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TOKAMAK REFUELING VIA INDUCED CONVECTION

S. Puri
Maz-Planck-IPP, 85748 Garching, Germany, EURATOM Association

This paper explores the possibility of tokamak refueling by inducing inward radial
convection through the conversion of externally injected toroidal mechanical momentum
to the canonical momentum of the trapped population. The longitudinal adiabatic
invariant for a trapped particle is given by J =m ¢ vdl , where
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is the parallel velocity, W is the total particle energy, 4 = muv? /2B is the magnetic
moment, and ®(r) is the electrostatic plasma potential. Along the banana orbit, approx-
imating B(r,0) = Bo(l—ccos6) and ®(r,8) = ®(r¢)+ .5wE,(cos § —cosby)/(1—cosby),
where 16, is the poloidal angle of reflection located at radius rg, E, = —0®/0r is the
radial electric field assumed constant over the banana width w ~ +/rq/R(B/Bg)r.,

R is the tokamak major radius and ¢ = r/R gives

(2)
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For |weE, | < 2epBy; i.e., for |E,| < |¢'/2v,Bg|, the 6-dependence of v contributed by
E, in (2) is negligibly small, so that (2) may be approximated as

5 1/2
|~ [E {W — puBo(1 —ecosb) — e@(ro)}} . (3)
Following Ref. [1], the trapped-particle precession velocity is given by
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K (x?) and E(k?) are the complete elliptic integrals of the first and second kind, and Vllo
and v o are the components of the mean particle velocity at § = 0. The magnitude of

the maximum precession velocity vg'(7. . occurs for k? =0 (E/K = 1), and for x*? =1

(E/K = 0), corresponding to the minimum and maximum permissible trapped-particle
parallel velocities, |v)g/v1i0| = 0 and |vjo/vi0] = V2¢. The trapped particles precess in

the opposite toroidal directions at these two extreme values of |v)p /v 1o|. The magnitude
Zf?)ﬁec'
the fact that the trapped electrons are unable to share the bulk toroidal motion of the

of the average precession velocity [(vg, prec)| < v This result is consistent with

free electrons during Ohmic heating, leading to the well-known neoclassical correction
to Spitzer resistivity. The average trapped-particle precession would also be small in
comparison with the average toroidal velocity

<vg“>~o[nvmq, (6)
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of free electrons and ions needed to balance the radial pressure gradient [2]. The rotation
velocity in (6) is co-directed for ions and contra-directed for electrons. In either case
the current contribution is co-directed. In addition to the toroidal precession velocity
given by (4), the trapped particle suffers a toroidal E x B drift vi”ft ~ E,.By/B*. This
small drift makes only a minor modification to the precession result of (4).

Additional forces acting on trapped particles arise from (i) radial pressure gradients
Vp, (ii) interparticle collisions, and (iii) the Ohmic-heating toroidal electric field E.
Vp effects can be treated in a manner similar to the E, effects; they do not materially
affect trapped-particle precession.

The force due to the interparticle collisions is by far the subtlest and the most
pertinent in the present context. During one complete bounce period 7, = wb_l, a
trapped particle traverses a distance ~ 2wgR, where q 1s the safety factor. The trapped
particle collides with (2mgR)(7A\%)n. 2 2 x 10'3 individual electrons and ions during
this interval. The interparticle collisions exert a smooth force F on the trapped particle
with two distinct components F =< F, > +F "™ where < F, > is a steady
toroidal force on the trapped electrons (ions) given by

< .7:¢e(¢i) SR Vee(ei)yMe < U(J;Zee > FVie(inymi < U(J;:ee > (7)

The toroidal equation of motion for a trapped particle in a tokamak under the
combined influence of the collisional and electric-field forces may be written as

d
a(m]‘?}qg) = Ej(E + v x B)¢—|— < Foj > —I-F;;ndom. (8)
Integrated over one complete bounce period, starting and ending at the banana tip
(vg = 0), the left-hand side vanishes. One obtains from (8)
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where A7 = 7, and angle brackets denote the average over the bounce cycle. For the
integration over one bounce cycle to be meaningful, it is imperative that wp > v so that
the particle remains trapped during the interval 7. The last term in (9) containing the
random collisional contribution will vanish upon averaging over the trapped-particle
distribution function. Since (v x B)g = v, By, one obtains from (9)

Ar Ey < Fg;>
<vp>=— =-—_2_ 2T
AT By e;jBg

(10)
as the mean trapped particle radial convection velocity and Ar =< v, > A7 as the
average convection per bounce period. The first term on the right-hand side of (10)
1s the Ware pinch. The second term represents additional pinch due to the steady
toroidal force < Fy; > exerted by the free particles on the trapped particles due to
their differential toroidal rotation.

The toroidal momentum (e;Eg+ < Fg; >)A7 lost by the free particles plus the
momentum contributed by Eg during one bounce cycle of the trapped particle ex-
actly equals e¢;BgAr, which is the canonical toroidal angular momentum gained by the
trapped particle during its radial displacement Ar. Since the entire toroidal momentum
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lost by the free particles has been accounted for, none remains to alter the toroidal pre-
cession velocity of the trapped fraction. Hence, the trapped particle precession result
of (4) continues to be valid when all the principal forces acting on the trapped particles
have been included.

Since only the fraction £'/2 of the particles is trapped, the net effective radial
convection velocity of species j in the banana regime is obtained by multiplying the
result of (10) by ¢'/2, giving

(11)
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(10)-(11) show that the steady toroidal force < Fy; > acts on the trapped particles
in a manner identical to the toroidal electric field force e;Ey4 in its ability to induce
radial convection in the banana regime. Extending the result of (11) by analogy with
the neoclassical Ware pinch results for the plateau regime gives

(12)
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With increasing v¢; in the plateau regime, Ware pinch caused by E4 in (12) di-
minishes steadily due to the ever-decreasing number of effectively trapped particles,
disappearing altogether in the high-collisionality Pfirsch-Schluter regime. Unlike the
force due to Ey, which remains unaffected by collisionality, the toroidal force < Fg >
on trapped electrons and ions given by (7) scales with collisionality, so that the inward
convection due to < Fy > in (12) remains constant throughout the plateau regime.
Like the Ware pinch, < Fy4 >-induced pinch disappears in the Pfirsch-Schliiter regime
owing to the absence of trapped particles. The sudden cessation/inception of < Fy >-
induced radial convection at the plateau/Pfirsch-Schliiter boundary is reminiscent of
abrupt transport changes accompanying L-H transitions in tokamak plasmas.
Force < F4 > in (7) is dominated by terms containing like-particle collisions. One

obtains from (6) and (7)

ree viim; Tey (0
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From (11) and (13) one obtains the rotation-induced ion convection velocity

/2 < Fyi > e 2y T 7(0)
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Significantly, the experimentally observed inward-convection velocities lie in the
range consistent with the result of (14). The ubiquitous toroidal force < Fy > expe-
rienced by trapped particles assumes added significance during neutral-beam injection
or in the presence of steep density gradients associated with transport barriers and
H-mode plasmas, where toroidal precession velocities in excess of tens of kilometers per
second have been observed. Such large toroidal velocities would cause radial convection
velocities exceeding several meters per second. (14) also shows that the inward convec-
tion would become extremely enhanced in regions of low Byg; e.g., for radii inside the
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transition region between positive and negative shear. This could have bearing upon
the formation of the experimentally observed particle and energy transport barriers.

The inward convection induced by toroidal rotation may be used for tokamak re-
fueling. It suffices to feed neutral particles in the form of pellets close to the plasma
periphery. The ionized particles are then driven inward using a combination of current
drive for electron momentum and neutral beam injection to supply the ion momentum.

Although radial convection is implicit in neoclassical theory and follows directly as
the Onsager symmetric counterpart of bootstrap current [3], its pivotal role in tokamak
transport has never been recogonized. To this day, inward convection is referred to
as anomalous inward convection. In steady state, the toroidal momentum released
(as bootstrap current) by the outward plasma diffusion exactly equals the momentum
reabsorbed through inward convection. Thus, there is no net steady-state bootstrap
current [4] (except the small contribution due to neutral particles injected directly into
the plasma interior). In steady state, the entire momentum lost through Ohmic-current
dissipation must be supplied by external sources in the form of current drive and neutral-
beam momentum injection. This can be realized owing to the high efficieny of low-phase-
velocity Alfven-wave current drive [4] via the v, enhancement resulting from radiative
collisionality contributed by Kirchhoff radiation [4]. The v.. enhancement would also
result in inward convection of the electron component comparable in magnitude to the
ion convection result of (14).

Radiative effects are invariably ignored in existing neoclassical formulations; Balescu-
Lenard-like equations include only the ballistic effects of plasma waves while neglecting
the much larger radiative contributions. The sole rationale for neglecting radiative con-
tributions rests on the faster time scale of the plasma waves compared with collisions
(w > v); high-frequency radiation is discarded as innately irrelevant, irrespective of its
intensity. Using this assumption, the troublesome time-dependent term in Eq.(10.7)
of Ref. [6] is dropped, facilitating the derivation of the Balescu-Lenard equation. The
sweeping assumption involving only the time scales makes no allowance for the relative
strengths of the radiative and ballistic contributions. In a more complete treatment one
would be obliged to include radiation effects through higher-order correlations (up to
fourth order) for all w in the manner described for the case of low w for an unmagnetized
plasma in Chapter V of Ref. [6]. Pending similar effort for a magnetized plasma, the
Kirchhoff law approach of Ref. [5] is currently the sole recourse available for estimating
radiative collisionality.

Omission of rotation-induced convection and radiative collisionality exposes funda-
mental flaws in the current practice of neoclassical theory. These flaws are responsible
for the profusion of so-called transport anomalies. Supraclassical theory [4], comprised
of neoclassical theory modified to include the radiative and convective contributions,
is able to resolve not only the problem of tokamak refueling but also the bulk of the
remaining anomalies of tokamak transport [4,5].
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