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Goals

Develop systems which completely paralysed people (such as late-stage sufferers of

Amyotrophic Lateral Sclerosis, ALS) can use to communicate, without relying on:

• muscles
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Goals

Develop systems which completely paralysed people (such as late-stage sufferers of

Amyotrophic Lateral Sclerosis, ALS) can use to communicate, without relying on:

• muscles

• peripheral nerves

• (vision)

• (motor cortex)
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BCI projects

• Attention shifts to auditory stimuli.
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50–85% correct, avg. 70% across 9 subjects.

(Cornelius Raths, MSc awarded 2007)
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• Improvement of visual “speller” paradigms

– Manipulation of stimulus type.

– Optimization of stimulus code according to information-theoretic and

psychophysiological factors.

(Felix Bießmann, MSc project in progress)
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BCI projects

• Attention shifts to auditory stimuli.

• Attention shifts to tactile stimuli.

5-class paradigm in MEG (incl. NIC).

50–85% correct, avg. 70% across 9 subjects.

(Cornelius Raths, MSc awarded 2007)

• Improvement of visual “speller” paradigms

– Manipulation of stimulus type.

– Optimization of stimulus code according to information-theoretic and

psychophysiological factors.

(Felix Bießmann, MSc project in progress)

• Ongoing work with Prof. Niels Birbaumer’s group in Tübingen to analyse

EEG/ECoG data from ALS patients.

• Algorithm development.
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Role of Machine Learning in BCI

• Get results quickly:

Shift the burden of learning from the patient to the computer. Hours to

recognize the relevant features, rather than weeks/months training a

patient to modulate pre-specified features.
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Role of Machine Learning in BCI

• Get results quickly:

Shift the burden of learning from the patient to the computer. Hours to

recognize the relevant features, rather than weeks/months training a

patient to modulate pre-specified features.

• Let the system run itself:

No intervention from experts.
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Example BCI setting

Event-Related Desynchronization in motor imagery: classify imagined left hand

movement vs. imagined right hand movement based on α-band power of estimated

pre-motor cortex sources in the left and right hemispheres.

L. hem.

R. hem.

log bandpower L. hem.
lo

g 
ba

nd
po

w
er

 R
. h

em
.

Jeremy Hill Cambridge, February 2007 slide 5 of 25



Spatial Filtering

Given multichannel time-series X, we want appropriately spatially filtered

time-series S = FX that contain only task-relevant information.
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e.g.

• Independent Component Analysis (ICA)

• Common Spatial Pattern (CSP) — Koles 1991.
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EEG Example

Amplitude spectra of raw EEG signals:
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EEG Example

Amplitude spectra of sources estimated by Independent Component Analysis:
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Whitening and rotation
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Whitening and rotation
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Cheap supervised rotation with CSP
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CSP: outlier- (artifact-) sensitivity
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CSP: overfitting

0.97  

0.15  

AUC

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
c
h
a
n
n
e
l

frequency (Hz)

80 training trials

0 6.25 12.5 18.75 25 31.25 37.5 43.75 50

1

8

15

22

29

36

43

50

57

64

Jeremy Hill Cambridge, February 2007 slide 11 of 25



CSP: overfitting

0.95  

0.29  

AUC

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
c
h
a
n
n
e
l

frequency (Hz)

80 test trials

0 6.25 12.5 18.75 25 31.25 37.5 43.75 50

1

8

15

22

29

36

43

50

57

64

Jeremy Hill Cambridge, February 2007 slide 11 of 25



Problems with CSP

• Outlier-sensitivity, overfitting (due to poor objective)

• How to pick which components to use?
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Problems with CSP

• Outlier-sensitivity, overfitting (due to poor objective)

• How to pick which components to use?

• Sensitivity to initial assumptions:

– Which frequency band?

– Which time window?

The exact frequency of sensory-motor rhythms varies between individuals.

In practice, component / band / time-window selection is often best performed by

hand. The ideal BCI algorithm would be a “glass box” requiring no such

intervention.
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Get a better objective (I)

Approach #1: Margin Maximization (à la Support Vector Machine)

Maximize the margin in the space of log bandpower features ψ(X; F).

ψ(Xi; F) = log diag (FXiX
>

i F>)
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Get a better objective (I)

Approach #1: Margin Maximization (à la Support Vector Machine)

Given time-series Xi and class labels yi, simultaneously optimize

• spatial filtering coefficients F

• classifier weight-vector w in log-bandpower space

• classifier bias b in log-bandpower space

to minimize the SVM-like objective function:

λw>
w +

∑

i

max(0, 1 − yi(ψ(Xi; F)>w + b))

Regularization parameter λ can be found by cross-validation.
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Get a better objective (II)

Approach #2: “Evidence” Maximization (using Gaussian Process classifiers)

The marginal likelihood or evidence of a probabilistic model with hyperparameters F is given by

integrating the lower-level parameters (e.g. a classifier’s weight vector w) out of the likelihood for

data D:

P (D|F) =

∫

Pr(D|w, F)Pr(w|F)dw

It is a probability density function, so it normalizes over the space of possible datasets. Maximizing

evidence can be an effective means of complexity control and hence model selection:

D data space

model too
simple

model too
complex

model just complex
enough for dataset D
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Get a better objective (II)

Approach #2: “Evidence” Maximization (using Gaussian Process classifiers)

• Define a covariance function in the log-bandpower space, e.g. a linear

covariance function

k(Xi,Xj) = 1 + ψ(Xi; F)>ψ(Xj ; F)

or some other function of ψ for non-linear classification.

• Plug this into a Gaussian Process Classifier

(using Probit likelihood, and the Expectation-Propagation algorithm to approximate

it—see Kuss & Rasmussen 2005, Journal of Machine Learning Research 6).

• The Gaussian Process framework yields an expression for the evidence, which

is easily differentiable with respect to F.

• So optimize F by conjugate gradient descent.
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Experiments

Both methods were tested on motor-imagery EEG data from 15 subjects:

• 9 from BCI competitions (Comp 2:IIa, Comp 3:IVa,IVc)

• 6 recorded at the MPI (Lal et al 2004, IEEE Trans. Biomed. Eng. 51)
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Experiments

Both methods were tested on motor-imagery EEG data from 15 subjects:

• 9 from BCI competitions (Comp 2:IIa, Comp 3:IVa,IVc)

• 6 recorded at the MPI (Lal et al 2004, IEEE Trans. Biomed. Eng. 51)

Preprocessing:

• select time-windows 0.5–4 sec after stimulus presentation

• band-pass filtered in the broad 8–25Hz band.

Design:

• Two spatial filters were optimized in each case.

• Performance was assessed as a function of training set size,

ntrain ∈ {50, 100, 150, 200}.

• Each assessment was repeated using 8 random training subsets.
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Results (I)
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Binary classification error rates:

new approach vs. traditional two-stage CSP + classifier approach.
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Note the consistent improvement, most markedly when we have:

• poor subject performance;

• small numbers of training trials.

This is encouraging from a clinical viewpoint.
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Results (II)
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Note the consistent improvement, most markedly when we have:

• poor subject performance;

• small numbers of training trials.

This is encouraging from a clinical viewpoint.
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Results (II)
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Note the consistent improvement, most markedly when we have:

• poor subject performance;

• small numbers of training trials.

This is encouraging from a clinical viewpoint.
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Spatial Effect of Optimization

Example of spatial patterns “fixed” by evidence-maximization:
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Spatial, temporal, spectral. . .
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Spatial, temporal, spectral. . .

Ideally we want to optimize automatically over space
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Spatial, temporal, spectral. . .

Ideally we want to optimize automatically over space

Ideally we want to optimize automatically over time

Ideally we want to optimize automatically over frequency
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Spatial, temporal, spectral. . .

Weightings over time or frequency can be incorporated into our feature mapping:

ψ(X; F) = log diag






F

...
X X> F>






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Weightings over time or frequency can be incorporated into our feature mapping:

ψ(X; F,G) = log diag






F X

...
G X> F>




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Spatial, temporal, spectral. . .

Weightings over time or frequency can be incorporated into our feature mapping:

ψ(X; F,H) = log diag






F X̃

...
H X̃† F>






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Spatial, temporal, spectral. . .

Preliminary experiments by Jason Farquhar show that iterated optimization of F, then G, then

H. . . can yield sensible results with flat initialization over time and frequency, i.e. without requiring

domain knowledge.
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Linear or non-linear?
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Linear or non-linear?
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Linear or non-linear?

Use of the classifier’s criterion to optimize preprocessing parameters means

• projection into higher-dimensional feature spaces via a non-linear kernel can

help;

• not just “any classifier will do.”

See also: Tomioka et al. (NIPS 2006) - logistic regression on (non-logged) variance

features.
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Model selection: how many filters?
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Model selection: how many filters?
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Model selection: how many filters?
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Further goals

• Beyond optimization: MCMC sampling and prediction averaging within the

GPC framework.
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Further goals

• Beyond optimization: MCMC sampling and prediction averaging within the

GPC framework.

• Adapting the system to cope with shifts in background activity between
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Further goals

• Beyond optimization: MCMC sampling and prediction averaging within the

GPC framework.

• Adapting the system to cope with shifts in background activity between

training and test sessions.

– Hill, Farquhar & Schölkopf 2006 (Proc. 3rd Intl. BCI Workshop)

– Tomioka, Hill, Blankertz & Aihara 2006 (IBIS, Osaka.)

• Constraining spatial filters to use a small number of electrodes (for

convenience of setup).

– Farquhar, Hill & Schölkopf 2006 (Proc. 3rd Intl. BCI Workshop)

• Application of the same approach to features in the time domain (and

automatic combination of time-domain & band-power features).
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Conclusion

• Significant improvements can be made by applying the principles of margin-

and evidence- maximization to the automatic extraction of bandpower

features in EEG (and other signal sources..?)
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Conclusion

• Significant improvements can be made by applying the principles of margin-

and evidence- maximization to the automatic extraction of bandpower

features in EEG (and other signal sources..?)

• Benefits are greatest in the difficult cases: high noise and/or small amounts of

data.

• Simultaneous optimization of filters and classifier weights eliminates the need

to select filters by hand.

• Early indications are that interpretable, optimal weightings across space, time

and frequency can be obtained

– simultaneously;

– without being very sensitive to prior assumptions.
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Thank you for your attention.
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