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Abstract

Personalized treatment of patients based on tissue-specific cancer subtypes has
strongly increased the efficacy of the chosen therapies. Even though the amount
of data measured for cancer patients has increased over the last years, most cancer
subtypes are still diagnosed based on individual data sources (e.g. gene expression
data). We propose an unsupervised data integration method based on kernel prin-
cipal component analysis. Principal component analysis isone of the most widely
used techniques in data analysis. Unfortunately, the straight-forward multiple-
kernel extension of this method leads to the use of only one ofthe input matrices,
which does not fit the goal of gaining information from all data sources. There-
fore, we present a scoring function to determine the impact of each input matrix.
The approach enables visualizing the integrated data and subsequent clustering for
cancer subtype identification. Due to the nature of the method, no free parameters
have to be set. We apply the methodology to five different cancer data sets and
demonstrate its advantages in terms of results and usability.

1 Introduction

In recent years, the amount of data that is available for cancer patients has increased largely, both in
the number of features as well as in the number of different platforms used. One challenge that goes
along with this mass of multidimensional data (i.e. data describing different molecular levels of the
tumor), is how to integrate and visualize it in a comprehensive and sensitive manner.

In the context of data integration, multiple kernel learning provides a useful framework to optimize
a weight for each input data type. In many applications, thisoptimization led to better results than
approaches that give equal weights to the different data sources. In order to visualize biological
data, multiple kernel learning has been used in combinationwith different dimensionality reduction
schemes [1].

However, kernel principal component analysis (kPCA), which is one of the most widely used dimen-
sionality reduction algorithms, is not easily extended using multiple kernel learning. The approach
is based on the directions of maximum variance in the data andbenefits from several advantages:
kPCA does not suffer from the out-of-sample problem, one does not need to fix parameters that
determine a neighborhood as in local dimensionality reduction techniques likelocality preserving
projections, but due to the use of the kernel function, the method provides enough flexibility to
model different types of data. Although kernel PCA can be implemented in the graph embedding
framework [2], due to an ill-posed eigenvalue problem multiple kernel PCA cannot be solved using
the extended framework presented in [1]. To be able to use this algorithm with multidimensional
data, we introduce a scoring function for the optimization of the kernel weights before one applies
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kPCA to the ensemble kernel matrix. The results of subsequent k-means clustering of the projected
data show that the presented method offers some advantages compared to naive kPCA approaches.

In the remainder of this abstract, we will shortly introducemultiple kernel learning and kPCA,
followed by our approach to combine these two concepts. We applied the method to five cancer data
sets which we will introduce before discussing the results.

2 Methods

2.1 Multiple kernel learning

In general, multiple kernel learning describes the optimization of weights{β1, ..., βM} for a fixed
set of input kernel matrices{K1, ...KM} according to their importance [3]. The aim is to find an
optimal ensemble kernel matrixK, which is a weighted linear combination of the individual input
kernel matrices,

K =
M
∑

m=1

βmKm, βm ≥ 0 and
M
∑

m=1

βm = 1. (1)

In this specific setting, each kernel matrix can be used to represent one data type. Due to the variety
of available kernel functions, data with different characteristics can be included, for instance quanti-
tative data from gene expression measurements, or sequences from genome sequencing approaches.

2.2 Kernel principal component analysis

PCA is a global dimensionality reduction approach, which uses the directions of maximum variance
in the centered data. Having a data matrixX with data pointsxi, the first principal component is
found by optimizing

arg max
α

N
∑

i=1

‖αTxi‖
2, ‖α‖ = 1. (2)

The solution is the eigenvector corresponding to the largest eigenvalue of the sample covariance
matrix, subsequent principal components are calculated analogously. In the kernelized version, the
data is implicitly projected into some (higher dimensional) feature space using a mapping func-
tion φ : xi → φ(xi) with k(xi, xj) = 〈φ(xi), φ(xj)〉 wherek is the positive semi-definite kernel
function [4]. The directions of maximum variance are identified in the feature space, which is
achieved by considering the largest eigenvalues of the kernel matrix and their respective eigenvec-
tors.

2.3 Extending kernel principal component analysis

An extension of kPCA using multiple kernel learning would enable the user to visualize data from
several sources in combination. However, the direct implementation, i.e.,

arg max
α,β

N
∑

i=1

‖αT

M
∑

m=1

βmKm‖2,

‖α‖ = 1; βm ≥ 0, m = 1, ...,M ;

M
∑

m=1

βm = 1 (3)

does not allow for data integration. This becomes clear whenlooking at Thompson’s inequality con-
cerning the eigenvalues of sums of matrices [5]. ConsiderA andB beingn× n Hermitian matrices
andC = A + B, with their respective eigenvaluesλ(A)i, λ(B)i andλ(C)i sorted decreasingly.
Then, for anyp ≥ 1,

p
∑

i=1

λ(C)i ≤

p
∑

i=1

λ(A)i +

p
∑

i=1

λ(B)i (4)
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holds. Including the kernel weightβ1 with C = β1A+ (1 − β1)B and0 ≤ β1 ≤ 1, we obtain the
following inequality

p
∑

i=1

λ(C)i ≤ β1

p
∑

i=1

λ(A)i + (1− β1)

p
∑

i=1

λ(B)i. (5)

One can see, the the right hand side is maximized if the kernelmatrix with the highest sum of thep
largest eigenvalues has a weight of1. In that setting, the right hand side is equal to the left handside.
The extension to more than two kernel matrices can be made recursively. Therefore, optimizing
Problem 3 leads to weight vectorsβ with βi = 1 andβj = 0 for all j 6= i, wherei is the index of
the matrix with thep largest eigenvalues.

Although this behavior maximizes the variance, it might notbe the best choice for biological data,
where we assume, that different data types can give complementing information and should therefore
be considered jointly. Hence, in the following, we will introduce a scoring function, that combines
the idea of kPCA with the assumption of different data supplementing each other.

2.4 Scoring function

Besides preserving the global variance, the main goal of this approach is to be able to integrate
data from different sources that can complement each other.So, for integrating two different kernel
matricesA andB to an ensemble kernel matrixK, we propose the following gain function:

gi = exp

(

λ(K)i
max(λ(A)i, λ(B)i, 1)

− 1

)

(6)

for each dimensioni. Then the overall score for a projection into ap-dimensional space is calculated
asG = 1

p

∑p

i=1
gi. The main idea is that we define a baseline, i.e., max{λ(A)i, λ(B)i, 1}, that

represents the variance we can have by using only one matrix.Gains of variance in comparison to
this baseline have a strong positive impact on the score while losses of variance are penalized only
slightly. Thereby, we can account for the fact that small losses of variance in one direction often
do not change the global structure of the data, but allow for more variance in a different direction.
Additionally, we ensure that the baseline is not smaller than 1, which is the variance each direction
would have in case of equal distribution. This scoring function is maximized to find the best kernel
weightsβ and can easily be extended to integrate more than two matrices.

2.5 Materials

We applied the approach to five different cancer sets from TCGA [6], which were preprocessed by
Wang et al. [7]. The data sets are breast invasive carcinoma (BIC; 105 samples), colon adenocarci-
noma (COAD; 92 samples), glioblastoma multiforme (GBM; 213samples), kidney renal clear cell
carcinoma (KRCCC; 122 samples), and lung squamous cell carcinoma (LSCC; 106 samples). For
all cancer types, gene expression, DNA methylation, and miRNA expression measurements, as well
as survival data are available. The first three data types areused in the dimensionality reduction
and clustering process, the latter is used to perform survival analysis in the evaluation step. Each
data type is represented by a kernel matrix generated using the Gaussian kernel function. The kernel
width parameterγ was chosen according to the rule of thumbγ = 1/2d2, with d being the number of
features in the matrix [8].

3 Results

For each cancer type, we generated results using a two-step procedure: First, we ran the dimen-
sionality reduction approach in order to integrate the three data types and reduce the noise in the
final projection. In other approaches, the number of projection dimensions is usually determined
either using theelbow method or based on a chosen threshold for the remaining variance. Here, we
benefit from the scoring function, which indicates if we gainvariance in comparison to using only
one matrix. Since this function does not have a global maximum, we use its first local maximum to
determine the number of projection directions. Thereby, weavoid adding directions with no gain in
combined variance.
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In order to be able to evaluate the dimensionality reduction, we clustered the projected samples using
k-means in the second step. The number of clusters was determined using the silhouette width [9]
of all results from 2 to 15 clusters. For each cancer type, we evaluated the resulting clusterings
by comparing the survival of the patients among the different groups using the log rank test of the
Cox regression model [10]. For comparison, we also used the average kernel for kPCA and the
kernel with the highest variance in the firstp dimensions. The chosen number of dimensions and the
p-values of the survival analysis for all three approaches can be seen in Table 1.

Table 1: Survival analysis of clustering results of kPCA used with an integrated kernel (gain function
PCA), the kernel with the largest variance in the firstp dimensions (max variance kPCA) and an
average kernel (average kPCA). In brackets, the number of clusters determined by the silhouette
value are given.

Cancer Type number of di-
mensionsp

gain function kPCA max variance kPCA average kPCA

BIC 3 7.08E-3 (4) 0.59 (2) 5.69E-4 (4)
COAD 2 6.47E-3 (2) 6.47E-3 (2) 3.28E-2 (3)
GBM 2 0.79 (3) 5.29E-2 (13) 1.52E-2 (8)
KRCCC 3 8.53E-3 (15) 2.54E-2 (14) 1.15E-2 (8)
LSCC 3 7.52E-3 (3) 7.52E-3 (3) 9.22E-3 (3)

The number of dimensionsp determined by the scoring function was for all cancer types rather small,
either two or three, which can be due to the fact that we used three input data types. However, as we
can see in the survival analysis, this projection allowed the identification of biologically significant
clusters within the cancer types.

Using the conservative significance threshold ofp ≤ 0.01, we can see that our method was able to
find significant clusters in all cancer types but GBM, while both other methods identified significant
clusters only for two out of the five cancer types. In the GBM data, the gene expression kernel is very
dominant in terms of variance, therefore, it obtains a high weight. However, there is no clear group
structure in this matrix, as can also be seen from the high number of clusters that were obtained by
max variance kPCA, and neither this method nor gain functionPCA is able to find a clustering that
correlates with the survival of the patients. For KRCCC, there is a very small group of patients with
different survival behavior which we find at the expense of having 15 clusters. In general, the results
for the LSCC data are very stable; for all other cancer types,at least one of the naive approaches
results in a clustering with no significant difference in survival times between the patient groups.

4 Conclusion and outlook

In this work, we presented a data integration method based onkernel principal component analysis.
We showed that the direct extension of kPCA for several data sources does not allow for data inte-
gration. Thus, we proposed a scoring function to determine the best combination of the input data.
On five cancer data sets, we showed that this procedure works in most cases better or as good as
naive approaches in terms of survival analysis. Additionally, our method alleviates the user from the
choice of free parameters, since the number of dimensions toproject into can be determined by the
introduced scoring function. New samples from the same cancer type can be easily projected into
the learnt subspace to observe similarities in the neighborhood.

Besides the survival data, the clusters could also vary in other clinical aspects (e.g., response to
treatment). Investigating on this in combination with an analysis of the molecular foundation of
the clusterings, for instance the identification of differentially methylated sites or differentially ex-
pressed genes, could reveal beneficial insights concerningthe molecular mechanisms in tumor cells
and consequently their treatment.
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