulong-Petit (cV = 3NkB), this is self-evident, since
the substitutional doping does not alter the number of atoms N . But even at temperatures
below the Debye temperature, no significant influence is observed.
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Figure 4.3: Left: Phonon band structure of Ag doped Mg2Si (Si substitution, PBEsol
XC-functional). Given that the unit cell for this defected system contains
96 atom (2×2×2 supercell of pristine Mg2Si), the original Brillouin zone
of Mg2Si is backfolded, so that one gets a total of 288 phonon modes per
q-point. Right: The respective phonon band structure of pristine Mg2Si
is shown for comparison.

Figure 4.4: Mg2Si: Averaged phonon group velocity v̄(ω) (left) and averaged mode
heat capacity c̄(ω) (right) at 300K for substitutional doping on the Si
site with Ga, Ge, Ag, Sn, Au, Hg, and Bi dopants in comparison with
pristine Mg2Si.
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Figure 4.5: Phonon Desity of States of Na, K, Ca, Rb and Sr doped Mg2Si in
comparison with pristine Mg2Si

4.3 Effect of Substitutional Doping on Magnesium Sites

In Tab. 4.1 the volume V0, bulk modulus B0, and its pressure derivative B′0 are listed for
the investigated dopants on substitutional Mg sites. Qualitatively, the same trends as for Si
substitution are seen. The volume expands, the bulk modulus is retained, and its derivative
is decreased quite significantly regardless of the dopant’s species. Quantitatively, however,
the trends in volume expansion are stronger for Mg substitution.

In Fig. 4.5, the computed vibrational density of states is again compared to the one of
pristine Mg2Si. Again the effects of substitution on the Mg site seem to be more pronounced
in comparison to substitution on the Si site. For heavier dopants, a significant decrease in
the height of the peak at 9 THz is observed as well as a slight shift to lower frequencies.
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Figure 4.6: Mg2Si: Averaged phonon group velocity v̄(ω) (left) and averaged mode
heat capacity c̄(ω) (right) at 300K for substitutional doping on the Mg
site with Na, K, Ca, Rb and Sr dopants in comparison with pristine
Mg2Si.

The latter has its roots in the increased lattice expansion, as discussed in Sec. 3.2.3 (see
Fig. 3.11 and respective text).

As in the case of substitution of the Si site, the influence on doping on the thermal
conductivity can be expected to be more significant than the densities of states shown in
Fig. 4.5 suggest. As shown in Fig. 4.6, the averaged group velocity v̄(ω) decreases over
the whole frequency range and especially for frequencies above 3 THz for the exact same
reasons already discussed for substitution on the Si site. Again, no changes in the averaged
mode heat capacity c̄(ω) are observed (also see Fig. 4.6).

4.4 Estimating the Impact of Substitutional Doping on the
Lattice Thermal Conductivity of Magnesium Silicide

As already discussed in Sec. 3.2.1, calculating the lattice thermal conductivity from first
principles within the single mode relaxation time approximation (SMRTA) can easily
become computationally extremely expensive, given that for a material with N atoms
in the unit cell the 3N × 3N × 3N elements of the third order force constant matrix
need to be computed. In particular, this is the case for systems with a large number of
atoms in the unit cell and few symmetries, such as the substitutionally doped magnesium
silicides discussed in this section: Indeed, a single lattice thermal conductivity calculation
for one such doped system would require at least 14,000 DFT force evaluations and
is thus at least 50 times more expensive than a calculation for pristine Mg2Si. Even
with very generous computational allocations, an extensive high-throughput study of
such defected materials with dopants chosen across the periodic table is thus essentially
unfeasible. For this exact reason, approximations to the SMRTA are needed to at least
estimate the thermal conductivity of such doped materials in a computationally rapid way.
Various approximations in this spirit have been proposed in literature: The theoretical
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Figure 4.7: Constant mean free path approximation (CMFP) for substitutionally
doped Mg2Si: The left plot shows the density of the thermal conduc-
tivity κdos(ω) for selected substitutional doping on the Si (Ga, Bi, Au)
and the Mg (Na,Rb) site. The right plot shows the estimated thermal
conductivity at 300K plotted against the atomic mass of the dopant for
all investigated substitutions.

concepts underlying these approximations were already discussed in detail in Sec. 2.2.4,
the aspects regarding their practical application in Sec. 3.3. In this section, we thus limit
ourselves to evaluate these approximations for the doped magnesium silicides discussed
above.

4.4.1 Constant Mean Free Path Approximation

In the constant mean free path approximation (CMFP), the lattice thermal conductiv-
ity κ and the density of the thermal conductivity κdos(ω) were estimated by evaluating
Eq. (3.7) for all doped magnesium silicides. The value for the required parameteric mean
free path Λ at a temperature of 300K was chosen to be 52Å, i.e., the value for which
CMFP and SMRTA calculations yield the exact same value of κ at this temperature (see
Sec. 3.3) for pristine Mg2Si. This implies the assumption that Λ is only marginally affected
by doping, so that the value valid for pristine Mg2Si can also be used for the doped
compounds.

In Fig. 4.7, the density of the thermal conductivity κdos(ω) computed with the CMFP
approximation for the doped silicides is compared to the one of pristine Mg2Si (both
CMFP and full SMRTA) is shown. For all investigated dopants, a distinct reduction of
the κdos(ω) for all modes with frequencies larger than 2 THz is observed, which is consistent
with the reduction observed for the average group velocities before (see Fig. 4.4 and 4.6).
Here it is important to note that the CMFP severely underestimates contributions in the
low frequency regime (see Fig. 4.7 and Sec. 3.3): Accordingly, it remains questionable if
the CMFP is able to capture the influence of the localized optical mode that occurs for
heavier defects in this frequency range and that can be expected to disrupts the transport
contributions of the acoustic modes. Nonetheless, this approximation predicts that the
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Figure 4.8: Thermal conductivities estimated in the constant mean free path approx-
imation (CMFP) for substitutionally doped Mg2Si as function of the
dopants’ mass (left: 430K, right: 500K).

thermal conductivity should decrease massively upon doping, e.g., by a factor of 1.70 for
Na and 2.47 for Rb. As can be seen in Fig. 4.7, the CMFP predicts that heavier dopants
are more effective in lowering the thermal conductivity. Also, substitution on Mg sites is
more effective than substitution on Si sites, given that substitution Mg sites generally leads
to a higher volume and thus to lower frequencies (see Sec. 4.2).

Please note that the observed trends are also retained at higher temperatures, as can be
seen from the estimated thermal conductivities shown in Fig. 4.8 at the Debye temper-
ature (430 K) and at 500 K. At these temperatures, pristine Mg2Si features a thermal
conductivity of 7.76 W/mK and 6.68 W/mK, which results in a parametrical mean free
path Λ of 73.5Å and 62.4Å, respectively. This is not too surprising, given that the mode
specific heat cs(q), i.e., the only temperature dependent parameter entering the CMFP cal-
culation beside the defect-independent mean free path Λ, becomes temperature independent
in this high temperature limit.

4.4.2 Constant Relaxation Time Approximation

In the constant mean relaxation time approximation (CMRT), the lattice thermal conduc-
tivity κ and the density of the thermal conductivity κdos(ω) were estimated by evaluating
Eq. (2.91) for all doped magnesium silicides. The value for the required parameteric mean
constant relaxation time τ was chosen to be 4.68 ps at 300K, i.e., the value for which CMRT
and SMRTA calculations yield the exact same value of κ at 300K for pristine Mg2Si (see
Sec. 3.3). Essentially, this implies the assumption that the mean relaxation time changes
only marginally upon doping, so that the value valid for the pristine material can be used
for the doped structures as well.

In Fig. (4.9) the density of the thermal conductivity κdos(ω) calculated with the CMRT ap-
proximation for the doped structure in comparison with the one of the pristine Mg2Si (both
CMRT and full SMRTA) is shown. For all dopants a massive reduction of κdos(ω) above a
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Figure 4.9: Constant mean relaxation time approximation (CMRT) for substitu-
tionally doped Mg2Si: The left plot shows the density of the thermal
conductivity κdos(ω) for selected substitutional doping on the Si (Ga,
Bi, Au) and the Mg (Na,Rb) site. The right plot shows the estimated
thermal conductivity at 300K plotted against the atomic mass of the
dopant for all investigated substitutions.

Figure 4.10: Thermal conductivities estimated in the constant mean relaxation time
approximation (CMRT) for substitutionally doped Mg2Si as function of
the dopants’ mass (left: 430K, right: 500K)..

frequency above 2 THz is observed, which again agrees with the reduction observed for the
averaged group velocity v̄(ω) seen in Fig. 4.4 and 4.6. Just as before it is important to
keep in mind that the contributions from low frequency modes are also underestimated
using the CMRT, while the contribution from high frequency modes are overestimated
(see Fig. 4.9). Given that the relative weight is shifted towards lower frequencies in the
CMRT, this approximation suggests an even stronger decrease of the thermal conductivity
upon doping, e.g., by a factor of 2.4 for Na and 4.73 for Rb. Qualitatively, the same
trends (stronger reduction for heavy dopants and for substitution on the Mg site) as
discussed before are observed. For the exact same reasons, these trends are again retained
at higher temperatures, as shown in Fig. 4.10 for a temperature of 430K and 500K. At
these temperatures, the thermal conductivity of pristine Mg2Si (7.76 W/mK and 6.68

W/mK, respectively) leads to a constant mean relaxation time τ of 3.12 ps and 2.66 ps,
respectively.
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Figure 4.11: Slack’s approximation for substitutionally doped Mg2Si: The left plot
shows the density of the thermal conductivity κdos(ω) for selected
substitutional doping on the Si (Ga, Bi, Au) and the Mg (Na,Rb) site.
The right plot shows the estimated thermal conductivity at 430K plotted
against the atomic mass of the dopant for all investigated substitutions.

4.4.3 Slack’s Method

Conversely to the CMFP and CMRT approximation, no constant scattering mechanism is
assumed in Slack’s method. Rather, the relaxation time scales analytically with ω−2s (q) and
also depends on the temperature, as detailed in the discussion of Eq. (2.89). Still, Slack’s
method requires to estimate the parameter p. Here, it was chosen to be 0.06 ps2, i.e., the
value for which Slack’s method exactly matches the thermal conductivity κ computed
with the SMRT for pristine Mg2Si at 430K. Again, this assumes that p does not depend
significantly on the doping. In Fig. 4.11 the densities of the thermal conductivity κdos(ω)

calculated with Slack’s approximation for the doped magnesium silicides is shown. Com-
pared to the CMFP and CMRT calculations, κdos(ω) is even more massively reduced for all
frequencies above 2 THz, but slightly increases for frequencies below 2 THz. This is a result
of the fact that the factor ω−2s (q) in the modeling of the relaxation times shifts the relative
weight and importance of the modes to lower frequencies. Accordingly, the appearance of
low-frequency modes in the spectra of doped compounds becomes notable in the κdos(ω) as
well. Nonetheless, also Slack’s method yields the exact same qualitative trends (stronger
reduction for heavy dopants and for substitution on the Mg site) as discussed before. Given
that Slack’s method also accounts for the temperature dependence of the relaxation time, it
also allows to estimate the thermal conductivity at different temperatures without changing
the previously determined parameter p. Also in these case, the trends observed at 430K
are retained at higher temperatures, as shown in Fig. 4.12.
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Figure 4.12: Thermal conductivities estimated in Slack’s approximation for substi-
tutionally doped Mg2Si as function of the dopants’ mass (left: 500K,
right: 600K).
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5 Outlook

As the previous chapters have shown, the existing semi-empirical approximations to
rapidly estimate the thermal conductivity are capable of capturing some of the qualitative
trends, e.g., the dependence of the thermal conductivity on the mass of the dopant. However,
no reliable quantitative predictions appear to be possible: For instance, the thermal
conductivity of Bi doped Mg2Si is 3.6 (W/mK) in the CMFP, 1,9 (W/mK) in the CMRT,
and 3.9 using Slack’s method., in spite of the fact that the empirical parameters entering
these approximations have been determined from high-level first-principles calculations of
pristine Mg2Si.

Recently, Madsen and coworkers [40] proposed a refinement to Slack’s method, in which
the empirical parameter p is determined from the Grüneisen parameter of the material.
Although being a huge step forward, p is still frequency independent in this approach,
so that the computed thermal conductivities would only be scaled by a constant factor.
The qualitative, physical differences that appear in the density of the thermal conductiv-
ity κDOS(ω) when comparing Slack’s method to the SMRTA (see Sec. 3.3) would, however,
remain unchanged by this improvement.

Inspired by Madsen’s work, we investigated if it is possible to extract more detailed
information on the anharmonic interactions, i.e., the third order force constants ΨαβγIJK , from
the Grüneisen tensor γµνs (q) using the approaches proposed by Esfarjani [18]. Formally,
this two quantities are related by

γµνs (q) =
∑

IJK,αβγ

−ε∗αI,s(q)εβJ,s(q)
√
MIMJ2ω2

s(q)
δµγR

ν
Ke

iq·(RJ−RI)︸ ︷︷ ︸
Παβγ,µν
IJK,s (q)

ΨαβγIJK . (5.1)

already introduced and discussed for Eq. (2.74). Formally, inverting this relation requires
to find a least square solution for this equation.

For this purpose, Eq. (5.1) is written in matrix form as∑
M

Πθ,MΨM = γθ . (5.2)

Here all the cartesian and atomic coordinates where mapped on one Voigt index using
{αβγ, IJK} → {M}. The remaining indeces where also mapped on a different Voigt index
using {q, s, µ, ν} → {θ}. Both permutation symmetry and translational invariance were
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5 Outlook

imposed on the system to reduce the dimensionality of the problem. For the latter step,
the following relation for the atomic position R is exploited:

R̃ = R + T . (5.3)

Here, T is a translation vector of the system, as introduced in Sec. 2.1.3. In the practical im-
plementation, these vectors were computed using the spglib package as included in phonopy
[25]. However, no point group symmetry was exploited in the developed implementation,
yet, due to time constrictions.

The “fitting” procedure itself was performed by pseudo-inverting Eq. (5.2) using a singular
value decomposition (SVD) as implemented in the least square fitting procedure of the
numpy [59] library. Essentially, this algorithm determines the minimum of the following
equation

S(Ψ) =
∑
θ

|γθ −
∑
M

Πθ,MΨM |2 (5.4)

with respect to Ψ using a SVD.

In a first step, the outcome of such a fitting procedure was analyzed for CuCl in a (1×1×1)
cubic supercell. In this case, the third order force constants ΨαβγIJK were first computed
using phono3py, as discussed in Sec. 3.2.1. The Grüneisen parameters were then computed
using the ΨαβγIJK matrix elements and fed to the fitting algorithm. The ΨαβγIJK “reconstructed”
by this means are compared to the original third order force constants ΨαβγIJK in Fig. 5.1.
Generally, the reconstructed force constants reproduce the behaviour of the original force
constants. Still, some numerical noise is present: Mostly, this arises from the fact that no
point group symmetry is imposed. Also, the most strong deviations are observed for the
diagonal elements ΨαααIII at -10/12 eV/Å3, in which the deviations accumulate due to the
imposed acoustic sum rule:

ΨαβγIII = −
∑
K

ΨαβγIIK (5.5)

Despite the relatively good agreement, the “reproduced” third order force constants ΨαβγIJK

shown in Fig. 5.1 yield a thermal conductivity that is 34% too low (0.27 W/mK at 300 K
instead of 0.41 W/mK). Again, this can be traced back to the omission of point group
symmetry in the current implementation: Entries in ΨαβγIJK that should be equal and
then cancel out in the computation of κ are not equal due to the numerical noise and
thus add up to noticeable reduction in lifetime. Still, the results are very encouraging,
even at this very crude stage of development, given that the proposed technique is fully
parameter-free: In a nutshell, the developed approach allows to extract third order force
constants ΨαβγIJK from Grüneisen parameters γ. Given that the latter can computed from
the quasi-harmonic approximation (see Sec. 2.2.3), this results into orders of magnitude
lower computational cost than the one required to determine third order force constants
ΨαβγIJK via finite differences or perturbation theory. To fully test, analyze, and exploit the
potential of the proposed approach more implementation work is required: Especially,
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Figure 5.1: Third order force constants calculated with phono3py versus reconstructed
third order force constants for CuCl. Using a PBEsol functional in a
(1× 1× 1) cubic unit cell

CPU and memory bottlenecks that currently affect this proof-of-concept implementation
need to be removed to male the technique applicable for productive calculate on a large
scale.
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6 Conclusion

After giving a concise introduction into the fundamental physics underlying this thesis, we
investigated the fundamental properties of Mg2Si, and found that our results are in good
agreement with previously conducted experimental and theoretical works. Particular focus
was laid on the harmonic and anharmonic vibrational properties of Mg2Si. To better frame
the discussion, we compared Mg2Si to Si and CuCl, two materials which are known for
their harmonic/anharmonic behavior. This enabled us to perform an in depth analysis of
three different semi-empirical models used to estimate the vibrational thermal conductivity,
namely the constant mean free path approximation, the constant mean relaxation time,
and a empirical lifetime suggested by Slack. By analysing their performance in comparison
with the well established single mode relaxation time approximation for Mg2Si, Si, and
CuCl. We found that, while these models are not accurate enough to yield quantitatively
good results, they indeed are capable of predicting qualitatively correct trends for doping.
Using these models, we found that the thermal conductivity of Mg2Si reduces massively
upon doping. Additionally we found that heavier dopants are generally more effective in
lowering the thermal conductivity. Also substitutions on the Mg-site are more effective than
substitutions on the Si site. Finally an outlook was given for a promising parameter free
method to predict the third order force constants, typically used to calculate anharmonic
quantities such as the thermal conductivity.
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7 Appendix

Tab. 7.1 shows the computational settings choosen for Si and CuCl
Fig. 7.1 shows the convergence of the lattice constant a0(Å) and the bulk modulusB0(eV/Å3

)

with the k-point grid. The lattice constant as well as the bulk modulus converge rapidly with
the number of k-points. However to ensure an optimal convergence a dense (12× 12× 12)

k-grid was chosen.

Fig. 7.2 shows the convergence of the lattice constant a0(Å) and the bulk modulusB0(eV/Å3
)

with the chosen FHI-aims basis functions. Here Si1Mg1 means Si first tier and Mg first
tier. The choice of the basis set influences the lattice constant a0(Å) only in the milli
angström range. Also the bulk modulus B0Å changes only minimally with the number of
basis functions. However to ensure However to ensure results with a small error margin,
while also allowing for a efficient computation silicon first tier and magnesium second tier
was chosen.

Fig. 7.3 shows the convergence of the lattice constant a0(Å) and the bulk modulusB0(eV/Å3
)

with the chosen FHI-aims integration grids. The lattice constant a0(Å) depends minimally
on the chosen integration grid, the bulk modoulus B0(eV/Å

3
) however depends stronger

on the chosen integration grid. To ensure good results a tight integration grid was chosen.

Settings CuCl Si
k-point grid (6× 6× 6) (6× 6× 6)
Tiers Cu 2 Cl 2 Si 2
Integration-grid tight tight
Supercell cubic (2× 2× 2) cubic (2× 2× 2)

Table 7.1: Computational Settings for CuCl (zincblend) and Si (diamond).
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7 Appendix

Figure 7.1: Lattice constant (left) and bulk modulus (right) of Mg2Si using PBEsol
and light settings plotted against the number of k-points. As can be
seen the influence of the k-point grid on the lattice constant is in the m
range also the Bulkomulus changes minimally and can be regarded as
converged at a (4× 4× 4) k-point grid. However to minimize the total
error of the calculations a dense (12× 12× 12) k-point grid was chosen.

Figure 7.2: Lattice constant (left) and bulkmodulus (right) of Mg2Si using PBEsol
and light settings and a (12× 12× 12) k-point grid plotted against the
respective basisfunction tiers. Here Si1Mg1 means Silicon first tier and
Magnesium first tier. The influence of the chosen basis functions one the
lattice constant is the mÅ range. The bulk modulus also changes only
minimally with the number of basis functions. However to ensure results
with a small error margin, while also allowing for a efficient computation
silicon first tier and magnesium second tier was chosen.
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Figure 7.3: Latticeconstant (left) and Bulkmodulus (right) of Mg2Si using PBEsol a
(12× 12× 12) k-point grid and first tiers plotted against different FHI-
aims integration grids. The lattice constant a0(Å) depends minimally
on the chosen integration grid, the bulk modoulus B0(eV/Å

3
) however

depends stronger on the chosen integration grid. To ensure good results
a tight integration grid was chosen
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