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Abstract

The essential role of collisions in Landau damping is illustrated with heuristic but quantita-
tively accurate arguments. They show that above a critical (and very weak) collisionality the
linearization of the Vlasov equation for the perturbation and the quasilinear description of the
evolution of the background distribution function are simultaneously justified, and yield a closed
and internally consistent model. We argue that phase mixing is not the same as irreversibility,
but greatly enhances the efficiency of collisions in causing it.
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1. Introduction

Since its first derivation in 1946 [1], Landau damping has been the object of much
discussion, aiming at understanding the “paradox” of an irreversible process being pre-
dicted by a collisionless model, namely Vlasov equation. Even after the experimental
confirmation of the effect [2] the discussion went on, and is still far from damped away
(e.g. [3] and references therein).
In this paper we address the physics of Landau damping mechanism with a very simple
model which is nevertheless able to determine accurately the limits of the applicability
of the Landau results. For simplicity, we confine the analysis to the steady state of exter-
nally excited waves which propagate and are absorbed in fusion plasmas [4]. The key of
our argument is the observation that Vlasov equation is not an exact description of the
dynamics of charged particles in the plasma, but only holds for times shorter than the
collision relaxation time appropriate to the phenomena under consideration. For slower
phenomena Fokker-Planck-Landau equation, must be used. In the following we describe a
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physical picture which also retains the main feature of the transition to nonlinear Landau
damping (νcoll � νcrit) on one side, and to the collisional regime typical of weakly ionized
plasmas and gases (νcoll > ν) on the other. In the case of linearized Vlasov–Poisson set
of equations, the role of collisions has been recently addressed by Ng, Bhattacharjee, and
Skiff [5] who found that collisions change qualitatively the eigenmodes and the spectra
of the system.

2. Model of Landau Damping

We consider the motion of an electron in the electrostatic potential of a longitudinal
wave E(x, t) = E0 cos

(
k x − ω t

)
. The change of velocity in the time interval ∆t is

∆v = −e E0

me

∆t∫
0

dt cos
(
k x(t) − ω t

)
(1)

where x(t) is the solution of the equation for the nonlinear harmonic oscillator in the
wave. For times shorter than the bouncing time ∆t < tbounc in Eq. (1) we can simply
use x(t0 + ∆t) ≈ x0 + v0 t [6] to obtain:
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eE0

me

1
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sin
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2
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(
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2
∆t
)

(2)

The amount of power exchanged between resonant particles and waves is proportional
to ∆v ∆v, averaged over the initial position x0 (assumed random):

< ∆v ∆v >∆t ≡ 1
2π

1
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(3)

∆t→∞−→ π
(eE0

me

)2

δ
(
k v − ω

)
(4)

where we have omitted the subscript of the velocity. Fig. (1.a) shows as < ∆v ∆v >∆t

changes with ∆t: as ∆t increases the resonant particle exchange more energy per unit
time (height), but it stays in resonance for a shorter time (width). Thus the total energy
absorbed during ∆t does not depend on ∆t.

To evaluate the energy per unit time K exchanged by electrons with the wave, we
describe the slow evolution of the distribution function f due to interaction with hf-
waves as a random walk:

∂f

∂t
=

1
2

∂

∂v

[
< ∆v ∆v >∆t

∂f

∂v

]
(5)

which gives:

∂K
∂t

=
∫
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me v2

2
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∂t
= −

∫
dv

me

2
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(6)
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Fig. 1. (a): < ∆v ∆v >∆t of Eq. (3) for two values of ∆t; (b). ΓL/Γ as function of νcoll/ν (with
ν = ø/2π), obtained using Eq. (3) in Eq. (6) and vph = 2 vthe, the last relevant only for νcoll > ν. The
regions (A) and (B) refers to the nonlinear [7] and linear Landau damping [1] regimes. For νcoll > ν the
system enters in the regime typical of high collisional plasmas [8] and neutral gases [9].

In the limit νcoll/ν � 1, f differs from a Maxwellian fM mainly in the small interval
[vph−δv, vph+δv] [7], with vph It can been easily shown [10,11] that the velocity-derivative
of f needed in (6) can be approximated as:

∂f

∂v

∣∣∣∣
v=vph

=
νcoll

νcoll + νcrit

∂fM

∂v

∣∣∣∣
v=vph

(7)

with
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(
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)3
2 δv

v2
the
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)2 (
e Φ0

me v2
the/2

)3/2

≡ νcrit (8)

with E0 = k Φ0 and vph = ω/k. Upon using Eq. (3) and Eq. (7) in Eq. (6), the heating
rate as function of the normalized collision frequency νcoll/ν is reported as solid line in
Fig. (1.b). For νcoll � ν, we can approximate:

Γ =
νcoll

νcoll + νcrit
ΓL (9)

with ΓL the damping rate at the plateau νcrit � νcoll � ν,

ΓL =
∂K
∂t

=
π

2
e2 E2

0

me

(
− ∂fM

∂v

)
vph

, (10)

equal to the rate evaluated by Landau (see Sec. 8.2 of [6] for details).
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Equation (9) describes two collisional regimes [10]:

(A) : νcoll � νcrit with Γ = (νcoll/νcrit) ΓL

(B) : νcrit � νcoll � ν with Γ = ΓL

Regime (A) is the low-collisionality, or large amplitude, regime studied by Zakharov and
Karpman [7], in which the absorption is proportional to the collision rate, and depends
explicitly on the amplitude E0. Although in this regime the derivation [10] is, strictly
speaking, oversimplified, the result Eq. (9) agrees well with the damping rate evaluated
by a more rigorous model (cf. Eq.(43) in [7]). In regime (B) the familiar Landau damping
rate is recovered, which does not depend on either νcoll or E0. Although usually called
‘collisionless’, this regime would be more appropriately called ‘plateau’, as in the theory
of neoclassical diffusion in tokamaks [12]. Thus the classical Landau damping mechanism
which predicts a damping rate independent from the collision frequency applies only for
low collision frequency, but not for νcoll exactly zero, as the adjective “collisionless” would
suggest [10,6].
For νcoll/ν > 1 the damping rate decreases with νcoll/ν, since the duration of the wave-
particle interaction is much less than the period of the wave. This is the typical regime
of high collisional plasmas [8] (hardly relevant for fusion plasma) and neutral gases [9].

To understand the physical meaning of νcrit we observe that the steady state solution
of the Fokker-Planck equation (FPE) emerges from a balance between the trapping of
resonant particles in the wave electric field and collisions. The trapping in the wave field of
amplitude E0 tends to drive the distribution function away from the thermal equilibrium
in the velocity interval |v − vph| < δv ≡ (2 e E0 /(m k))1/2. An initially trapped particle
can be detrapped as soon as its velocity is changed of an amount δv [4]. Because of the
random walk nature of collision diffusion in velocity space, the characteristic detrapping
time is:

τdetr = τcoll(vph)

(
δv

vthe

)2

= τcoll

(
vph

vthe

)3
e Φ0(

m v2
the

)
/2

(11)

The linearized Vlasov equation is justified when a particle initially trapped in the wave
is detrapped in a time shorter than the bouncing time in the wave well, τbounc =
ø−1 [e Φ0 /(m v2

ph/2)]−1/2. If νcoll = τ−1
coll � νcrit the particle exits from resonance be-

fore feeling any nonlinearity, and carrying away the energy exchanged with the wave
while in resonance. It is replaced by a new particle whose bouncing motion will have a
random phase with respect to the wave (this justifies the “random phase” assumption
made to write Eq. (3).

If collisionality increases, the rate of detrapping increases, but the energy carried away
by each particle decreases, and vice versa. The result of this irreversible process is Lan-
dau damping. Although collisions are essential to introduce irreversibility, the resulting
damping rate is independent from the collision frequency, and, in fact, from the par-
ticular nature of the dissipative mechanism. This is an universal property of resonant
phenomena, resulting from the combination of a very long interaction time and a very
weak dissipation mechanism, and is the reason why analogies with Landau damping are
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increasingly recognized in many fields outside plasma physics [13,14].

3. Quasilinear Diffusion Coefficient

That Eq. (9) correctly describes the qualitative behaviour of Γ as a function of νcoll/νcrit

can be checked in a different way, which at the same time shows that in the “plateau”
regime the background distribution function f obeys the familiar quasilinear kinetic equa-
tion [15]. We consider the motion of individual electrons in an infinite set of electrostatic
waves, all with the same electric field amplitude, and with equally spaced wavevectors
kn. However, we use this model in a regime where the single particle is effectively inter-
acting with only one wave. As noted by Stix [6], the corresponding Hamiltonian yields
the standard map [16], of which a number of analysis are available in literature [17].
Coulomb collisions can be added to the map as random kicks δvj

vj+1 = vj + ε sin zj + δvj+1, xj+1 = xj + vj+1 (12)

sampled out of a Gaussian distribution f(δv) = (2πDcoll)−1/2 exp
[−(δv)2/2 Dcoll

]
with

Dcoll = v2
the νcoll/2 the collision diffusion coefficient in velocity space. This implementa-

tion of collisions is consistent with a diffusion process only when the kicks are small and
not frequent, and this is the case when νcoll � ν. The map equations (12) are written in
dimensionless variables by rescaling length and time respectively by k and ω2/2πck, so
that ε = eΦ0k

2/me ω2 is the normalized amplitude of the wave electric field. The ratio
between the diffusion coefficient in phase space and its quasilinear part, D/DQL, quanti-
fies the stochasticity degree of the system. When the phase space is dominated by regular
regions (i.e. has well defined Kolmogorov-Arnold-Moser (KAM) surfaces), D/DQL � 1.
On the other hand, when the phase space is mainly stochastic, D/DQL ≈ 1.
Figure (2.a) shows results [15] for D/DQL as function of ε with (solid line) and without
collisions (dashed line). In the absence of collisions, D/DQL is negligible when the electric
field is below the Chirikov overlapping threshold [16], ε < εC = 0.989 (vertical line in
Fig. (2)). For ε above εC the motion becomes extremely sensitive to the initial conditions,
producing a greatly increased fine-graining of the particle distribution in phase space.
Soon above this threshold the finite numerical resolution has the same effect as an external
noise perturbing the system, and D/DQL rapidly approaches unity. In the presence of
extrinsic diffusion induced by collisions, D/DQL has a completely different behaviour,
in particular at low amplitudes. For ε � εC collisions are the dominant effect, and
D/DQL ≈ 1; only as ε increases the order introduced by the wave field (KAM surfaces)
reduces diffusion in phase space, and D/DQL approaches the behaviour of the collisionless
case: this is regime (A) of Eq. (9). This trend continues up and beyond the point where
resonance overlapping appears.
The regime relevant to verify the correctness of Eq. (9) is the case of ε � εC, in which the
effects of resonance overlapping are completely negligible. In this limit, in the collisionless
case, the large majority of particles can interact resonantly with at most one wave of the
set, as assumed in the derivation of Eq. (9). Collisions, moreover, are the only source
of stochasticity. Figure (2.b) shows D/DQL (solid lines) and Γ/ΓL (dashed lines) as
functions of Dcoll for three values of ε � 1. The transition to the quasilinear behaviour
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Fig. 2. (a) The diffusion coefficient as function of ε with collisions (solid line) and without collisions
(dashed line). In the absence of collisions the diffusion coefficient vanishes for ε less than the Chirikov
threshold [16] (vertical line). (b): Diffusion coefficient (solid line) and damping rate (dashed line) as
function of the normalized collision diffusion coefficient Dcoll = νcollv

2
the

/2. Details are given in [15].

occurs at Dcrit = v2
the νcrit/2 (in dimensionless units Dcrit = ε3/2/

√
2); precisely at the

same collisionality Γ jumps to its plateau value.

4. Conclusion

The originality of the physical picture of Landau damping proposed in this note stems
not from its single parts which are well-know (see for instance [6]), but in its ability
to predict and explain the regimes of this important mechanism. Despite its simplicity,
this approach gives results in agreement with sophisticate analytical analysis and Monte
Carlo simulations [18,15] (in particular Fig. (1.b) is to be compare with Fig. (2) of [18]),
and, therefore, it offers a pedagogical introduction to the physics of Landau damping
mechanism. It also clarifies the true role of phase mixing: fine graining in phase space
is not itself an irreversible process, as shown by phenomenon of ‘echos’ [19], but enor-
mously increases the efficiency of collisions in causing irreversibility. Here, again, Landau
damping is a paradigm for a large variety of irreversibility paradoxes, including the most
famous one, namely the observation of irreversible behaviour in closed systems. Indeed,
explaining Landau damping with phase mixing is akin to equate irreversibility and ergod-
icity. In both cases, the paradox arises because an idealized model (collisionless Vlasov
equation, closed system) is used far beyond its validity range. For times comparable with
the inverse Landau damping rate the reversible Vlasov equation must be replaced by
its irreversible linearized form for the perturbation, together with the quasilinear kinetic
equation for the background plasma. Similarly, the irreversibility paradox disappears
when it is realized that no macroscopic system which is ergodic, however well insulated,
can be regarded as closed for times ever faintly comparable with its Poincaré recurrence
time.
Finally, it should go without mentioning that our considerations apply without restric-
tion only to stable plasmas. In the case of growing waves, whether or not the motion of
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resonant particles remains linear before collisional detrapping occurs, so that quasilinear
saturation can be reached, depends on the growth rate, on the spectrum of unstable
waves (a broad spectrum causing more fine graining in velocity space), and, particularly
in numerical simulations, also on the initial amplitude of the perturbation.
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