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ABSTRACT

Previous work in real and virtual settings have shown that the way
in which we interact with objects critically influences their percep-
tual representation. This paper provides new, quantitative evidence
that the exploratory procedure used in haptic interaction with a set
of objects changes the way they are represented in the brain. Sub-
jects rated similarity on a set of nine novel, 3D objects after ei-
ther following their contours, laterally rubbing their centres, grip-
ping them, or sequentially touching their tips. A multidimensional
scaling (MDS) technique was used to analyze the similarity data.
The analysis showed that subjects were able to recover the topol-
ogy of the input parameter space and perceived its dimensions as
shape and texture. A large amount of variability in the way subjects
weighted dimensions was found for all procedures except lateral
motion, in which the texture dimension strongly dominated shape.
The results provide clear evidence that using different procedures
changes the relative perceptual weighting of object properties, but
that even when exploratory procedures are strictly controlled, there
can be large individual differences in the weightings of object prop-
erties. Our MDS-based analysis framework can be used to visualize
and quantify perception under various real-world scenarios. In ad-
dition, this paper discusses its use as a benchmarking and validation
paradigm for haptic rendering and virtual environments in general.

Keywords: haptic perception, exploratory procedures, shape, tex-
ture, multidimensional scaling

1 INTRODUCTION

There is a growing number of validation studies being carried out
in the haptic virtual reality community, but many studies have fo-
cused on optimizing device-related parameters. Given the tight cou-
pling between perception and action in haptic interfaces, it is also
important to address how the action of a system’s user affects the
perceptual outcome. This study investigates howmodes of inter-
action and, more specifically, howexploratory procedures(EPs)
affect perception. There is a large body of work by Klatzky & Le-
derman about the role of EPs in real-world human perception (see
[21] for a review). In virtual environments, Klatzky & Lederman
have also studied the effects of exploratory factors and tool parame-
ters [15]. Recently, Dostmohammed & Hayward investigated the
role of active vs. passive exploration on curvature perception using
a fingerpad stimulation device [9]. The present paper represents
an extension of Klatzky & Lederman’s work on exploratory proce-
dures in which the perceptual effects of changing EPs are visualized
and quantified using a multidimensional scaling (MDS) framework

∗e-mail: theresa.cooke@tuebingen.mpg.de
†e-mail: christian.wallraven@tuebingen.mpg.de
‡e-mail: heinrich.buelthoff@tuebingen.mpg.de

7

4

1

8

5

2

9

6

3

Microgeometry
M

ac
ro

ge
om

et
ry

Figure 1: Stimuli: The stimuli consisted of 9 novel, 3D objects
varying in terms of microgeometry (”texture”) and macrogeometry
(”shape”). Objects were created with 3D modelling software and
manufactured in plastic using a 3D printer. Along the microgeom-
etry axis, the objects’ bumpy texture gradually becomes smoother.
Along the macrogeometry axis, sharp angles in objects’ meshes are
relaxed.

recently developed for studies of crossmodal human perception and
validation of computer vision algorithms [7, 6]. In this paper, we
also discuss how the MDS framework can be used as a tool for
comparing and benchmarking perception in real and virtual envi-
ronments.

In a psychophysical experiment, participants haptically explored
pairs of novel, 3D objects which varied in shape and texture (Figure
1) and rated the similarity between pairs of objects. Each partici-
pant explored the objects using four different EPs. Three of the EPs
provided access to both shape and texture information (contour-
following (CF), sequential exploration of object tips (TP) and en-
closure or gripping (GR)), while the fourth EP, lateral rubbing mo-
tion along the surface (LM), provided access to texture information
but little or no shape information. Similarity data were analyzed
using MDS, a technique which returns a map of stimuli in a percep-
tual space. The spaces resulting from the use of different EPs were
compared to test whether a change in haptic exploratory procedure
affects participants’ psychological representation of the objects.

The results of this study provide clear evidence that using differ-
ent EPs to explore a set of objects changes the relative perceptual
weighting of object properties. Furthermore, these changes can be
quantified in terms of a relative property tradeoff value. Finally, we
observed that even when EPs were strictly controlled, there were
large individual differences in the weightings of object properties.



2 RELATED WORK

Here, we review studies of haptic exploratory procedures and mo-
tivate the choice of EPs evaluated in the current study.

Extensive studies of haptic explanatory procedures (EPs) have
been carried out by Lederman and Klatzky [20, 21]. They classified
exploratory hand movements into six main types (lateral motion,
pressure, static contact, holding, enclosure, and contour following)
and characterized each EP based on factors such as compatibility
amongst different EPs and the speed with which different EPs can
be executed. Of particular interest for this study is their demonstra-
tion that each EP has specific consequences for the kind of object
information which is extracted during exploration. They expressed
these biases in terms ofEP-to-property weightings, which repre-
sent the extent to which a property can be extracted using a given
EP. Lateral motion, a back-and-forth rubbing motion of the fingers
over a surface, is best for extracting texture, but provides little or no
shape information; enclosing objects in the hand provides informa-
tion about global shape and texture, but little exact shape informa-
tion; contour-following provides access to texture and global shape,
and provides the most information about an object’s exact shape.

Lakatos and Marks [18] further investigated how the use of dif-
ferent EPs affected subjects’ weighting of local vs. global shape
features for haptic similarity judgments. Subjects explored a set
of 16 geometric objects using either a contour-following or an en-
closure procedure and then rated the similarity between pairs of
objects. Ratings were comparable in both conditions and the au-
thors concluded that neither EP (contour-following or enclosure) is
exclusively associated with a differential emphasis on local versus
global shape. Interestingly, they found an effect of explorationtime
on the weighting of local vs. global shape: subjects had were biased
towards local shape for exploration times of 1s and 4s, but this ef-
fect decreased significantly for exploration times of 8s and 16s, i.e.,
global shape became more important for judging similarity when
more time was provided for exploration.

Dostmohammed and Hayward compared curvature discrimina-
tion using four different modes in which users could interact with
a virtual fingerpad display [9]. They found that curvature discrim-
ination varied as a function of interaction mode: active, two-finger
exploration offered higher sensitivity than active one-finger explo-
ration and one/two-finger semi-active exploration.

In previous work [6], we compared visual, haptic, and visuo-
haptic similarity ratings and category judgments of novel, 3D ob-
jects. In this study, haptic exploration was always performed using
a contour-followingprocedure. Because the object set varied para-
metrically in shape and texture, it was possible to calculate a per-
ceptual shape/texture tradeoff value. When subjects touched the ob-
jects, they weighted shape and texture information roughly evenly
in similarity judgments. However, when they saw the objects, sim-
ilarity judgments were clearly dominated by shape changes in the
stimulus set. Although the greater importance of texture for haptic
similarity judgments could be a general effect of using the hap-
tic modality, it could also have been due to the specific contour-
following EP used (e.g., [17] reported high correlation between the
frequency of EPs best-suited for extracting a given property and its
cognitive saliency). When subjects performed contour-following
on our object set (Figure 3.1), they spent relatively little exploration
time in contact with regions of high curvature. We reasoned that
if the exploratory procedure had indeed affected the shape/texture
tradeoff, having subjects spend proportionally more time explor-
ing the tips of the objects should lead to a greater influence of
shape in haptic similarity judgments. For this reason, we included
a ”tip-touching” procedure in the present experiment. We also rea-
soned that the tip-touching task would be less demanding than the
contour-following task because spatial integration of object infor-
mation could occur in three, smaller local patches instead of over

the entire object contour; we hypothesized that decreasing the spa-
tial integration demands of the task would also help to bias subjects
towards shape in the tip-touching procedure.

In the current study, we were therefore primarily interested
in comparing the property weights obtained when subjects used
contour-following and tip-touching. In addition, we chose to in-
clude two other EPs: gripping (also referred to as enclosure) and
lateral motion. Gripping was included because of its frequency
in real-world haptic interactions, which is likely due to its relative
breadth of sufficiency (i.e., it provides information about a wide
range of object properties), the fact that it can be performed quickly,
and the fact that it is compatible with almost all other EPs (e.g.,
you can apply pressure to test an object’s hardness while enclosing)
[21]. Lateral motion was included as a control condition since it is
known to provide a large amount of information about an object’s
texture, but little or no information about its shape.

The main difference between our study and previous work
on haptic object perception and EPs is our use of multidimen-
sional scaling (MDS) techniques and parametrically-varying stim-
uli, which allow perceptual dimensions to be identified and their
relative weights to be quantified. MDS refers to a family of al-
gorithms which operate on proximity data taken between pairs of
objects. The output is a configuration of objects embedded in a
multidimensional space. Psychologists have used MDS to explore
perceptual representations of visually and haptically explored ob-
ject sets (e.g., [25, 11, 13, 1, 6]). The technique has also found
a large following in domains such as knowledge mapping [5] and
marketing [4] because it allows for the identification of important
psychological dimensions of stimulus variation (e.g., dimensions
along which buyers differentiate amongst competing products) and
quantification of perceptual distances between stimuli (e.g., how
”closely”-related one field of research is to another). In cognitive
psychology, the inputs are generally human similarity ratings taken
over a set of objects; the output configuration is then be interpreted
as amap of the objects in a psychological spacewhich explains the
similarity data [2].

MDS analysis provides the following types of information about
the psychological representation of stimuli:

1. how many dimensions of variation in the stimuli are apparent
to the participants;

2. whether these dimensions correspond to properties which
were deliberately being manipulated;

3. whether one or more unexpected perceptual dimensions were
also apparent to the participants;

4. interstimulus distances in the psychological space;

5. the relative weights of the psychological dimensions.

By applying this technique to the study of exploratory proce-
dures, we hope to obtain new, quantitative insight into how modes
of interaction shape the representation of objects in the brain.

3 METHODS

This section describes the stimuli used in the experiment, the ex-
perimental procedure, and data analysis using MDS.

3.1 Stimuli: Novel 3D objects

A family of nine novel, 3D objects (Figure 1) varying in shape and
texture were used in the experiments. The objects were designed in
3D graphics software (3D Studio Max) and manufactured using a
3D printer (Dimension 3D Printer, Stratasys, Minneapolis, USA).
The complete design and manufacturing process is described in [6].



1 2 3

1

2

3

microgeometry

m
ac

ro
g

eo
m

et
ry

1

2
3

4
5

6

7 8
9

Figure 2: Two-dimensional psychological stimulus space resulting
from MDS analysis of subjects’ similarity ratings. The map is scaled
such that the relative importance of each dimension is uniform.

Each object consists of 1) three parts connected to a center sphere,
defining the object’s macrogeometry (“shape”) and 2) a displace-
ment map applied to the 3D mesh, specifying the object’s micro-
geometry (“texture”). The displacement map applied to the objects
consisted of repeated conical elements (base width of 3mm, a peak
width of 2mm, and a maximum height of 2mm from the surface of
the object; texture elements were spaced 3-5mm apart). Variations
amongst the objects were generated by two manipulations: micro-
geometrical smoothing and macrogeometrical smoothing. Micro-
geometrical smoothing was performed by decreasing the amount
of mesh displacement caused by the displacement map. Macro-
geometrical smoothing was performed by the 3DS ”relax” opera-
tor, which moves mesh vertices towards a local average, removing
sharp angles in the global shape. Note that manipulations created
input dimensions corresponding to parameters in the 3D software
package, but which does not imply that these dimensions will nec-
essarily be recovered in the perceptualoutputspace. Revealing the
dimensions which are important for human perception is precisely
one of the reasons for performing MDS analysis of human similar-
ity ratings.

The 3D models were printed out (Dimension 3D Printer, Strata-
sys, Minneapolis, USA) into hard, white, and opaque objects, mea-
suring 9.0 +/- 0.1 cm wide, 8.3 +/- 0.2 cm high, and 3.7 +/- 0.1 cm
deep and weighing about 40 g.

3.2 Experiment: Haptic similarity ratings

Ten naive, right-handed subjects (4 men, 6 women) were paid 8 Eu-
ros per hour to participate in the experiment. Their task was to rate
the similarities between pairs of objects on a scale between 1 (low
similarity) and 7 (high similarity) after exploring them haptically.
The same experimental setup was used in all conditions (Figure 3).
Subjects used a chin rest placed 40 cm away from the stand on
which the objects were presented; the height of the chin rest was
set such that the centre of the object was aligned with the line of
sight. An opaque curtain hung between the subjects and the stand.
A set of grooves and a section of rubber tubing on the mount piece
ensured that the objects were securely held in place in exactly the
same upright position on every trial.

On each trial, the experimenter placed the first object on the

Figure 3: Experimental setup for haptic similarity ratings. The ex-
perimenter places the objects on a mount placed behind an opaque
curtain. The participant haptically explores the object using one of
four exploratory procedures.

stand, verbally instructed the subject to start the exploration,
counted to three using a stopwatch as a metronome, and removed
the objects after 3s. The presentation time of 3s was chosen be-
cause it was the minimum amount of time that subjects needed to
perform the longest of the procedures (contour-following) in a pi-
lot experiment. The experimenter then replaced the first object by
a second object, instructed the subject to begin exploration, and
then removed the object after 3s. The experimenter then waited for
the subject’s response. Before the experiment, subjects were se-
quentially presented with the two pairs of objects in the outermost
corners of the space, allowed to palpate each one in their hand for
about 5s and told that these were the largest differences they would
encounter in the experiment.

The experiment consisted of four blocks of 45 randomized tri-
als (each object was compared once with itself and once with every
other object resulting in 9 + (9·8)/2 = 45 trials) and the order of
appearance of stimuli was randomized over blocks. Each trial took
about 20-30 seconds and the total experiment ran for approximately
two hours. At the end of the experiment, subjects were asked to
write a short description of the objects and to comment on the dif-
ficulty of each EP.

In each of the four blocks, subjects explored the objects using a
different procedure. The order of procedures was randomly selected
for each subject. The following procedures were used: contour-
following (CF), lateral motion (LM), contact of object tips (TP),
and enclosure or gripping (GR).

3.3 MDS analysis of similarity data

We used the individual differences weighted Euclidean distance
model implemented as part of the ALSCAL MDS package in SPSS
[3, 32], with proximity data taken as ordinal measurements (i.e.,
non-metric) and untying of tied proximities allowed. This partic-
ular MDS technique allows for comparison of individual subject
data and also has the advantage of uniquely specifying the dimen-
sions of the output space, allowing for clearer interpretation [8].
As input, the common choice is a set of mean similarity data taken
over multiple ratings provided by a single user. However, since we
wished to search for variations in psychological representations due
to exploratory procedure, we considered each block of the experi-
ment as a separate unit of analysis or ”individual”. For a specified
dimensionality, MDS returns a single underlying stimulus configu-



ration and a set of weights specific to each set of similarity data
included in the analysis. The weights specify how the underly-
ing configuration should be scaled along each dimension to best
fit each set of similarity data. Weights can be analyzed to look for
differences across individuals and exploratory procedures. In ad-
dition, the SPSS implementation provides a goodness-of-fit mea-
sure, Young’s S1 Stress, which is the normalized difference be-
tween the fitted distances and the observed proximities. Although
establishing a threshold for acceptable values of stress is controver-
sial, Monte Carlo studies have indicated that values below 0.2 point
to an output configuration which fit the similarity data well [8].

4 RESULTS AND DISCUSSION

We begin by discussing the dimensionality of the perceptual space
recovered using MDS and how these dimensions can be interpreted.
We then examine how the dimensions of this perceptual space were
affected by the use of different EPs.

4.1 Dimensionality and recovery of ordinal relationships

Stress for a two-dimensional configuration was 0.15, indicating that
an MDS model with two perceptual dimensions is a good model of
our data (see section 3.3). A 2D model agrees with subjects’ de-
scriptions of the objects: 10/10 mentioned shape properties and
9/10 mentioned texture, while only 1/10 mentioned another prop-
erty (material).

The stimulus configuration in psychological similarity space is
plotted in Figure 2. Note that the map shown here is scaled such
that both dimensions have equal weight (see 3.3). This map shows
that subjects were able to recover the ordinal relationships which
had been established between the objects in the software parameter
space using the mesh displacement (“texture”) and the mesh re-
laxation (“shape”) operations. These results agree with previous
findings in which subjects were also able to recover these dimen-
sions with an extended stimulus set of 25 objects, including the
ones used in this study [6]. This is a non-trivial task given the high-
dimensionality of the measurement space, as demonstrated by com-
putational studies [7].

4.2 Dimension weights: Mean data

Shape/texture tradeoffs1 for each exploratory procedure are shown
in Figure 4 (CF: M=0.67, SE=0.06; TP: M=0.59, SE=0.06; GR:
M=0.66, SE=0.08; LM: M=0.91, SE=0.02). All mean values were
greater than 0.5, indicating that texture dominated shape in sub-
jects’ similarity ratings. Given the wide variability in the data,
we tested the hypothesis that the weights came from a distribu-
tion with a mean of 0.5, representing equal importance for shape
and texture properties; rejection of this hypothesis would indi-
cate a clear texture-dominance. A single-sample t-test at the 95%
confidence level rejected the hypothesis for two EPs: lateral mo-
tion (t[9]=16, p<0.001) and contour-following (t[9]=3, p=0.01).
No significant difference was found for the tip-touching procedure
(t[9]=1.4, p>0.1) or the grip procedure (t[9]=2, p=0.08). Overall,
we found a large variability in the way subjects weighted the di-
mensions, except in the lateral motion condition. We now discuss
specific results for each EP in turn.

Lateral motion (LM):As we had hypothesized, texture was in-
deed heavily weighted when subjects explored the objects with a

1INDSCAL returns one weight per dimension, however these weights
are constrained to lie on a circle in the 2D case. Therefore, we report a
single shape/texture tradeoff index which is calculated as the arc tangent of
each point in the weight space, with 0 representing maximum shape domi-
nance, 0.5 representing equal weight for shape and texture, and 1 represent-
ing maximum texture dominance.
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Figure 4: Dimension weights: All participants. The normalized
shape/texture tradeoff value is plotted according to the exploratory
procedure used. Lines within boxes are located at the lower quartile,
median, and upper quartile values. Whiskers show the full extent of
the data.

.

lateral rubbing motion. Subjects were instructed to rub the objects’
centres, which were extended areas of low curvature offering little
object-specific shape information. The mean shape-texture tradeoff
value (M = 0.91, SE = 0.02) was significantly different from trade-
off values obtained when other EPs were used (LM-GR: p=0.014;
LM-TP: p<0.001; LM-CF: p<0.01). (There were no other sig-
nificant differences between CF, TP, and GR mean weights.) More-
over, the variability of weights was smaller for LM than in the other
three conditions (LM: SE=0.02; CF: SE=0.06; TP: SE=0.06; GR:
SE=0.08). This indicates that the observed variability in the other
EP conditions has to do with their greater degree of shape sensi-
tivity: the more access an EP provided to object shape, the more
variable subjects were in their use of shape vs. texture for judging
similarity.

Contour-following (CF):When subjects followed the objects’
contours, they weighted texture more heavily than shape on average
(shape-texture tradeoff M=0.67, SE=0.06). As mentioned above,
the mean tradeoff value was also significantly different from 0.5.
[21] reported the following EP-to-property weightings for contour-
following: 3 for ”exact shape”, 1 for ”global shape” and 1 for tex-
ture. Converting these values to shape-texture tradeoffs for compar-
ison, the exact shape-texture tradeoff would be 0.25, corresponding
to a stronger weighting of exact shape compared to texture. The
global shape-texture tradeoff would be 0.5, corresponding to equal
weight for global shape and texture in contour-following. What
factors could account for the greater degree of texture bias found in
the present study? It could be that the limited exploration time of 3s
per trial and the relatively short time subjects spent performing this
exploratory procedure overall (about 20 minutes) limited subjects’
ability to use shape information in the similarity judgment task. As
mentioned in section 2, one study has shown that the importance of
global shape information for haptic similarity ratings increases with
the amount of exploration time provided. Another explanation for
the texture bias is that the texture changes may have been slightly
more discriminable than the shape changes [22]. However, any dis-
criminability differences would have caused an overall shift of the
weight distribution towards texture; other factors must also be at
play to have caused the large variability observed (see discussion
on the grip EP below).

Touching object tips (TP):The shape-texture tradeoff value (TP:



M=0.59, SE=0.06) was not found to be significantly different from
0.5 on average, indicating equal weighting of shape and texture in
similarity judgments. In addition, we found no significant differ-
ence between mean tradeoff values in the TP and CF conditions
(t(17.7)=0.9, p=0.4). This was contrary to our hypothesis (see sec-
tion 2) that shape would become more important when exploration
was focused on object tips as opposed to the whole contour. Al-
though subjects were indeed significantly more shape-biased when
performing either CF or TP than they were when performing LM,
they were not significantly more shape-biased when performing TP
than when performing CF. We attribute this to inherent limitations
in haptic macrogeometric processing capacity [16, 18]. We had
hoped to ease the processing demands of the CF task by creating
three, smaller spatiotemporal windows of integration, however sub-
jects’ reports indicate that the TP task was as or more difficult than
the CF task. 4/10 subjects spontaneously reported that they found
TP to be the most difficult EP, whereas only 1/10 reported that CF
was the most difficult. In addition, 2/10 subjects spontaneously
reported that CF was the easiest procedure, but none said the same
for TP. It appears that the introduction of ”haptic saccades” between
the three tips may have had the opposite effect of what we had in-
tended. Even though there is relatively more high-curvature stim-
ulus information available to the haptic system per unit time in the
TP procedure, its discontinuous nature may have prevented subjects
from using the additional information to judge similarity.

Enclosure/grip (GR):We had hypothesized that enclosing the
objects in the hand would give rise to shape-dominated tradeoff
value, but instead, we found a texture-dominated value (M = 0.66,
SE = 0.08). Klatzky and Lederman [15] reported relative EP-to-
property weights of 2 for global shape, 0 for exact shape, and
1 for texture. Converting these to shape-texture tradeoff values
for comparison yields a shape-texture tradeoff of 0.33 for global
shape/texture (i.e., somewhat shape-biased) and 1 for exact shape-
texture (i.e., completely texture-biased). Our findings can be recon-
ciled with this data by considering the perceptual shape dimension
in our experiments as a combination of exact and global shape. In
support of this, subjects in an extended study involving these ob-
jects mentioned both global and part shape when explaining how
they performed haptic similarity judgments [6].

We also observed large variability in the way subjects weighted
shape vs. texture when using the grip EP (SE = 0.08), especially
compared to the LM condition (SE=0.02). Variability in property
weights was also quite high in the TP (SE=0.06) and CF condi-
tions (SE=0.06). When we analyzed weighting patterns for individ-
ual subjects, we observed that subjects could be classified into two
groups - a rather shape-biased group and a rather texture-biased
group. The difference between the two groups was most striking
in the GR condition: four subjects relied more on shape in this
condition as well as in the TP and CF conditions (Figure 5, while
six subjects were clearly texture-biased in the GR condition and
showed relatively more influence of texture in the TP and CF con-
ditions (Figure 6). These data are discussed in more detail in the
following section.

4.3 Dimension weights: Individual data

Individual subject dimension weights are plotted in Figures 5 and
6. Subjects were binned into two groups according to whether they
were strongly texture-dominated when gripping the objects or not.2

Subjects who were texture-biased while gripping the objects (CF:
M = 0.76, SE = 0.05; TP: M = 0.72, SE = 0.04; GR: M = 0.84, SE =

2Note that the subjects were grouped post-hoc; to test whether two dis-
tinct groups of subjects actually do exist (one group which is shape-biased in
gripping and one group which is texture-biased in gripping), a larger number
of subjects would be required.

0.03) were consistently texture-biased in all EP conditions. In con-
trast, subjects who were more shape-biased when gripping the ob-
ject were consistently more shape-biased when performing contour-
following or touching object tips (CF: M = 0.54, SE = 0.09; TP: M
= 0.40, SE = 0.09; GR: M = 0.38, SE = 0.06). Another difference
between the two groups is that absolute variation across subjects in
the texture-biased group was lower for the three shape-sensitive EPs
(CF: 0.34; TP: 0.25; GR: 0.17) than for the shape-biased group (CF:
0.39; TP: 0.32; GR: 0.29). This is another indication that the use of
shape as a perceptual dimension increases variability in dimension
weights across subjects. Finally, subjects’ individual ”trajectories”
in ”EP-tradeoff space” exhibit a degree of systematicity: for shape-
biased subjects, there is a downward trend from CF to TP to GR;
for texture-biased subjects, there is a slight upward trend from CF
to TP to GR. It may even be possible to model intersubject varia-
tion by a constant offset parameter. A larger number of subjects is
needed to further investigate this possibility.

What factors could have given rise to the consistent shape/texture
bias we observed for specific individuals? First, we checked for a
correlation with gender; this possibility was ruled out. Second, we
checked for an order effect, in case initial experience with certain
EPs provided a bias for the remainder of the experiment; however,
we did not find any patterns in the data which could be attributable
to order effects. Instead, we propose that the biases result from
intrinsic subject-specific biases towards shape or texture. For ex-
ample, a highly ”visual” person, who makes spontaneous use of
visual imagery and is at ease with spatial judgments may be in-
trinsically biased towards shape, while a more ”touch-oriented” or
”kinaesthetic” person may have higher sensitivity to vibration or
roughness, and thus bring an intrinsic bias towards texture to bear
on the similarity judgment task. In future studies, we plan to retest
the participants in this study to determine whether the bias is a last-
ing one and if so, whether it can be correlated with other measures
of bias towards shape/texture.

4.4 Relevant results for the design of haptic devices

Two results of this study are particularly relevant to the designers
of virtual haptic environments. First, we found a clear effect of
exploratory procedure on the perceptual weights of object proper-
ties (the tradeoff for LM being significantly more texture dominated
than for all other EPs), which clearly shows that the mode of inter-
action has an effect on perceptual object representations. Second,
we found high variability in property weights when subjects used
more shape-sensitive exploratory procedures. Thus, even though
subjects were presented with exactly the same objects and their
mode of interaction with them was strictly controlled, the percep-
tual outcomes differed. This finding is of particular importance for
two-fingered haptic interfaces such as the PHANToM, in which EPs
such as tip-touching, lateral motion, and contour-following may be
frequently used.

4.5 An MDS framework for comparative and validation stud-
ies

In the current study, a stimulus space with known perceptual dimen-
sions was provided as input to MDS; MDS was used to quantify the
tradeoffs amongst these pre-specified dimensions. Using MDS in
this ”known parameter mode” provided the opportunity to study the
effects of changing EPs on dimensions which were known to be of
perceptual importance. However, MDS can also be used in a num-
ber of other ways which can be helpful for virtual reality design. In
”parameter discovery mode”, the important dimensions of variation
are unknown at the outset - in this case, MDS returns a map of stim-
uli in a perceptually meaningful space whose dimensions, however,
need to be labelled or interpreted, e.g., by using subjects’ verbal
reports. MDS can also be used in ”parameter evaluation mode” to
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Figure 5: Dimension weights: Shape-biased group. Top: Group
data. Lines within boxes are located at the lower quartile, median,
and upper quartile values. Whiskers show the full extent of the data.
Bottom: Weights belonging to a single subjects are connected by
dashed lines.

test the relative perceptual importance of a given parameter. This
should be particularly helpful in haptic interface design: while the
number of parameters involved in creating a virtual reality envi-
ronment is reasonably tractable in the visual domain, it is less so
in the haptic domain due to the complexity of sensors, actuators,
and object models, the lack of standard displays, the expense of
computations required for real-time control, the high number of de-
grees of freedom of the human body, and a relatively undeveloped
understanding of the haptic sensory system. Using MDS in ”pa-
rameter evaluation mode”, the stimulus set would contain objects
which vary along the parameter to be evaluated, e.g., a parameter
which one suspects to be unimportant for perception and could be
allowed to vary freely. By examining stress values, MDS can be
used to judge subjects’ sensitivity to change along this dimension.

These ideas can be incorporated into an analytical framework for
comparative studies of human perception in real or virtual environ-
ments, as shown in Figure 7. In the first step, features are extracted
from a real or virtual environments. Proximity data are then de-
rived from these features. Note that in this paper, we have focused
on human similarity ratings on objects as our dataset. However,
proximities can be derived from any relevant interaction parameter,
such as hand or tool dynamics. MDS is then used to 1) construct
maps of the objects in perceptual spaces and 2) to compute relative
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Figure 6: Dimension weights: Texture-biased group. Top: Group
data. Lines within boxes are located at the lower quartile, median,
and upper quartile values. Whiskers show the full extent of the data.
Bottom: Weights belonging to a single subjects are connected by
dashed lines.

dimension weights. Comparing these data provides an opportunity
to visualize and quantify differences in:

1. perception under different real-world conditions (e.g., using
different EPs, as done in this study);

2. perception under different virtual reality conditions (e.g., us-
ing two different rendering algorithms);

3. perception in a real-world vs. a virtual environment (e.g., to
assess haptic fidelity).

The results of all three types of studies can be used to optimize
the parameters of virtual environments, as indicated by the dotted
lines in Figure 7. Since the study presented in this paper compares
different real-world perception scenarios, it relates to study type 1
(Figure 7, upper portion). Extensions to studies of different virtual
reality scenarios (study type 2) and comparisons between results
obtained in real and virtual scenarios (study type 3) are planned as
future work (see section 5).

This framework is not only applicable to haptic interfaces, but
also to interfaces for other modalities, as well as multimodal in-
terfaces. It addresses a growing need for tools which allow for 1)
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Figure 7: A framework for validation and comparative studies using MDS. Features are extracted from interactions in real or virtual environments
and proximity data are derived from operations on these features. MDS is used to construct perceptual maps and compute relative dimension
weights. Results are compared to evaluate perception 1) under different real-world scenarios (e.g., to characterize human perception), 2) under
different virtual reality scenarios (e.g., to benchmark different technical systems), and 3) in real-world vs. virtual scenarios (e.g., to validate a
particular technical system).

validation of haptic/multimodal displays relative to real-world per-
ception and 2) comparison and benchmarking of different displays,
algorithms, and usage patterns. A number of studies have already
applied paradigms developed in the field of experimental psychol-
ogy to the problem of interface validation. Several studies have
measured the speed, accuracy, or forces exerted by a human user
during a task and test how similar these are under real-world and
virtual conditions, e.g., [29, 12, 30]. Magnitude estimation tasks
have also been used to characterize the perception of virtual ob-
ject properties, such as roughness, as a function of environment
parameters, such as the type of probe used to explore the objects,
e.g., [15, 14]. Other groups have measured the discriminability ob-
ject properties, such as curvature, and used this as a metric, e.g.,
[19, 23, 26, 31]. Finally, some studies have begun to use metrics
based on performance of more cognitive tasks such as object recog-
nition, categorization, and similarity judgments [28, 12, 24]. Never-
theless, validation methods for haptic technologies are in the early
stages of development and there is still a need for robust measures
which provide insight into complex, cognitive human experience of
virtual environments, while at the same time being easy and quick
to use. We suggest that an ideal validation paradigm includes the
following attributes:

1. The paradigm providesrobust statistics, i.e., a set of statis-
tics and corresponding measures of confidence, which allow
differences between real-world and virtual experiences to be
quantified and allow for benchmarking of different virtual ex-
periences/systems.

2. The paradigm offers insight intocognitiveaspects of virtual
experiences, i.e., metrics and/or visualizations that reveal how

cognitive-level processes such as learning and coping strate-
gies, meanings, and representations are affected by changes
in the haptic environment. This may involve a shift towards
”higher-level” similarity, recognition, categorization, seman-
tic, and memory tasks [27].3 Cognitive metrics also need to
be flexible enough to extend to multimodal interactions.

3. The paradigm iseasy to usein a general sense, i.e., the method
used to gather data is easy to understand, straightforward to
implement on a wide range of systems, and can be carried out
quickly. The analysis procedure required to transform raw
measures into the desired metrics should also be easy to im-
plement or acquire and quick to carry out.

MDS approaches provide a partial answer: they offer quantita-
tive measures (interstimulus distances, stress as a measure of di-
mensionality, and dimension weights) and they offer insight into
higher-level stimulus representations. One drawback, however, is
that pairwise similarity data are time-consuming to gather; differ-
ent proximity measures such as same/different judgements or con-
fusion errors may offer a solution to this. Secondly, data analy-
sis requires several fitting and optimization steps, however standard
implementations are available in packages such as MATLAB and
SPSS. Despite these drawbacks, the flexibility and generalizability
of MDS approaches makes them a powerful tool for investigating
human perception in both real and virtual environments.

3As noted by [10], attributes that enable objects to be discriminated may
not be those which play the most important role in their perceptual repre-
sentation, although poorly discriminable properties likely do not play an
important perceptual role.



5 SUMMARY AND OUTLOOK

This paper provides a quantitative characterization of how haptic
modes of interaction alter object perception. Using MDS analy-
sis of similarity data, we showed that subjects are able to recover
the topology of the input parameter space and perceived its dimen-
sions as shape and texture. However, the way in which subjects
weighted these two dimensions was affected by the way in which
they interacted with them: when subjects explored the objects us-
ing lateral motion, perceptual similarities were strongly dominated
by texture variations, while shape differences were also taken into
account when subjects performed contour-following, tip-touching,
or enclosure. However, the relative weight given to shape vs. tex-
ture varied greatly when subjects used one of the three EPs which
provided access to shape information. Two groups of subjects, one
exhibiting more shape bias and one exhibiting more texture bias
across these EPs, were tentatively identified, however a larger num-
ber of subjects is needed to properly characterize the distribution of
weights.

These findings provide important insights for designers of hap-
tic environments. Lateral motion yields a robust representation in
which texture strongly dominates over shape; thus, it is the ”safest”
of the EPs to allow in a haptic environment if one wishes to guar-
antee a single perceptual outcome. Of course, it is highly limited in
that it does not allow for shape information to be extracted. When
incorporating new modes of interaction, designers need to be aware
of the ambiguities which will be simultaneously introduced into the
perceptual experience of the environment. Methods such as the one
presented in this paper can be used to assess the magnitude of such
variations and identify ”lower-risk” modes of interaction.

In a follow-up study, we plan to compare the dimension weights
which we measured in this real-world setting against dimension
weights measured in a virtual haptic setting, e.g., by presenting
the stimuli (or simplified variants) using a PHANToM device. In
our framework (Figure 7), this would correspond to a virtual real-
ity comparative study (bottom half of the diagram). The main goal
of this study will be to compare dimension weights and variabil-
ity under a specific set of virtual conditions against their real-world
counterparts in order to identify modes of interaction which pro-
vide high-fidelity representations (i.e., distributions of dimension
weights which match those measured in real-world interactions).
We hope that this line of research will provide helpful groundwork
in establishing MDS techniques as a paradigm for evaluating per-
ception in virtual environments.
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