
Genomics Proteomics Bioinformatics 14 (2016) 55–61
HO ST E D BY

Genomics Proteomics Bioinformatics

www.elsevier.com/locate/gpb
www.sciencedirect.com
ORIGINAL RESEARCH
EDISON-WMW: Exact Dynamic Programing

Solution of the Wilcoxon–Mann–Whitney Test
* Corresponding author.

E-mail: andreas.keller@ccb.uni-saarland.de (Keller A).
a ORCID: 0000-0002-1575-824X.
b ORCID: 0000-0001-9330-9290.
c ORCID: 0000-0001-7569-819X.
d ORCID: 0000-0002-5820-9961.
e ORCID: 0000-0002-5361-0895.

Peer review under responsibility of Beijing Institute of Genomics,

Chinese Academy of Sciences and Genetics Society of China.

http://dx.doi.org/10.1016/j.gpb.2015.11.004
1672-0229 � 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of Beijing Institute of Genomics, Chinese Academy of Scie
Genetics Society of China.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Alexander Marx 1,a, Christina Backes 1,b, Eckart Meese 2,c, Hans-Peter Lenhof 3,d,

Andreas Keller 1,*,e
1Chair for Clinical Bioinformatics, Medical Faculty, Saarland University, Saarbrücken 66123, Germany
2Department of Human Genetics, Saarland University, University Hospital, Homburg 66421, Germany
3Chair for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
Received 13 October 2015; revised 2 November 2015; accepted 12 November 2015
Available online 29 January 2016

Handled by Song Liu
KEYWORDS

Wilcoxon–Mann–Whitney

test;

Wilcoxon rank-sum test;

Dynamic programing;

Exact permutation;

Parallel optimization
Abstract In many research disciplines, hypothesis tests are applied to evaluate whether findings are

statistically significant or could be explained by chance. The Wilcoxon–Mann–Whitney (WMW) test

is among the most popular hypothesis tests in medicine and life science to analyze if two groups of

samples are equally distributed. This nonparametric statistical homogeneity test is commonly

applied in molecular diagnosis. Generally, the solution of the WMW test takes a high combinatorial

effort for large sample cohorts containing a significant number of ties. Hence, P value is frequently

approximated by a normal distribution. We developed EDISON-WMW, a new approach to calcu-

late the exact permutation of the two-tailed unpaired WMW test without any corrections required

and allowing for ties. The method relies on dynamic programing to solve the combinatorial problem

of the WMW test efficiently. Beyond a straightforward implementation of the algorithm, we pre-

sented different optimization strategies and developed a parallel solution. Using our program,

the exact P value for large cohorts containing more than 1000 samples with ties can be calculated

within minutes. We demonstrate the performance of this novel approach on randomly-generated

data, benchmark it against 13 other commonly-applied approaches and moreover evaluate molec-

ular biomarkers for lung carcinoma and chronic obstructive pulmonary disease (COPD). We found
nces and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.gpb.2015.11.004&domain=pdf
mailto:andreas.keller@ccb.uni-saarland.de
http://dx.doi.org/10.1016/j.gpb.2015.11.004
http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.gpb.2015.11.004
http://creativecommons.org/licenses/by/4.0/

56 Genomics Proteomics Bioinformatics 14 (2016) 55–61
that approximated P values were generally higher than the exact solution provided by EDISON-

WMW. Importantly, the algorithm can also be applied to high-throughput omics datasets, where

hundreds or thousands of features are included. To provide easy access to the multi-threaded

version of EDISON-WMW, a web-based solution of our algorithm is freely available at http://

www.ccb.uni-saarland.de/software/wtest/.
Introduction

Hypothesis testing is used in many research areas to evaluate if
findings are statistically significant or could be explained by
chance. In order to evaluate hypothesis tests, the calculation
of P values is a common method. A well-known method to cal-

culate P values is the t-test. In contrast to the t-test, which
requires a normal distribution of two groups, a non-
parametric test, the Wilcoxon–Mann–Whitney (WMW) test,

can also be applied in many cases [1]. This test is applied to
elaborate if two sample groups (random variables) have equal
distributions. It is commonly applied in the life and social

sciences as well as in the biomedical sciences [2]. In addition,
a theoretical and empirical analysis of three families of statis-
tical tests, parametric, non-parametric, and non-parametric

tests that assume non-commensurability of the results,
revealed that non-parametric tests like the WMW test are pre-
ferred over parametric tests [3].

There are two different test statistics that can be used to cal-

culate the WMW test. The first is the Mann–Whitney U test,
which uses an approximation for the P value if the sample sizes
exceed the number of eight elements [4]. The second test statis-

tics, which is the focus of our current work, is the Wilcoxon
rank-sum test [5]. Wilcoxon rank-sum test is a rank-based test,
where the P value is evaluated by calculating the rank for the

two samples, which is compared to the rank of all possible per-
mutations of the samples. Theoretically, one can calculate the
exact solution also for large cohorts, but most algorithms tend
to approximate the result, because the computational effort to

solve the exact permutation problem, which is exponentially
growing with the cohort size, is too high. Nevertheless, differ-
ent algorithms have been developed to solve the test exactly.

One of these algorithms is a network-based approach that is
based on recursion [6]. In 1997, Cheung and Klotz [7] devel-
oped an exact solution of the problem using minimal linked

lists and applied their algorithm to the data used by Mehta
and his colleagues [6]. Another one is implemented in the sta-
tistical library R [8], which was compared with the method

described in this study. Independent of the sample size, many
approaches have problems to provide an exact solution when
there are tied entries in the sample data. For small sample sizes
in the range of ten, it is possible to tabulate the solutions for

the exact test, whereas this is not possible anymore, if the data
include duplicated values [9]. Even if an approximation is used
to calculate the WMW test, one has to use correction terms

for ties.
Facing these problems, we developed an algorithm named

Exact Dynamic Programming Solution of the Wilcoxon

rank-sum test (EDISON-WMW) to solve the exact WMW test
for large cohorts up to cohort sizes of about 500 for tied and
non-tied data input without requiring the usage of any correc-

tions. EDISON-WMW is based on dynamic programing,
where all permutations are calculated in a stepwise procedure.
This strategy allows the usage of several optimizations to
reduce the computational effort. First, we are able to use filters
to discriminate permutations that could have an influence on

the P value from permutations we can be sure that do not
influence the P value. Second, the representation that we use
to enumerate the permutations allows us an efficient storage,
which also allows for a parallelization of our algorithm. More-

over, the stepwise approach enables us to efficiently calculate
tied samples, leading even to a decreased runtime, depending
on the number of ties. Importantly, the efficiency of our algo-

rithm is also higher for larger P values and decreases with the
increasing significance. This is of special importance for high-
throughput studies where, e.g., tens of thousands of genes are

measured in an integrative manner but only a small number of
them are expected to be correlated to the respective study
set-up.

We evaluated the performance of EDISON-WMW not
only on randomly-generated datasets but also on a biomarker
case-control study. Here, the expression levels for 18 micro-
RNAs (miRNAs) were measured for 46 chronic obstructive

pulmonary disease (COPD) patients and 46 lung cancer
patients.
Results and discussion

We aimed to provide an exact solution for the two-tailed

unpaired WMW test without any corrections and for tied data.
To this end, we compiled the null distribution of the test statis-
tic by exact permutation in an efficient manner. We first
described the actual complexity and the performance on simu-

lated data of EDISON-WMW. Then we compared its perfor-
mance with 13 other methods in terms of P value calculation of
WMW test and benchmarked EDISON-WMW against the

dataset used previously [6,7]. Finally, we applied EDISON-
WMW to miRNA profiles generated by RT-qPCR for lung
cancer and COPD patients [10].

Performance estimation and memory usage on simulated data on

different versions of EDISON-WMW

First, we evaluated the performance of the algorithm on simu-
lated data. The respective computer was equipped with 512 GB
RAM and four AMD Opteron processors, totaling 64 cores
with 2.4 GHz. We compared the basic version without the

optimization, the optimized version, both run on a single
thread, and finally the multi-threaded optimized version. The
two benchmark datasets contained two groups of samples with

m= n= 50 and m = n = 100 samples, respectively. To
exclude the influence of ties, the dataset did not contain dupli-
cated values. For the cohort size of 50, the basic version took

109.6 s to calculate the exact P value, the optimized version
1.6 s, and the multi-threaded version 1.1 s. For the second
dataset, the basic version required 1897.4 s, the optimized
42.1 s, and the multi-threaded 17.2 s. The optimized version

http://www.ccb.uni-saarland.de/software/wtest/
http://www.ccb.uni-saarland.de/software/wtest/

Marx A et al / Exact WMW Approach Using Dynamic Programing 57
was thus about 50 times faster as compared to the basic
version, and the multi-threaded implementation was even
100 times faster.

The difference between the optimized single-threaded and
multi-threaded versions became even more evident using larger
cohorts, as shown in Figure 1. Compared to the optimized sin-

gle threaded version, for 50 samples per cohort, the speed was
increased 1.55-fold using multithreaded version. The improve-
ment in performance is increased with the increase in cohort

size. For a cohort with 300 samples, the speed is increased
up to 3.91-fold, with less than 3 GB RAM. In particular, our
algorithm performed well for tied data. For example, by
increasing the number of ties, the computation time for

cohorts of size 50 was reduced to 0.27 s and for cohorts of size
100 in 2.87 s. For m= n = 500 samples with ties, the exact
results were obtained in around 12 min, demonstrating that

even for such large cohorts, exact P values can be obtained
in reasonable time.

We further test our algorithm on categorical data with large

sample sizes for two datasets. The datasets included four
Figure 1 Influence of multi threading on algorithm performance at

different input size

For larger sample sizes, a fourfold increase of performance is

reached in comparison to the optimized single threaded approach.

The Y axis denotes the relative ratio of the running time of the

single-threaded (st) and multi-threaded (mt) versions of EDISON-

WMW.

Figure 2 Complete binary tree up to the fourth iteration

The first duplicated entry occurs in layer 4, which is highlighted in gr
categories mapped to integer values with the sample sizes of
1000 and 2000, respectively. Results for 1000 samples per
group could be obtained in less than 10 min with about

9 GB RAM. Due to the exponential runtime and the very large
sample size, the test for 2000 took about 96 min with less than
110 GB RAM to obtain the result.

Number of duplicates in the hash table

A key characteristic of our algorithm is that the tree, which is

built up layer by layer, is actually not binary. We would have,
after i iterations, 2i leaves and a total of 2i+1 � 1 nodes, if
building up a binary tree. For example, there would be 2047

nodes after 10 iterations and more than 2 million nodes after
20 iterations. As shown in Figure 2, starting from the fourth
layer on, we however observed replicated entries in the tree.
We thus calculated the number of replicates. There is one repli-

cate at layer four (6.6%) and at layer 10, we find 72.59% repli-
cated values, thus not 2047 but just 561 entries have to be
stored in the hash table. After 20 steps, 99.64% replicates

are detected. Hence, 7550 nodes instead of over 2 million nodes
in the tree are considered. After 28 iterations, 99.999% of all
entries in the tree were duplicates. The rapidly increasing

amount of duplicates is presented in Figure 3. Here, the first
8 layers of the tree are provided, the root node is shown in
the middle. From layer to layer, the duplicated entries that
are highlighted in orange increase substantially. The more such

replicates we obtain, the higher the performance of our algo-
rithm actually is.

Dependence of runtime from P value

As shown above, there is a strong dependence of the runtime
of our algorithm on the number of ties. We then evaluated

whether there is a dependence of runtime on the significance
value. We generated random datasets with R across a wide
range of P values, from really low (10�10) to P values close

to the maximum of one (10�1). The cohort size has been fixed
to n= m = 100 samples and in order to exclude the influence
of ties, no ties were allowed. As the scatter plot in Figure 4

details, we actually discover a higher runtime for very signifi-

cant results, which is expected since fewer elements can be
pruned by our algorithm in this case. This behavior is of inter-
est for high-throughput omics datasets, where many thousands

of features can be tested in an integrative manner. In respective
ay. Same results were also obtained for 2 entries in layer 3.

Figure 3 Tree for the first 7 iterations

The root node is presented in the middle, and a binary tree is

constructed from this root node. The blue nodes represent nodes

that have to be considered while the orange nodes represent

duplicates. The first duplicate is discovered in the fourth iteration

(upper right part of the image).

16.5

17.0

17.5

15.5

16.0

R
un

tim
e

(s
ec

on
ds

)

15.0

1e-141e-091e-04
P value

Figure 4 Correlation between runtime and significance value

Running time of test runs was plotted based on the resulting

P value. The X axis presents the negative decimal logarithm of the

P value. Here, higher values correspond to lower significance

values and thus highly significant results. Runtime is shown in

seconds on the Y axis. m = n= 50 for the cohort size. The black

line was generated using linear regression and the gray area

around the line denotes the standard error.

58 Genomics Proteomics Bioinformatics 14 (2016) 55–61
studies, the portion of non-significant features (requiring less
runtime) is usually substantially higher than that of significant

(P < 0.05) or very significant (P � 0.05) findings.
Comparison to other statistics packages

As described previously, different versions of EDISON-WMW
have been developed to solve the WMW test exactly. Promi-
nent examples are a network-based approach [6] and a linked

list-based C implementation [7]. Both evaluated a dataset from
a double-blind randomized study on a new agent in patients
with rheumatoid arthritis. The cohort sizes were m= 107
and n= 122. Our algorithm calculated the result far below

one second. While a direct comparison of the runtime was
not possible, the speed-up from the naı̈ve implementation, as
shown above in the section about the performance of

EDISON-WMW, is a good indicator of the performance.
Consequently, Metha and his colleagues obtained a 19-fold
improved runtime, which is well in line with, although not as

good as, the improvements observed for EDISON-WMW
(basic version and optimized version, notably without
parallelization).

Bergmann et al. [9] compared 11 statistical packages for cal-
culating WMW test P values with a cohort of m= n = 12 rats
including ties. Of the 11 packages, four were able to calculate
the exact permutation, however, just for limited cohort sizes.

The actual P value for the scenario given in Bergmann et al.
was 0.0373, while the programs tested delivered P values
between 0.0147 and 0.089. Only a small fraction of the tested

programs, including SPSS and ArcusQuickstat, delivered the
exact result. Therefore, these packages are limited, considering
the cohort size.

In our current study, besides these 11 programs, we also
tested the dataset with ‘‘R”. ‘‘R” calculated P values of
0.01647 and 0.01473, with and without continuity correction,
respectively. In both cases, ‘‘R” draws a warning that for tied

data no exact P values can be calculated. Additionally, we also
checked various web servers that are freely available to calcu-
late WMW test P values. For instance, using the service of

Phonetic Sciences in Amsterdam (http://www.fon.hum.uva.
nl/Service/Statistics/Wilcoxon_Test.html), we got the result
P 6 0.08853. Using the same data as input, all three versions

of EDISON-WMW delivered the exact result according to
Bergmann et al. in far below one second computing time.

Since ‘‘R” is one of the most commonly applied tools for

statistical calculations, we performed an additional compar-
ison in order to check how far R deviates from the exact solu-
tion. In Figure 5, we evaluated P values between 1 and 10�10

for randomly-generated data. While in the moderate P value

range (100–10�2; orange), just minor deviations from the exact
solution were discovered, we observed, especially in low P
value ranges (10�7–10�10; green), a bias of R toward less sig-

nificant results, which is already evident for the intermediate
P value ranges (10�4–10�6; blue). This may become problem-
atic especially in high-throughput studies, since the required

adjustment for multiple testing may worsen the described
effect.

Evaluation of lung cancer and COPD miRNA patterns

So far we presented evidence for the correctness and efficiency
of our algorithm. To demonstrate the performance on real
molecular diagnostic data, we evaluated a set of m = n = 46

samples from lung cancer and COPD patients. These samples
have been screened using RT-qPCR for 18 miRNAs related to

http://www.fon.hum.uva.nl/Service/Statistics/Wilcoxon_Test.html
http://www.fon.hum.uva.nl/Service/Statistics/Wilcoxon_Test.html

Figure 5 Benchmarking of P value between R and EDISON-WMW

Performance of R and EDISON-WMW was compared for calculating P values in the range of 10�10–1. Three ranges are highlighted, not

significant or moderate significant (down to 0.001) in orange, more significant (down to 10�6) in blue, and very significant (down to 10�10)

in green. For low P values, ‘‘R” seems to under-estimate the significance by overestimating the P values.

Table 1 P values for miRNA profiles between COPD and lung cancer patients

Note: P values <0.05 are highlighted in gray. Benjamini Hochberg was used for adjustment.

Marx A et al / Exact WMW Approach Using Dynamic Programing 59
lung cancer and COPD. The P values were calculated using
EDISON-WMW and ‘‘R” with the correction for continuity

enabled. Finally, the P values were adjusted for multiple test-
ing using the Benjamini Hochberg approach [11]. The raw P
values and corrected significance values are shown in Table 1.

In most cases, R and EDISON-WMW showed a very good
concordance. Both ‘‘R” and EDISON-WMW reported signif-
icant results according to raw P values (P < 0.05, highlighted

in gray) for 6 miRNAs. Following adjustment for multiple
testing, 5 miRNAs remain significant using EDISON-WMW.
Moreover, in all 5 cases the exact P values obtained using
EDISON-WMW was lower than those calculated by ‘‘R”.

For has-miR-93*, the exact P value calculated by EDISON-
WMW remains significant (0.048) but not any more using
‘‘R” (0.05). In sum, these data demonstrate our exact imple-

mentation of the WMW test can be applied to evaluate molec-
ular biomarker profiles efficiently.
Conclusion

Here we present an algorithm for the exact solution to the two-

tailed unpaired Wilcoxon–Mann–Whitney test, even in the
presence of ties. Our algorithm performs especially well for
data that contain many ties and show higher significance val-

ues. These data are frequently generated by high-throughput
molecular approaches, such as in genomics and transcrip-
tomics. We benchmarked EDISON-WMW against other tools
for calculating WMW test P values using simulated data and

real miRNA profile data. We show that our algorithm can
be applied even if 1000 samples are included in the study. To
facilitate access to the EDISON-WMW, we implemented an

easy to handle web-based solution, on which users are able
to fill in their data manually or upload their data in CSV-
format for P value calculation.

60 Genomics Proteomics Bioinformatics 14 (2016) 55–61
Materials and methods

Calculation of the WMW test

The WMW test can be calculated with the Mann–Whitney U
test and with the Wilcoxon rank-sum test. We implemented

the Wilcoxon rank-sum test to provide an exact solution.
We sort all elements of the two given random samples X

and Y of sizes m and n in an increasing order and store them
in a list L of length m+ n. If the list does not contain ele-

ments with the same value (ties), the rank of each element
is equal to its position in L starting with rank one. Tied ele-
ments receive each the arithmetical mean of their positions as

ranks. The rank of a set S#L is defined as the running sum
rðSÞ ¼ P

s2Srs of the ranks of its elements [5]. In order to cal-

culate the P value, we compare the rank r(X) of X to the
ranks of all group label permutations of L, i.e., all subsets
of L of size m, and do the same for Y. The two-sided P value
for two samples X and Y with |X| = m and |Y| = n is then

defined as

P ¼ 2 �min
prðXÞ
mþ n

m

� � ;
prðYÞ
mþ n

m

� �
0
BBB@

1
CCCA ð1Þ

where pr(X) is the number of all subsets of size m that have a
lower or equal rank than r(X) and, equivalently, pr(y) is the

number of all subsets of size n that have a lower or equal rank
than r(Y).

Dynamic programing

The number of permutations (subsets of size m and n, respec-
tively) is increasing exponentially with the increasing cohort
size. Using this approach, we show how the number of ‘consid-

ered’ subsets can be effectively reduced by the usage of filters
and how these subsets and their ranks can be stored efficiently.
Moreover, we demonstrate how the calculation of tied samples

can be done efficiently and how multi-threading support can
be added to further speed up the computation.

Using a dynamic programing approach, we compute pr(X),
the number of subsets of list L of size m with ranks not exceed-
ing the calculated rank r(X) of X (and equivalently pr(Y)). To
this end, we iterate backward over all elements of L starting
with the last element at position n + m with rank rn+m. In

order to solve the aforementioned counting problem, we have
to compute the number of subsets of size m

prðXÞ :¼ prðXÞðm; nþmÞ ð2Þ
whose ranks do not exceed the calculated rank pr(X), i.e., all
subsets of size m whose running sums up to the last position
n+ m are smaller or equal to pr(X). In order to derive a recur-
sion formula, we have introduced two further parameters: the
first parameter m describes the size of the considered subsets;

the second parameter n+ m defines a position in the list.
The following recursion holds for a given positive threshold
S, a position i, and a subset size of k

pSðk; iÞ ¼ pSðk; i� 1Þ þ pS�riðk� 1; i� 1Þ ð3Þ
Here, pS(k, i � 1) counts the subsets excluding element i,
whereas pS�riðk� 1; i� 1Þ counts the subsets containing ele-

ment i. In the latter case, the rank ri will be added to the run-
ning sum and, hence, the threshold has to be reduced to S � ri.

Furthermore, the number of elements that still have to be
selected during the remaining recursive steps has to be reduced
to k � 1.

Given the sorted list L with the ranks of all elements, the
recursive calculation of the number of valid subsets can be rep-
resented by a binary tree that can be constructed in two direc-
tions, either starting from the beginning or from the end of list

L. In the implementation described below, we build up the tree
starting from the first element. Using dynamic programing, we
count the number of valid subsets iteratively based on this tree.

The tree is calculated stepwise starting with the root node and
adding in each step another layer. Since layer i depends only
on the previous layer i � 1, only the current and the previous

layers have to be stored. Another important aspect of the algo-
rithm is an efficient storing method for the calculated recursion
elements. We use a hash map, which takes as key a pair (k,r)
consisting of the subset size k and the rank-sum r of this sub-

set. The number of subsets of size k and rank-sum r is stored.
Figure 2 shows an example of a sample tree of height four,

where the input does not include ties. To get the exact P value,

we have to perform m+ n steps, i.e., layer computations.
Before step one, we initialize the tree with the root element
(0,0), which obtains the value ‘1’. In every step, we create for

each entry in the old hash map two entries in a new hash
map: the entry itself and another entry that adds the informa-
tion of the actual element i, namely the number of added ele-

ments (‘1’) and the rank ri of element i, to the key of the
original entry. This means for the second element the key will
by increased by (1,ri). In Figure 2, the respective keys of the
hash map are shown, where the first four keys (the left arm

of the tree) contain the count of elements, 1–4 (left part of
the keys) and the sum of 1 to the number of contained elements
(right part of the keys). For example the key (3, 6) represents a

set containing 3 elements and the sum of them is 6 (sum of
1–3). With the exception of the element highlighted in gray
in the last line, the values of all elements are equal to one. In

row three, the elements (2,5) and (1,1) both have the child
(2,5) and therefore the value of this element is two. For larger
tree sizes, the case that two parent nodes share the same child

node happens very frequently, which leads to a substantially-
decreased memory usage and running time. More details on
running time and memory usage were provided in the Results
and discussion section.

Extension of the basic algorithm

To accelerate the computation, the basic version of the algo-

rithm presented above has been extended in several directions.
In order to decrease the memory usage and the running time of
the algorithm, four filters have been introduced. Since only the

valid subsets that belong to pr(X) and pr(Y) have an influence on
the P value, we can remove non-valid elements from the hash
map immediately. Consequently, for two samples X and Y
with |X| = m and |Y| = n, where i is the actual step and rnext
is the sum of the ranks of the next m � k elements, we can
remove an entry (k, m) if one of the following rules is fulfilled:

Marx A et al / Exact WMW Approach Using Dynamic Programing 61
1: k > m

2: kþ ððmþ nÞ � iÞ < m

3: mþ rnext > rðXÞ;
4: k ¼ m ^ v � rðXÞ

ð4Þ

Analogous rules can be applied for the second sample
group Y.

Next, a feature that optimizes the algorithm for tied sam-

ples has been developed. If there are tied elements in the sam-
ples, we have to add the same sub-tree in several steps of the
algorithm. To accelerate the computation we pre-compute
the complete sub-tree for such tied sequences and then merge

it with the rest of the tree. More precisely, assume that we have
k elements with the same rank r, then the subtree has the form
of Pascal’s triangle. Consequently, it has only k+ 1 leaves,

where the keys can be written as (i,r � i), i= 0, . . .,k. Based
on the structure of such a subtree, the values are given by
the following formula.

valueði;r�iÞ ¼
1; if i ¼ 1

k

i

� �
; otherwise

8<
: ð5Þ

This feature is especially important for datasets where only

few different numbers occur and therefore the number of ties is
high.

Implementation details

In order to get the best possible performance, we implemented
the algorithm in C++. To guarantee a correct solution also

for large cohorts, the class library for numbers (CLN) library
[12] was used to store the values, which in such cases would
exceed normal data types. Furthermore, to optimize the run-
ning time we used multi-threading for tree construction. Since

the standard HashMap supported by C++, which we used at
the beginning to represent our mapping, does not allow a con-
current iteration, we used the hash map from the Intel�
threading building blocks (TBB) library [13] to access the
map concurrently. Additionally, the parallel_for method of
TBB was used for the parallelization.

Details of the datasets

The simulated data have been generated using R [8]. We
used normally-distributed data, whereas the standard devia-

tion of each sample pair (X, Y) was equal and the mean
sample Y was shifted to generate another sample group.
In the case of Figure 5, we used group X as constant and

iteratively increased the mean of group Y by a small
amount. The lung cancer and COPD data have been
described previously [10].
Authors’ contributions

AM implemented the main part of the algorithm and the web
interface, CB supported the development of the algorithm, EM

contributed in data analysis and writing the manuscript, HPL
and AK developed the algorithm and wrote the manuscript.
All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Acknowledgment

This work has been funded by Saarland University, Germany.
References

[1] Fay MP, Proschan MA. Wilcoxon–Mann–Whitney or t-test? On

assumptions for hypothesis tests and multiple interpretations of

decision rules. Stat Surv 2010;4:1–39.

[2] Ludbrook J, Dudley H. Why permutation tests are superior to t

and F tests in biomedical research. Am Stat 1998;52:127–32.

[3] Demsar J. Statistical comparisons of classifiers over multiple data

sets. J Mach Learn Res 2006;7:1–30.

[4] Mann HB, Whitney DR. On a test of whether one of two random

variables is stochastically larger than the other. Ann Math Stat

1947;18:50–60.

[5] Wilcoxon F. Individual comparisons by ranking methods. Bio-

metrics Bull 1945;1:80–3.

[6] Mehta CR, Patel NR, Tsiatis AA. Exact significance testing to

establish treatment equivalence with ordered categorical data.

Biometrics 1984;40:819–25.

[7] Cheung YK, Klotz JH. The Mann Whitney Wilcoxon distribution

using linked lists. Stat Sin 1997;7:805–13.

[8] Team R Core. R: a language and environment for statistical

computing [Internet]. Vienna, Austria: R Foundation for Statis-

tical Computing; 2015. Available from: http://www.r-project.org/.

[9] Bergmann R, Ludbrook J, Spooren WPJM. Different outcomes

of the Wilcoxon–Mann–Whitney test from different statistics

packages. Am Stat 2000;54:72–7.

[10] Leidinger P, Keller A, Borries A, Huwer H, Rohling M, Huebers

J, et al. Lung cancer specific peripheral miRNA profiles for

distinguishing lung cancer from COPD. Lung Cancer

2011;74:41–7.

[11] Benjamini Y, Hochberg Y. Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J R Stat Soc

Ser B 1995;57:289–300.

[12] Haible B, Kreckel RB. CLN, a class library for numbers, 1996.

Available from: www.ginac.de/CLN.

[13] Reinders J. Intel threading building blocks: outfitting C++ for

multi-core processor parallelism. 1st ed. O’Reilly Media; 2007.

http://refhub.elsevier.com/S1672-0229(16)00035-8/h0005
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0005
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0005
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0010
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0010
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0015
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0015
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0020
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0020
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0020
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0025
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0025
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0030
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0030
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0030
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0035
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0035
http://www.r-project.org/
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0045
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0045
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0045
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0050
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0050
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0050
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0050
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0055
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0055
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0055
http://www.ginac.de/CLN
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0065
http://refhub.elsevier.com/S1672-0229(16)00035-8/h0065

	EDISON-WMW: Exact Dynamic Programing Solution of the Wilcoxon–Mann–Whitney Test
	Introduction
	Results and discussion
	Performance estimation and memory usage on simulated data on different versions of EDISON-WMW
	Number of duplicates in the hash table
	Dependence of runtime from P value
	Comparison to other statistics packages
	Evaluation of lung cancer and COPD miRNA patterns

	Conclusion
	Materials and methods
	Calculation of the WMW test
	Dynamic programing
	Extension of the basic algorithm
	Implementation details
	Details of the datasets

	Authors’ contributions
	Competing interests
	Acknowledgment
	References

