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ABSTRACT 

The magnetic configuration of the W7-X stellarator is optimized following a set of criteria 

including a rotational transform profile with low shear and minimized bootstrap current that must be 

controlled for a proper functioning of the island divertor. We study the compensation of residual 

bootstrap current by using electron cyclotron current drive (ECCD). The modeling shows that the loop 

voltage induced by ECCD leads to a redistribution of the current density with a diffusion time of about 

two seconds. The relaxation time of the total current is much longer, however – for W7-X plasma 

parameters the total toroidal current reaches steady state after several L/R-times requiring hundreds of 

seconds. In order to keep the toroidal current and its profile in the acceptable range we propose a feed-

forward or predictive control method by using ECCD as actuator. The main steps are as follows: (i) 

calculate the bootstrap current distribution using plasma parameters measured in the online transport 

analysis, (ii) determine and apply ECCD as needed. For the current control to work properly and to 

avoid long relaxation times the reaction time of the control loop must be less than the current skin 

time. 

 

INTRODUCTION 

One of the optimization criteria for the stellarator W7-X, is the minimization of the bootstrap 

current.1 The plasma current changes the magnetic configuration, especially near the plasma edge, 

where X-points and islands are located. It has been shown2 that the plasma parameters in the divertor 

region and the particle and energy depositions on the divertor plates depend strongly on the island 

geometry. An estimation of the tolerable plasma current obtained from the shift of the island structure 

close to the target plates shows that the plasma current should be controlled within a range of about 10 

kA. The bootstrap current for high-temperatures discharges can easily exceed this value. W7-X is not 

equipped with an Ohmic transformer, so the only means for compensating this current is electron 

cyclotron current drive (ECCD) and/or neutral beam current drive (NBCD). In this report we study the 

compensation of residual bootstrap current by using ECCD. To model the control of the toroidal 

current we use a predictive 1D transport code, which is under development. In order to keep the 

current in an acceptable range we propose feed-forward current control based on online calculations of 

the bootstrap current and using the ECCD as actuator. 
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II. METHOD 

The transport code is based on a system of equations, which consists of particle and power 

balance equations augmented by diffusion equations for the radial electric field and for the poloidal 

magnetic flux: 
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where nα, Tα and zα are the density, temperature and charge number of electrons or ions, the prime 

denotes the derivative with respect to the effective radius r; V  is the volume enclosed in a magnetic 

surface with the effective radius r; pS  is the particle source; αP is the heat source/sink of species α ; 

rE  is the ambipolar radial electric field; DE is the diffusion coefficient of the electric field, which 

originates from the plasma viscosity (here, for simplicity, we assume that smDE

25.0=  and does not 

depend on rE ); ι  is the rotational transform; 0R  is the plasma major radius; pψ  is the poloidal 

magnetic flux related to the toroidal plasma current; bsj  and cdj  are the bootstrap and driven currents, 

respectively; αΓ  and αQ  are the particle and heat flux densities of species α . The superscripts neo and 

an denote the neoclassical and anomalous contribution to the total fluxes. The anomalous fluxes with 

the diffusion coefficients anD  and an

αχ  are used to adjust transport at the edge area of the plasma 

because the neoclassical theory can not explain particle and energy loses here. In our simulations we 

use en1 - dependence of anomalous diffusion coefficients with typical values chosen at the level 

1-10m
2
/s. The neoclassical heat neo

qα and particle neo
αΓ  flux densities, and bootstrap current 

density bsj  are given by 
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For evaluation of the transport matrix coefficients α
jkD and the parallel conductivity e

D33∝σ  we use a 

database of monoenergetic coefficients precomputed by applying the DKES-code3 and results from an 

international collaboration on neoclassical transport in stellarators4.  

The boundary conditions for equations (l) are the symmetry condition at the plasma center:  
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The boundary conditions for the density and temperatures at the plasma edge are  

bar
XX =

=
, (4) 

where a  is the minor plasma radius, X denotes ne , Te  or Ti , and Xb is the correspondent boundary 

value. The edge boundary condition for the radial electric fields is the ordinary differential equation: 
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The last partial differential equation of system (1) represents the longitudinal Ohm’s law; where pψ  is 

the self, or plasma induced, poloidal magnetic flux. Such an approach simplifies the task for finding 

the boundary condition – there is no need to take into account interactions of coil currents with plasma 

current and their mutual inductions. The stellarator W7-X is not equipped with an Ohmic transformer, 

so the boundary condition for the poloidal flux is the absence of an external loop voltage 

),(),( taILtap =ψ  which leads to: 

L

R

r

a p

p

00µψ

ψ
−=

∂

∂
 (6) 

where ),( taI  is the toroidal plasma current and ( )( ) HaRRL µµ 1828ln 000 ≈−=  is the estimation of 

the W7-X plasma inductance. 

III. PLASMA RESPONSE TO CURRENT AND TIME SCALES 

In the computer simulation described below, we determine the radial electric field, neoclassical 

fluxes, bootstrap currents, and parallel conductivity using the transport equations with a fixed density 

profile. During calculations we use the W7-X standard magnetic configuration with magnetic 
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induction of 2.5T* without self-consistent updating of the equilibrium. This makes the system (1) 

inexact. The reasons to use such an approximation are the following. The stellarator W7-X has been 

designed to have a very small bootstrap current. The absolute value of the plasma current should not 

exceed 10 kA to provide proper island position near the divertor plates; such a current does not change 

significantly the magnetic geometry. The equation for the poloidal magnetic flux has weak coupling 

with the other equations; the poloidal flux influences other equations only through the rotational 

transform and geometry changes, which should be small; but in turn this equation strongly depends on 

the bootstrap current and conductivity defined by densities and temperatures. These considerations 

provide reasonable accuracy of the system (1) for studying plasma current evolution problems 

described here.  

Before studying the plasma response to ECCD, we equilibrate the system of equations (1) to steady 

state without applying ECCD. After equilibration we ‘turn on’ the off-axes counter-ECCD with a total 

value of 43kA, which is equal to the estimated bootstrap current. The prescribed current distribution 

( )22)(exp wrrj ceccd −−∝  is used for modeling of the ECCD. This ECCD scenario was chosen since 

we want to isolate and study the transient processes of a current evolution; – there is only weak 

coupling of the current diffusion equation with the transport.  

 

Fig. 1. Plasma profiles: (a) the electron density; (b) the electron (∇) and ion (∆) temperatures; (c) the 

radial electric field. 

In Fig. 1 the density and temperatures for the electron cyclotron resonance heating (ECRH) scenario 

along with the ambipolar radial electric field are shown. The electric field has a positive solution 

(electron root) in the central part. This behavior of the electric field is typical for such temperature 

profiles. The parallel conductivity, bootstrap current and counter-ECCD densities are shown in Fig. 2. 

After switching on the ECCD a loop voltage is induced. The radial profiles of the loop voltage are 

shown in Fig. 2c for several times: at 0.2sec, at 2sec, and at 25sec after applying counter-ECCD. 

                                                 
* corresponds to 140GHz for electron cyclotron resonance heating (ECRH) at the second harmonic of the extraordinary 

mode (X2-mode) 
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Fig. 2. (a) plasma conductivity; (b) the electron (∇), ion (∆) bootstrap current densities, and ECCD (Ο) 

density; (c) time evolution of the loop voltage. 

The diffusion time of the loop voltage (‘skin time’ – time needed for the loop voltage to reach the 

plasma edge) is about 2sec; the skin time can be estimated using the formula 0
2σµl , where l is the 

characteristic scale length. On this timescale, the loop voltage produces a current which considerably 

increases the rotational transform in the bulk plasma leaving the edge value of the rotational transform 

aι  unaffected; see the curve marked by ∆ in Figs. 3a and 3b. 

 

Fig. 3. Time evolution of the rotational transform: (a) (∆) at 0.2 sec after applying ECCD;  

(b) (∆) at 2 sec after applying ECCD; ∇ denotes the initial (without ECCD) rotational transform and Ο 

is the current-free  contribution to the rotational transform; (c) time evolution of the rotational 

transform on axis. 

For calculating the rotational transform we use the formulas:5 
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where jkg  are the metric tensor elements, g  is the Jacobian; ϕθ ,  are the poloidal and toroidal 

angles in Boozer coordinates; torψ ′ is the derivative of the toroidal flux with respect to the effective 

radius r; torj is the toroidal current density (the second term in the equation for the poloidal magnetic 

flux); torI is the toroidal current; and jkS is the susceptance matrix. This approach allows us to 
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decompose the rotational transform in the current free part† 1112 SSCF −=ι  and in the part which 

explicitly depends on the toroidal current and scales as 2
rI tor∝∆ι . We also use the fact that the 

susceptance matrix S and the current-free contribution to the rotational transform have a weak 

dependence on torI .5  

 

Fig. 4. (a) time evolution of the total current; (b) the initial (∇) and final (∆) toroidal current 

distributions; (c) the initial (∇), final (∆), and current-free  (Ο) rotational transform.  

The relaxation time of the plasma current )(aII tortotal =  is much longer than the skin time. The 

plasma current reaches steady state after 100 seconds with the decay time sec32/ ≈RL ; see Fig. 4a 

and also the evolution of the rotational transform in the plasma center in Fig. 3c after 2 seconds. The 

initial and final current distributions and associated rotational transforms are shown in Figs. 4b and 4c. 

The bootstrap current (curve marked by ∇ in Fig. 4b) increases the edge value of the rotational 

transform; aι  going to one (∇-curve in Fig. 4c) means that the X-points and islands move inward. This 

represents a potential danger for the proper functioning of the island divertor used in W7-X, since the 

main recycling zones move away from the divertor gap. Counter-ECCD compensates the bootstrap 

current and decreases aι , while in the bulk plasma the shear of the rotational transform changes sign 

due to localized ECCD (∆- curve in Fig. 4c).  

Let us consider the case of the on-axis counter current drive. We use the same plasma profiles 

and the total value of ECCD as in the previous case, which is equal to the bootstrap current. The final 

results of the simulation are shown in Fig. 5. On-axis localization of ECCD leads to a strong decrease 

of the rotational transform in the central region of the plasma, whereas the edge ι -value is the same as 

in the case of off-axis ECCD; see ∆-marked curve in Fig. 5c. It should be noted that our computational 

model of a fixed equilibrium with only a small perturbation by the toroidal current is no longer valid in 

this case.  

                                                 
† here we use the terminology of Ref. 5; however the ‘current free part’ of the rotational transform implicitly depends on 

the toroidal current through flux surface averages of metric quantities, but this dependence is weak except in the case of 

strong on-axis ECCD ; see also Fig.6 and discussion in Ref. 5 
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Fig. 5. (a) the electron (∇) and ion (∆) bootstrap current densities, ECCD (Ο) density; (b) the initial (∇

) and final (∆) toroidal current distributions; (c) the initial (∇), final (∆), and current-free  (Ο) 

rotational transform.  

It can be seen from the rotational transform expansion (7) that near the axis due to the leading 

dependence 2
rI tor∝∆ι the rotational transform changes considerably, which in turn strongly affects 

the equilibrium and consequently the current-free part of the rotational transform. Using the approach 

of Ref. 6, we set the rotational transform to zero in the central part of the plasma (∆-curve in Fig. 5c) in 

order to show the tendency for the case of on-axis counter-ECCD. This part of the plasma can be 

considered as a region nearly without confinement due to the large deviation of particle orbits from the 

flux surfaces; more comprehensive analysis is needed to study this problem including MHD 

equilibrium calculations.6 

IV. CURRENT CONTROL 

The magnetic configuration of the W7-X stellarator is optimized following a set of criteria 

listed in Ref. 1 including a flat rotational transform profile with low shear and a very small bootstrap 

current. To compensate the bootstrap current we need a ‘control’ tool that can react immediately to 

changes of the bootstrap current by applying counter-ECCD, i.e. the non-inductive current of the same 

value, but in the opposite direction. The usual feedback control scheme seems to be unfeasible because 

(i) there is no means to measure the bootstrap current density profile and (ii) measurements of the total 

current can not provide the information needed for a feedback loop due to the long L/R-time. In order 

to control and to keep the toroidal current and its shape in a tolerable range and to avoid long 

relaxation times we propose feed-forward or predictive control schemes using ECCD as an actuator. 

The steps of the method are as follows: (i) calculate the bootstrap current distribution using the 

measured densities and temperatures profiles in the online transport analysis and (ii) determine and 

apply the ECCD that is required for compensation. 

For the simulation of this control algorithm, we determine the radial electric field, neoclassical fluxes, 

bootstrap currents, and parallel conductivity using the transport equations (1) with a fixed density 

profile and fixed standard magnetic configuration with magnetic induction of 2.5T. For modeling 

ECRH and ECCD we use prescribed profiles and the results of Ref. 7 for the ECCD efficiency. The 
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heating scheme is shown in Fig. 6c: P1 is the on-axis heating source without ECCD and P2 is the off-

axis heating source which produces ECCD.  

 

Fig. 6. Plasma profiles: (a) the electron density; (b) initial electron (∇) and ion (∆) temperatures;  

c) initial (Ο) and final (∇) power deposition profiles;  

For simplicity we choose fixed positions and width of both sources. Before simulation of the control 

algorithm, we equilibrate the system to steady state with P1=0.25MW and enough counter-ECCD 

(P2=1.68MW) to cancel the 7kA of bootstrap current. Corresponding initial plasma profiles and 

heating sources are shown in Fig. 6. 

 

Fig. 7. Time traces of: (a) the heating powers, 

(b) the temperatures at the center, (c) the 

bootstrap current, (d) the total toroidal current, 

(e) the value of aι . The reaction time is 0.2 sec.  
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During the simulation, we increase the on-axis heating source P1 (which has no ECCD) each 20 

seconds in order to check how the control algorithm works. Increased core heating leads to an increase 

in the bootstrap current. According to the feed-forward control algorithm, the program ‘measures’ the 

total value of the bootstrap current Ibs and ‘applies’ the same amount of counter-ECCD Icd by 

increasing the power of the heating source P2. The time interval between adjusting the ECCD is the 

reaction time of the control loop. For the current control to work properly the reaction time (in our 

modeling we use 0.2 and 1 second) must be less than the skin time which is about two seconds. The 

time traces of the total heating power, temperatures at the center, the value of aι , the bootstrap and the 

total toroidal currents are shown in Fig. 7. The bootstrap current (Fig. 7c) during our computer 

experiment increases from 7kA to 21.5 kA owing to increased core heating P1 (used as ‘disturbing’ 

source) and off-axis heating P2 (used for current control). Fig. 7d and Fig. 7e show the results of the 

modeling with the reaction time of 0.2sec. The plasma current is less than 20A and oscillates near 

zero; see the Itor - curve in Fig. 7d. The rotational transform (Fig. 7e) fluctuates near the current-free 

value; the changes of aι  are less than 0.01%. Heating increases the plasma temperature and hence, the 

bootstrap current that must be compensated by ECCD using the same heating. Because of this 

“positive” feedback, according to Fig. 7a, the small increment in the core heating P1 requires a large 

increase of the total heating power. Such behavior is due to our choice of the ECCD source. Here we 

take the ECCD proportional to the heating power P2. Probably, a better option is to keep the heating 

power fixed and adjust ECCD by changing the angle between the microwave beam and the magnetic 

field.  

The time traces of the heating powers and currents for the time interval 19–29 sec are shown in Fig. 8. 

It is seen that the increase of the on-axis heating P1 triggers the control algorithm, which produces 

oscillations of the non-inductive current source Ibs + Icd trying to keep it at the zero level (see Fig. 8c). 

This residual current creates poloidal flux and, as a result, an inductive current which contributes to the 

total current. The inductive current diffuses with the skin-time, “smoothing” the total current (compare 

Fig. 8c and 8d.). The changes, “accumulated” in the poloidal flux, relax with the L/R time (see the 

evolution of the total current after 23 sec in Fig. 8d). In this connection, the usual method of feedback 

control, which uses detuning of the total plasma current from the zero level for defining the control 

loop, seems to be unachievable because of the retarded response to the control action. Unlike the 

feedback scheme, the feed forward control algorithm proposed here “measures” the deviation of the 

current source Ibs+Icd from the zero level directly and takes control action over short time scales to 

reduce the disturbance.  
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Fig. 8. Time traces of: (a) the heating powers, (b) 

the bootstrap current, (c) the sum of bootstrap 

current and counter-ECCD, (d) the total toroidal 

current. The reaction time is 0.2 sec. 

 

 

The results of calculations with a 1 sec reaction time are shown in Fig. 9d and Fig. 9e. The maximum 

value of the total toroidal current (Fig. 9d) is about 200A. The edge rotational transform (Fig. 9e) 

oscillates at a level which is only 0.1% higher then the current-free value. For both values of reaction 

time, the control algorithm maintains a fixed edge rotational transform value. 

 

 

Fig. 9. Time traces of: (d) the total toroidal 

current, (e) the value of aι . The reaction time is 

1sec. 

 

The final current distributions and associated rotational transforms are shown in Fig. 10. 

Without the current control the bootstrap current (see the curve marked with ∇ in Fig. 10b) would 

increase the edge value of the rotational transform. The counter-ECCD compensates the bootstrap 

current and decreases the edge value of the rotational transform, while in the bulk plasma the rotational 

transform ( ∆-curve in Fig. 10c) has a slightly non-monotonic behavior due to a mismatch of the 

profiles of bootstrap and control current densities. 
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Fig. 10. The final current distributions and associated rotational transforms: (a) electron (∇), ion (∆) 

bootstrap current densities, ECCD (Ο) density; (b) bootstrap (∇) and total (∆) toroidal current 

distributions; (c) uncompensated (∇), final (∆), and current-free (Ο) rotational transform.  

Fig. 11 shows results of the simulation with the same initial conditions, but with the original 7kA of 

bootstrap current left uncompensated; in other words, before simulation we equilibrate the system to 

steady state with P1=0.25MW and P2=1.68MW, but without counter-ECCD. Then at time zero we 

switch on counter-ECCD produced by P2 and start the modeling using one second reaction time in the 

current control algorithm. During the first 60 sec, the total toroidal current decreases slowly with the 

L/R-time of about 10 seconds, and then it behaves the same as in the case shown in Fig. 9d. Initially, 

the edge rotational transform aι has a slightly higher value compared to that of the current-free one. But 

it soon approaches the current-free value due to compensation of the bootstrap current. 

 

Fig. 11. Time traces for the case with the original 

7kA of uncompensated bootstrap current: (d) the 

plasma current, (e) the value of aι . The reaction 

time is 1 sec. 

 

SUMMARY 

In this paper we have studied the compensation of the residual bootstrap current in W7-X by 

means of ECCD. The modeling has shown that sudden introduction of the counter current driven by 

ECRH does not instantly compensate the bootstrap current. The loop voltage induced by ECCD leads 

to a redistribution of the current density with a time constant of about two seconds. The relaxation time 

of the total current is much longer than this time – for a typical ECRH-plasma the total toroidal current 

reaches steady state after several L/R-times requiring on the order of one hundred seconds. The 
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simulation showed also that a strong localization of ECCD (or bootstrap current localization caused by 

peaked plasma profiles) leads to strong deformations of the rotational transform profile. Moreover, on-

axis counter ECCD decreases the rotational transform in the central region of the plasma to zero (see 

also Ref. 6). In order to avoid long relaxation times and to keep the toroidal current and its profile in 

the acceptable range we have proposed feed-forward or predictive control methods by using ECCD as 

actuator. The first results of modeling have shown that it is possible to keep the plasma current within 

a tolerable range and also to maintain low-shear conditions for the rotational transform. The usage of 

ECCD and/or NBCD provides a flexible tool to control the current profile and to compensate the 

residual bootstrap current. It should be noted that NBCD will be available only for ten seconds during 

the early stage of W7-X operation8, i.e. during a period much shorter than the relaxation time of the 

current. Thus, the only tool to control the bootstrap current during the initial stage of the experimental 

campaign will be the ECCD induced by electron cyclotron heating, which has been designed to work 

for 30 minutes8. We are planning to continue the study of feed-forward control schemes with the self-

consistent calculation of heating and current drive included.  
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