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Abstract

Personalized treatment of patients based on tissue-speaificer subtypes has
strongly increased the efficacy of the chosen therapiesn Exaugh the amount
of data measured for cancer patients has increased ovasthghrs, most cancer
subtypes are still diagnosed based on individual data esifecg. gene expression
data). We propose an unsupervised data integration metmmtiton kernel prin-
cipal component analysis. Principal component analysiaésof the most widely
used techniques in data analysis. Unfortunately, thegstrdorward multiple-
kernel extension of this method leads to the use of only orteeoinput matrices,
which does not fit the goal of gaining information from all @aources. There-
fore, we present a scoring function to determine the imphetoh input matrix.
The approach enables visualizing the integrated data drsgquent clustering for
cancer subtype identification. Due to the nature of the ntktho free parameters
have to be set. We apply the methodology to five different eadata sets and
demonstrate its advantages in terms of results and ugabilit

1 Introduction

In recent years, the amount of data that is available forexgpatients has increased largely, both in
the number of features as well as in the number of differaatf@ms used. One challenge that goes
along with this mass of multidimensional data (i.e. datacdbsg different molecular levels of the
tumor), is how to integrate and visualize it in a comprehemaind sensitive manner.

In the context of data integration, multiple kernel leagprovides a useful framework to optimize
a weight for each input data type. In many applications, ¢ipismization led to better results than
approaches that give equal weights to the different datecesu In order to visualize biological
data, multiple kernel learning has been used in combinatitndifferent dimensionality reduction
schemed]1].

However, kernel principal component analysis (kPCA), wh#cone of the most widely used dimen-
sionality reduction algorithms, is not easily extendedahgsinultiple kernel learning. The approach
is based on the directions of maximum variance in the databenéfits from several advantages:
kPCA does not suffer from the out-of-sample problem, onesdu# need to fix parameters that
determine a neighborhood as in local dimensionality redndechniques likdocality preserving
projections, but due to the use of the kernel function, the method pravieleough flexibility to
model different types of data. Although kernel PCA can belangented in the graph embedding
framework [2], due to an ill-posed eigenvalue problem nplétkernel PCA cannot be solved using
the extended framework presented(ih [1]. To be able to usealgorithm with multidimensional
data, we introduce a scoring function for the optimizatibthe kernel weights before one applies
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kPCA to the ensemble kernel matrix. The results of subsddtsereans clustering of the projected
data show that the presented method offers some advan@gesed to naive KPCA approaches.

In the remainder of this abstract, we will shortly introduveltiple kernel learning and kPCA,
followed by our approach to combine these two concepts. Wheahthe method to five cancer data
sets which we will introduce before discussing the results.

2 Methods

2.1 Multiplekernel learning

In general, multiple kernel learning describes the optati@n of weights{ g1, ..., 8y} for a fixed
set of input kernel matrice§K;, ... K, } according to their importancgl[3]. The aim is to find an
optimal ensemble kernel matri, which is a weighted linear combination of the individugbir
kernel matrices,
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In this specific setting, each kernel matrix can be used teesgmt one data type. Due to the variety
of available kernel functions, data with different chaegisttics can be included, for instance quanti-
tative data from gene expression measurements, or sequieocegenome sequencing approaches.

2.2 Kernd principal component analysis

PCA is a global dimensionality reduction approach, whiaksitte directions of maximum variance
in the centered data. Having a data matkixwith data pointse;, the first principal component is
found by optimizing
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The solution is the eigenvector corresponding to the ldrgigenvalue of the sample covariance
matrix, subsequent principal components are calculatatbgausly. In the kernelized version, the
data is implicitly projected into some (higher dimensigrfelature space using a mapping func-
tion ¢ : x; — ¢(z;) with k(z;, z;) = (¢(x:), ¢(z;)) wherek is the positive semi-definite kernel
function [4]. The directions of maximum variance are idBed in the feature space, which is
achieved by considering the largest eigenvalues of theckenatrix and their respective eigenvec-
tors.

2.3 Extending kernél principal component analysis

An extension of kPCA using multiple kernel learning wouldible the user to visualize data from
several sources in combination. However, the direct implatation, i.e.,
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does not allow for data integration. This becomes clear ibeking at Thompson's inequality con-
cerning the eigenvalues of sums of matrices [5]. Considand B beingn x n Hermitian matrices
andC = A + B, with their respective eigenvaluegA);, A(B); and A\(C); sorted decreasingly.
Then, forany > 1,

Z/\(C)i < Z/\(A)i + ,Z/\(B)i 4)



holds. Including the kernel weiglty with C' = 8, A+ (1 — 81)B and0 < 3; < 1, we obtain the
following inequality
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One can see, the the right hand side is maximized if the kenagix with the highest sum of the
largest eigenvalues has a weightiofn that setting, the right hand side is equal to the left hsidd.
The extension to more than two kernel matrices can be madesieely. Therefore, optimizing
Problen{B leads to weight vectagswith 8; = 1 andg; = 0 for all j # i, wherei is the index of
the matrix with thep largest eigenvalues.

Although this behavior maximizes the variance, it might betthe best choice for biological data,
where we assume, that different data types can give compliamgeénformation and should therefore
be considered jointly. Hence, in the following, we will inttuce a scoring function, that combines
the idea of kPCA with the assumption of different data sumgeting each other.

2.4 Scoring function

Besides preserving the global variance, the main goal sfdpproach is to be able to integrate
data from different sources that can complement each diwgrfor integrating two different kernel
matricesA and B to an ensemble kernel matri, we propose the following gain function:
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for each dimensiofn Then the overall score for a projection intp-@limensional space is calculated
asG = % P, g;- The main idea is that we define a baseline, i.e., fxéxX);, A\(B);, 1}, that
represents the variance we can have by using only one m&gins of variance in comparison to
this baseline have a strong positive impact on the scoreeviddilses of variance are penalized only
slightly. Thereby, we can account for the fact that smalséssof variance in one direction often
do not change the global structure of the data, but allow forenvariance in a different direction.
Additionally, we ensure that the baseline is not smallenthawhich is the variance each direction
would have in case of equal distribution. This scoring fiorcts maximized to find the best kernel
weightsg and can easily be extended to integrate more than two matrice

(6)
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We applied the approach to five different cancer sets from A(8}, which were preprocessed by
Wang et al.[[¥]. The data sets are breast invasive carcin8hig (05 samples), colon adenocarci-
noma (COAD; 92 samples), glioblastoma multiforme (GBM; 2&Bnples), kidney renal clear cell
carcinoma (KRCCC; 122 samples), and lung squamous celihcema (LSCC; 106 samples). For
all cancer types, gene expression, DNA methylation, andNAiBxpression measurements, as well
as survival data are available. The first three data typesised in the dimensionality reduction
and clustering process, the latter is used to perform salrainalysis in the evaluation step. Each
data type is represented by a kernel matrix generated ustn@aussian kernel function. The kernel
width parametety was chosen according to the rule of thumb- 1/242, with d being the number of
features in the matrix [8].

3 Reaults

For each cancer type, we generated results using a two-sbepdure: First, we ran the dimen-
sionality reduction approach in order to integrate thedhdata types and reduce the noise in the
final projection. In other approaches, the number of pr@aaimensions is usually determined
either using thelbow method or based on a chosen threshold for the remaining varianae, e
benefit from the scoring function, which indicates if we gaamiance in comparison to using only
one matrix. Since this function does not have a global marimume use its first local maximum to
determine the number of projection directions. Therebyawad adding directions with no gain in
combined variance.



In order to be able to evaluate the dimensionality redugtienclustered the projected samples using
k-means in the second step. The number of clusters was datstrasing the silhouette width|[9]

of all results from 2 to 15 clusters. For each cancer type, veduated the resulting clusterings
by comparing the survival of the patients among the diffeggaups using the log rank test of the
Cox regression model [10]. For comparison, we also usedbeage kernel for KPCA and the
kernel with the highest variance in the figstlimensions. The chosen number of dimensions and the
p-values of the survival analysis for all three approachesueaseen in Tablg 1.

Table 1: Survival analysis of clustering results of kPCAdisth an integrated kernel (gain function
PCA), the kernel with the largest variance in the fisgslimensions (max variance KPCA) and an
average kernel (average kPCA). In brackets, the numberustarls determined by the silhouette
value are given.

Cancer Type number of di-gain function kPCA max variance KPCA average kPCA

mension®
BIC 3 7.08E-3 (4) 0.59 2 5.69E-4 (4)
COAD 2 6.47E-3 (2) 6.47E-3 (2) 3.28E-2 (3)
GBM 2 0.79 3 5.29E-2 (13) 1.52E-2 (8)
KRCCC 3 8.53E-3 (15) 2.54E-2 (14) 1.15E-2 (8)
LSCC 3 7.52E-3 (3) 7.52E-3 (3) 9.22E-3 (3)

The number of dimensionsdetermined by the scoring function was for all cancer typésar small,
either two or three, which can be due to the fact that we usee thput data types. However, as we
can see in the survival analysis, this projection allowedidentification of biologically significant
clusters within the cancer types.

Using the conservative significance thresholgof 0.01, we can see that our method was able to
find significant clusters in all cancer types but GBM, whildétbother methods identified significant
clusters only for two out of the five cancer types. In the GBNbhdthe gene expression kernel is very
dominant in terms of variance, therefore, it obtains a higigt. However, there is no clear group
structure in this matrix, as can also be seen from the highbeumf clusters that were obtained by
max variance kPCA, and neither this method nor gain fund®@# is able to find a clustering that
correlates with the survival of the patients. For KRCCCrdfie a very small group of patients with
different survival behavior which we find at the expense &fihig 15 clusters. In general, the results
for the LSCC data are very stable; for all other cancer typetast one of the naive approaches
results in a clustering with no significant difference inwgual times between the patient groups.

4 Conclusion and outlook

In this work, we presented a data integration method basé@iorel principal component analysis.

We showed that the direct extension of kPCA for several datiaces does not allow for data inte-

gration. Thus, we proposed a scoring function to deterntirebest combination of the input data.
On five cancer data sets, we showed that this procedure work®$t cases better or as good as
naive approaches in terms of survival analysis. Additignalir method alleviates the user from the

choice of free parameters, since the number of dimensiopject into can be determined by the

introduced scoring function. New samples from the sameearaiype can be easily projected into

the learnt subspace to observe similarities in the neididumt.

Besides the survival data, the clusters could also vary herotlinical aspects (e.g., response to
treatment). Investigating on this in combination with aralgeis of the molecular foundation of
the clusterings, for instance the identification of diffefally methylated sites or differentially ex-
pressed genes, could reveal beneficial insights concetimngnolecular mechanisms in tumor cells
and consequently their treatment.

References

[1] Y.-Y. Lin, T.-L. Liu, and C.-S. Fuh. Multiple kernel leaing for dimensionality reduction.
|EEE Transactions on Pattern Analysis and Machine Intelligence, 33(6):1147-1160, 2011.



[2] S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lina@r embedding and extensions:
A general framework for dimensionality reductiohEEE Transactions on Pattern Analysis
and Machine Intelligence, 29(1):40-51, 2007.

[3] M. Goénen and E. Alpaydin. Multiple kernel learning algbms. J. Mach. Learn. Res.,
12:2211-2268, 2011.

[4] B. Scholkopf, A. J. Smola, and K.-R. Miller. Advances ierkel methods. chapter Kernel
Principal Component Analysis, pages 327-352. MIT Presg919

[5] F. Zhang.Matrix Theory: Basic Results and Techniques. Springer, 1999.
[6] The Cancer Genome Atlas, Website, Available from: itancergenome.nih.gov/.

[7] B. Wang, A. M. Mezlini, F. Demir, M. Fiume, Z. Tu, M. Brudn®. Haibe-Kains, and A. Gold-
enberg. Similarity network fusion for aggregating dataetypn a genomic scaleNature
Methods, 11(3):333-337, 2014.

[8] T. Gartner, P. A. Flach, A. Kowalczyk, and A. J. Smola. kHimstance kernels. IRroc. 19th
International Conf. on Machine Learning, pages 179-186. Morgan Kaufmann, 2002.

[9] P. J. Rousseeuw. Silhouettes: a graphical aid to thegreation and validation of cluster
analysis.Journal of Computational and Applied Mathematics, 20:53-65, 1987.

[10] D. W. Hosmer Jr., S. Lemeshow, and S. MApplied Survival Analysis. Regression Modeling
of Time to Event Data. Wiley, 2011.



	1 Introduction
	2 Methods
	2.1 Multiple kernel learning
	2.2 Kernel principal component analysis
	2.3 Extending kernel principal component analysis
	2.4 Scoring function
	2.5 Materials

	3 Results
	4 Conclusion and outlook

