
Models of perceptual decision making, which 
are based on dynamic stimuli such as random 
dot motion, are predominantly concerned with 
how evidence for a stimulus is accumulated 
over time [e.g., 1,2]. However, it is unclear how 
the brain derives this evidence from the sensory 

dynamics. While it is conceivable that simple 
feature-detecting neurons can, for example, di-
rectly signal evidence for motion in a specific 
direction, it is less clear how evidence for com-
plex motion, such as human movements, is 
computed from sensory input. Here we present 
such a model of the perceptual lower level 

system which is based on probabilistic infer-
ence for dynamical systems and can be used to 
provide input for higher level decision making 
systems. We illustrate this mechanism using  
two simulations. First we show that the system 
can handle the conventional random dot 
motion paradigm, and secondly,  that it can also 

infer, i.e. recognize, complex dot motion as gen-
erated by human walking movements (cf. point 
light walkers) in an online fashion. The present 
model is implemented by a neuronal network 
and computes stable percepts rapidly, thereby 
enabling both fast decision (reaction) times and 
high accuracy. 
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Abstract

Results

We have presented a model to explain rapid 
perceptual decision making. The model uses 
switching  nonlinear differential equations, 
where each of these describes specific non-
linear motions in the environment. By inferring 
the state of the switching variables the model 

can recognise which motion it currently ob-
serves. Our results show that the model rapidly 
switches to the correct differential equation, 
i.e., it can rapidly (e.g., within 50ms in the case 
of the motion capture walks) recognise a dy-
namic stimulus. We suggest that the combina-
tion of the present model with recent models 

for evidence accumulation in perceptual 
decision making [1,2] may be used to apply 
neurobiologically plausible decision making 
strategies to real-world stimuli like movements 
generated by humans.
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Summary

We illustrate inference in the present model 
using a simple example of synthetic motions of 
two dots which followed one of four different 
trajectories (A). In (C) inference results are 
shown for when the noise-free dot motion was 
observed. The decision about which of the four 
motions is currently observed is read off from 

the switching variables (the maximum value). 
The order of motions presented to the model 
was blue-green-yellow-red which was correctly 
recognised. Also for moderate amounts of 
noise (B) the correct motions could be identi-
fied (D).

By adding Wiener-process noise to the differ-
ential equations defined by the model we 
obtain a probabilistic formulation in terms 
of a multidimensional stochastic differential 
equation. External input to the Hopfield net-
work is modelled as an Ornstein-Uhlenbeck 
process which drives switching between dif-

ferent percepts in the model. We infer the 
switching variables from noisy observations 
y using a standard nonlinear filtering method 
(the unscented Kalman filter [5]) which imple-
ments approximate online Bayesian inference 
for nonlinear time-series models with hidden 
(unobserved) variables.

A Hopfield network [3] implements the dy-
namics between switching variables (the 
"switching dynamics"). The Hopfield dynamics 
implements a winner-take-all mechanism be-
tween switching variables such that only one 
of these is active in each stable fixed point of 
the dynamics. We associate each switching 

variable with different parameters of a para-
metric differential equation implemented by 
a dynamic movement primitive (DMP) [4]. 
The parameters are interpolated based on the 
values of the switching variables and the re-
sulting differential equation (the observation 
dynamics) is used to generate observations.

The switching model can equally be applied 
to more complicated, real-world motions. We 
demonstrate this using four different styles of 
walking as observed via the 3D positions of 
motion capture markers (DMPs were defined 
in the first six principle components, observa-
tions were directly the 90 x, y and z-values of 
the 30 markers). We additionally introduced 
a fifth motion (constant marker positions) to 
model a still standing walker. We presented 
the noise-free, original motion capture data 

(A) frame by frame to the model and inferred 
the switching variables. Results are shown in 
(C). The correct order of motions was yellow – 
green – dark blue – light blue – red. While the 
green walk was initially incorrectly identified 
as the blue walk, all other walks were rapidly 
recognised. For noisy observations (B, D) an ad-
ditional transient error occurs for the red walk, 
but otherwise inference was robust against the 
introduced level of noise.

A generative model for switching dynamic processes Online Bayesian inference

Recognition of nonlinear random dot motion Discrimination of different walks

Recognition of nonlinear random dot motion Discrimination of different walks
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